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Abstract

Time-varying fading channels present a major challengdnéndesign of wireless communication
systems. Adaptive schemes are often employed to adaptahsntission parameters to receiver-based
estimates of the quality of the channel. We consider a pifsted adaptive modulation scheme without
the use of a feedback link. In this scheme, pilot tones (knoywsender and receiver) are periodically sent
through the channel for the purpose of channel estimatiohcaherent demodulation of data symbols
at the receiver. We optimize the duration and power allocabf these pilot symbols to maximize
the information-theoretic achievable rates using binégpaling. We analyze four transmission policies
and numerically show how optimal training in terms of duratand power allocation varies with the
channel conditions and from one transmission policy to laotWe prove that for a causal estimation

scheme with flexible power allocation, placing all the aadalié power on one pilot is optimal.

Index Terms

Adaptive modulation, pilot symbol assisted modulatiordifigg channels, Rayleigh fading, power

allocation, training duration.

. INTRODUCTION

In digital mobile communications, fast fading degradesBhderror Rate (BER) of the channel

and inhibits coherent detectH)rit is known that performance is limited by channel estimmti

This work was performed at AUB and supported by AUB’s Uniitgrfkesearch Board.
Partial results of this study were presented at the IEEE IE8®, Dec. 2009.

1Coherent demodulation requires the extraction of a radigitlase reference from the received signal.
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errors [1]-4]. Pilot Symbol Assisted Modulation (PSAM)agechnique that has been introduced
in [5] to mitigate these effects. In this scheme, known iragrsymbols (pilots) are periodically
inserted into the data frame for the purpose of channel attm and coherent demodulation
of the data symbols.

Furthermore, channel-adaptive modulation dynamicaljystd certain transmission parameters
such as the constellation size, transmitted power, and @deaccording to the channel quality.
Adaptive signaling provides in general higher bit ratedafree to conventional nonadaptive
methods) by increasing the transmission throughput unaesréble channel conditions and
reducing it as the channel condition is degraded.

Some of the previous adaptive schemes rely on a channdbdekdink to provide the transmit-
ter with the Channel Side Information (CSI) [6]. [7]. In/ [&he authors consider employment
of adaptive modulation with one pilot in addition to delayl@dback to the transmitter and
prove that power adaptation via periodic feedback can asgdhe achievable rates. Similarly,
in [9], authors consider pilot-based adaptive modulatitverg estimate is fed back to transmitter
in order to adapt data and pilot power and study the optimétydor power allocation for
data and pilot symbols. Authors in [10] discuss adaptive mhatecbn with feedback and develop
an adaptive scheme that accounts for both channel estimatid prediction errors in order
to meet a target Bit Error Rate (BER). In_|11], the authoremafit to optimize the spectral
efficiency subject to a specific BER constraint in a pilotdzthadaptive modulation setup with
feedback. The above mentioned works study the performaisech systems and prove adaptive
modulation using pilots can increase the achievable ratgemeral. However, systems that rely
on a channel-feedback link present some disadvantagessgechthe modeling complexity on
one hand and its infeasibility on the other hand when the mblais fading faster than it can
be estimated (or predicted) and fed back to the sender. @tignthe pilot placement, power
allocation and modulation schemes in a pilot-based setap iactive area of research, whether
in the case of a single receiver [8]-[10], [12]-{17] or mpl& receivers|[17]+-[19].

A modified pilot-based adaptive modulation scheme over &gkl fading channels was pre-
sented in[[20]. This scheme adapts the coded modulatiotegyrat the sender to the quality of
the channel estimation (estimation error variance) at ¢éeeiverwithout requiring any channel
feedback In this work we study the performance of this non-feedbadkpsive modulation

scheme over time-varying Rayleigh fading channels. Urhieescheme in [20], we consecutively



send a cluster ok pilots (¢ > 1) per data frame withk being an optimization variable [21].
We determine the optimal duration and power allocation ef tilaining period under different
transmission policies for both causal and non-causal etttm We study such systems at low
Signal-to-Noise-Ratio (SNR) (we consider the received FNRels and the performance is
measured in terms of achievable rates using binary sigmalife prove that the “optimal” power
allocation scheme which minimizes the error variance ofetstemates of the channel parameters
—which is set up offline without requiring feedback case of causal estimation is the one in
which all the available power is allocated on one pilot, ihstraints allow it.

The organization of this paper is as follows. In Seclion k&, pvesent the fading channel model,
the adaptive transmission technique we use to transmittbeechannel as well as the receiver
details. The measure of performance is discussed in Sdtfjdhe optimal power allocation for
causal estimation is proved in Section IV and the numerieslilts are presented in Sectloh V.
In Section V], we present possible extensions to other fadiodels and Sectidn VIl concludes

the paper.

[I. PRELIMINARIES
A. The Channel Model

Consider the single-user discrete-time model for the Rglyléading channel,
Y= RiX; + N,

wherei is the time index,X; € C is the channel input at timg Y; € C is its output, andR; and
N; are independent complex circular Gaussiaiasmidom variables with zero mean and variance
0% and o3 respectively. The amplitude of the fading coefficiéhtis then Rayleigh distributed

and its phase is uniform ovér7, 7). To account for power constraints, the input is subject to
E[|X,[] <P,

for some parameter§P;} —that could be all equal to a constant for example. Since from

an information theoretic perspective scaling the outputlipyr does not change the mutual

2A complex Gaussian random variable is circular if and oniy i zero-mean and its real and imaginary parts are independ

with equal variances.



information, we assume without loss of generality that= 1. The variance of the noislefV is
to be generally interpreted ds?% /0%).
We assume in this study that the fading process follows &gty first-order Gauss-Markov
model introduced in [22], i.e.,
R, =aR, 1+ Z, (@D)

where the samples$Z;} are Independent and Identically-Distributed (1ID) comxplarcular
Gaussians with mean zero and variance equakte- (1 — o) such thatx € [0, 1) to guarantee
stationarity.

Even though we analyze the benefits of pilot clustering byiagsg that the autocorrelation
function of the fading process is derived from a stationanst-firder Gauss-Markov modell (1),
we argue in Section VI that the methodology may be readilytathto other models and present

the case of a Jakes’ model [23] that takes into account higidars of correlation.

B. The Adaptive Transmission Scheme

At regular intervals, the transmitter successively sen#éaown pilot symbols whose purpose
is to enable the estimation of the channel at the receiver.CRannel estimation is solely based
on the pilot symbols and no data-directed estimation is.usedeach time sampleg the receiver
computes the Minimum Mean-Square Estimate (MMSE) of thenohh the quality of which
—measured through the estimate error variance— dependts @osition with respect to the
pilot symbols. After estimation, the channel, as seen byréglceiver, is a Rician channel whose
specular part is given by the estimate and whose Rayleiglpooant is given by the zero-mean
Gaussian-distributed estimation error.

Although the scheme is adaptivedibes not use feedbatk determine its policy. The key idea
is that the transmitter adapts to the quality of channetregtion (specifically to the mean-square
error which is independent of the value of the estimate als@lonly at the receiver) rather than
the estimate of the channel. Since the estimation erroanvee is computed offline, the adaptive
transmission scheme can then be determined offline as weekhaopted by the transmitter. Even
though three is no feedback to the transmitter, it is awarth@fstatistics of the estimation error
beforehand.

The transmitter employs multiple codebooks in an integelafashion as shown in Figuré 1.

It adapts its throughput to the estimation error variancetging the data symbols according



to their distance from the training pilots. Symbols that tmeaway from the pilots encounter
poorer channel estimates at the receiver and are therefaledowith lower rate codes, while

closer symbols benefit from small estimation error varisanog are coded with higher rate codes.

Codebook 1 Codebook 2 Codebookm
Rate R, Rate R, RateR,,
BEY ¢ T8

Fig. 1. Multiple Codebook Interleaving

We only consider binary signaling. The motivation for thisoe is multiple folds. First,
in [24] the authors prove that for discrete-time memorylRagleigh fading channels subject to
average power constraints, the capacity achieving digiob is discrete with a finite number
of mass points. Moreover, a binary distribution was found#ooptimal at low and moderate
values of SNRI[[24]+[26]. Second, for a memoryless Riciamfgadhannel, Luol[27] established
a similar result that, combined with Gallager’s in [25], il that the binary input distribution
is asymptotically optimal at low SNR_[27]. Consequently, wleoose the alphabet of every
codebook to consist in general of two symbols:

my1 = aj + jby with probability p;
my = as + jby with probability py = (1 — py).

The rate of the codebooks is adjusted by modifying the pridibaldistribution of the mass
points. Numerical results in_[12], [20] indicate that thetiopal mass points always lie between
the extremes of on-off keying (optimal for the 11D Rayleigiding case where no CSl is available
at the receiver) and the antipodal signaling (optimal foreafgrtly known channel). It is worth
noting that some of the work in the literature consider thizge extremes for designing the
constellation mapping and try to optimize the transmissiwdel in the case of imperfect CSI
based on the SNR level [12]. Moreover, any rotational tramsétion of the two mass points
will not affect the mutual information [24], [27]. Theref®ian optimal input distribution consists
of two mass pointsn;, m, € R* with —v/P < m; < 0 andmy > v/P.



C. Channel Estimation at the Receiver

Given a pilot spacing intervdl’, we sendk pilots in the beginning of every data frame as
shown in Figurd 2. When transmitting a pilot at time indexhe input of the channel is/P;
and its output is,

Yi=+/PR;+N;, i=0,---,k—1.

(R, v)]
N
1

k T
T — k Data Symbols

T Pilot Spacing Interval

Fig. 2. Pilot Symbols and Channel Estimation

On the receiver side, we perform MMSE estimation based onre¢lceived signal during
training. More precisely, we denote I/the set of indices corresponding to the received pilots
{Y;}ses involved in estimating?; for j = k,...,T'—1. Therefore, wheis = {0,...,k — 1} we
say we are performing causal MMSE estimation, and when{0,... .k — 1, 7,.... T+ k — 1}
the MMSE estimate is said to be non-causal.

Next, we compute the MMSE estimafe; ({Y.},.s) of R; for j = k,...,T — 1. Since the
random variable{R;, {Y;}:cs} are jointly Gaussian, the MMSE estimator is linear and is

identical to the Linear Least-Square Estimator (LLSE) therevariancev; of which is,

— T
Uj = 1 — Aij{YS}sES A{;S}Ses ARj7{Ys}se.S y (2)

where Ag; (v.},.s is the cross-covariance matrix betwedn and {Y;}.cs and Agy,; s is the
autocovariance of the vector of received piléis }cs.

We note that the estimation error variance in equafion (2) beacomputed offline at design
time —and therefore no feedback is needed to the encoder-isandly dependent on the

autocorrelation function of R;}, the transmitted pilots and the noise spectral density.



I1l. ACHIEVABLE RATES

We consider the transmission scheme shown in Figure 2 witibsls sent with powep; for

j=0,...,7—1. Given a sampldy,} the received symbols can be written

s€S?
Y;:RZXZ—FNZ:(I:{Z—FFZ)XZ—FNZ, fori:k,...,T—l,

whereT’; is a zero-mean complex Gaussian error term that has a varigantherefore,

|ys—Rywq|”
A 1 _
P (yl‘x“ {ys}ses) = N(C <R2x“ Vi ‘xz|2 "‘0']2V> — 5 5 e vi|zi\2+cz2\r,
m (vi " + o%)

When ignoring the fading correlation from one transmittednfe to another, the mutual

information per symbol due to interleaving can be written as

Z Xlay‘{ys sGS)]

T—

LI (X075 V| (Vidaes ) = Evocs

—_

1 A
== By [T(xaviR)], @
i=k
where the expectation is now over the random varidhleNote thatR; is a linear combination
of the observations

Ri =) BnYm = Ri =T~ Nc(0,1—v,). 4)

meS
A. The Computation Method

The ™ term, Ex [I (X,—; YAE)}, in equation[(B) depends on the choice of the corresponding
binary probability distribution fully characterized byettthree parameter§m,, ms, p1};. This
distribution (fori = &, ..., T — 1) determines the rate of the corresponding codebook anddshou
be chosen to maximize the mutual information quantityLin {@)erefore, we are interested in

solving
1 T-1 .
- max Ep [1 (Xi;Y,-|R,-)] , (5)
T ) {m1,ma,p};
subject toE [| X;|’] < P, forall i =k,..., T — 1.
Furthermore, examining the probability laiM (4) & indicates that the elementary quantity

max Ep [I <XZ-;YZ<|RZ->} in (B) is only a function of the estimation error variangeand

{m1,ma2,p};

power P; of the symbol. We define

Lu(Py v) = max Ep |1(XsYilf)],

{m1,ma,p}:



where the maximization is subject B[ X;|?] < P, and Ry ~ Nc(0,1 — v;). Thereafter the
achievable rates become
1
7L (XS (Y5 | {Yides ) leub (P, vi). (6)
The two dimensional curvé,,,(P, v) is computed over a flne grid = {0 < P < P, 0 <
v < 1} as shown in Figuré€l3. Then given a transmission strategyistors of an inter-pilot
spacing?’, k-pilot clustering, and a power allocatioR; for j = 0,...,7 — 1, we calculate
using equation[(2) the estimation error variangefor j = k, ..., T — 1. The corresponding
elementary mutual information quantify,,(P;, v;) can now be interpolated from the data set

{7, Lw(P, v)} and used to compute the normalized sunin (6).

The Two-Dimensional Curve | Sub(P,V)

I
IS

o
N

Achievable Rate (nats/channel use)

oo

4

Symbol Power (P)
0.2

Normalized Estimation Error Variance (v)

Fig. 3. The two-dimensional curvé,,;(P, v)

Finally, note that the error variance is a function of the powf the pilots{ P,}cs. Hence

equation[(B) can also be written as
1 T-1
({X }2 E {Y} |{Y}SES = Z[sub Pza {P }868) (7)
z:k
B. The transmission policy

We consider four types of transmission policies and we shaiy the optimal training strategy

differs from one policy to another, analytically in SectiBiland numerically in Sectioh V.



1) Policy I: The pilot symbols and the data symbols are transmitted viaghseame amount

of power, i.e.,
PS:P7 VS:O,...,]C—:[ & PZ:P, VZ:]{?,,T—:[

Therefore. for a given channel modédi;pilot training, and an inter-pilot spacin@, the

achievable rate in equationl (7) is a function /@fonly.

2) Policy II: In this policy, a flat power allocation is adopted for both thi®t symbols and

the data symbols, but we allow the two levels to be differéfdre precisely,
P,=P, VYs=0,....k—1 & P,=P;, Vi=k,. .. T—1.
The achievable rate is a function &%, & P, which satisfy

Z P; = thr + (T - k)Py] < P.

3) Policy lll: Following a flat power allocation for pilots”, = P;,,Vs =0,...,k — 1), the

data symbols are sent with powey for i = k,...,T — 1. These power levels satisfy
T-1
ZP - k:PtH—ZP <P
=k

4) Policy 1IV: We send both the pilots and data symbols with variable paiefor j =

0,...,7 — 1. The constraint on the power levels is now given by
1 T-1
- Y p<P
§=0

V. OPTIMAL POWER ALLOCATION FOR CAUSAL ESTIMATION

In this section we find the optimal power allocation and tragnduration for policies I, llI
and IV under causal estimation. These optimal solutionsf@eued by applying the result of
Theorenl 1l stated hereafter. The theorem implies that if Wi/ be thetotal power “budget”
for the training period, everything else being equal, amafighe training power allocation

schemes P,}*=} such that

k-1
Z P, = kP, (8)
s=0



the optimal one is the one where all the power is allocatedh¢oldst time slo(k — 1).

For causal MMSE estimatio§ = {0,--- ,k — 1} and equation[{2) can be written as

'Uj — 1 - AR].7{YS}S€$ A{_)}s}ses Agjv{YS}sES ] = k" SCICE (T - ].)
ak—l
—1— a0 (o* 1 k2 ... 1) DT [DADT +6% 1] D NC)
1

where A is the k x k£ symmetric, positive definite autocovariance matrix of tharmel fading

coefficients{ R, }scs, and D is the k x k “input” matrix:

1 a - oaft vFy 0 - 0
«Q 1 k=2 0 VP - 0
A= ., D= -
okl oF2 ... 1 0 0 - P,

A power allocation that minimizes the error variances of ésémates for allj}'s —subject
to the power constrainf8)— is naturally an optimal one.r&xaéng (9), we note that a power
allocation that minimizes,, for somej, will also minimizev; for all {j}'s, as it will be one

that maximizes

(@2 ... 1) DT [DADT+o% 1] D | + |. (10)
1
The power allocation that maximizes {10) is the subject effthllowing theorem, proven in

Appendix[A.

Theorem 1. The expressiori(10) is maximized when all the available pdsvallocated to the
last pilot, i.e.,P; =0, for all 0 < j < (k—2) and P,y = kP,

We note that Theorein 1 holds whenever one allows the powaradibn during the training
period to vary across the pilots. We also note that the rémidts irrespective of how the power

is allocated for the data.
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Implications on the training duration:

« When considering policy 1V, the powers of the individualitiag symbols are allowed
to vary and the theorem states that all the power should lbeaéd to the last training
symbol. Factoring in the loss of achievable rates due tamitrgj it becomes clear that the
optimal duration is that obne pilot transmission.

« Since the achievable rates using policy Il are less or etputiose of policy IV, and since
the optimal solution for policy 1V is that of a “flat” power altation over the duration of
the training —which is one, then the solution is also optifoalpolicy III.

« Finally, since the statement of the theorem is valid irretipe of how the power is allocated
during data transmission and specifically even when a flaepallocation is used, the result
implies that for policy Il, using a training duration of ondqgp is optimal as well.

Naturally, these statements are true if the power levehduriaining is optimized. In Sectionl V

we validate numerically these results.

V. NUMERICAL RESULTS

For a given channel model, a given SNR (power constraints) estimation technique (causal

or non-causal), we numerically determine the optimal trejrstrategy consisting of:

1. The duration of training or the number of pildts

2. The inter-pilot spacing’.

3. The power allocation for the pilots and data symbols irmagmitted frame, according to the
transmission policy used.

In our work, the quality measure is the achievable rates lwhie compute for pilot cluster-
ing/training period of up to six pilots in each frame. We stutie low receivedSNR regime
(SNR values of -3dB, 0dB, 3dB, and 6dB) for a first-order Gaudsskov fading process with
values ofa = 0.9,0.95,0.97, and0.99. On the receiver side, causal and non-causal estimation
are investigated. We present hereafter graphs for someghest cases and compare the rates
achieved using 1, 2, 3, 4, 5, and 6-pilot clustering stra®dor different scenarios of SNR and
fading correlation levels.

We note first that the numerical results confirm the obsesugireviously made that the achiev-
able rate in equatiofn(3) depends on the choic&wof, ms, p; }4, i.e., the input distribution of the
i-th symbol. As the symbol gets further away from the trainpiigts, the channel estimation
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quality (measured through the estimate error variance)egratied and hence the amount of
information sent over the channel decreases. This is @tslby shifting{m, ms,p;}; from
the antipodal distribution (optimal for a perfectly knowhamnel) withp; ~ p, (high entropy)
toward the other extreme of on-off keying (optimal for th® IRayleigh fading case) with
p1 > po (low entropy).

We also note that in the case of causal estimation, our nealeesults are consistent with
the results in Section V.

A. Results for Transmission Policy |

For transmission policy |, pilot clustering proves to askidigher rates under certain con-
ditions compared to the 1-pilot scheme. In Figlte 4, for aRSNOdB, o = 0.99 and causal
estimation, training with 4 pilots and inter-pilot spaciafj7=29 symbols is optimal. A percent
increase of 8.2% in information rate is achieved relativehobest rate achievable with a 1-pilot

scheme. The results for other test cases are shown in [Table I.

Achievable Rates at SNR =0 dB & a =0.99 (First Order—Causal)
0.25 T T T T T

0.2

~ Max. Rate for nP =4 & T =29

# of Pilots = 1 |
—>—# of Pilots = 2
—=o&— # of Pilots =3
——a—#of Pilots = 4
—— # of Pilots =5
—+— # of Pilots =6 -

Achievable Rates (nats/channel use)

Interpilot Spacing T

Fig. 4. Achievable Rates for policy I, for SNR = 0dB amrd= 0.99 with Causal Estimation.

However there are some scenarios when pilot-clusteringtisiseful. For the case when SNR

= 6dB, o = 0.97 and causal estimation, the 1-pilot scheme presetimaprates.



ACHIEVABLE RATES FORDIFFERENTTRANSMISSIONPOLICIES

TABLE |

Test Case H Policy | Policy I Policy 1lI Policy IV
a =09 nP=4 nP=1 nP=1 nP=1
SNR = 0dB T=29 T=22 T=23 T=22
Causal Estimation Ratex0.2247 | Ratex0.2418 | Rate~0.2422 | Ratex0.2422
8.2 7.6%2
a = 097 nP=1 nP=1 nP=1 nP=1
SNR = 6dB T=15 T=15 T=15 T=15
Causal Estimation Rate~0.3782 | Rate~0.3829 | Rate~0.3836 | Rate~0.3836
1.2%2
a = 097 nP=3 nP=1 nP=1 nP=1
SNR = -3dB T=19 T=18 T=18 T=18
Non-Causal Estimation Rate~0.1374 | Ratex0.1470 | Ratex0.1472 | Ratex0.1472
4.3% 6.9%?
Using Jakes’ model:
fa = 100Hz, fs = 10KHz nP=2 nP=1 nP=1 nP=1
SNR = 3dB T=14 T=13 T=13 T=13
Causal Estimation Rate~0.3224 | Rate~0.3508 | Rate~0.3510 | Rate~0.3510
49511 8.8%42
Using Jakes’ model:
fa = 100Hz, f; = 10KHz nP=4 nP=1 nP=1 nP=1
SNR = 0dB T=29 T=30 T=30 T=30
Non-Causal Estimation Ratex0.2843 | Ratex0.3064 | Ratex0.3064 | Ratex0.3064
169t 7.7%2

I relative to the rate achieved by the 1-pilot scheme (Poljcy |

2 relative to the achievable rate under Policy I.

12

Moreover in Figurd b at an SNR=0dB, and=0.9 with causal estimation, training is not
beneficial in the first place because the information ratess than that achieved over an IID
Rayleigh fading channel.

As a conclusion, we can distinguish three cases. The firshenwraining is not applicable.
The second is when the 1-pilot scheme gives the highest ramesfinally the third when pilot
clustering is beneficial. From our numerical results, wesribait as SNR increases and coherence
time decreases, clustering becomes useless and the wiha@meads pushed toward the 1-pilot

training strategy and even to the extreme case of no traiairgl. This is directly related to
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Achievable Rates at SNR =0 dB & a =0.9 (First Order—Causal)

o
[
[

# of Pilots = 1
—— # of Pilots = 2
4 P —o— # of Pilots = 3
F —a— # of Pilots =4

o
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S
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o©

[

N
T

—*— # of Pilots = 5
—+— # of Pilots = 6

o
=

Achievable Rates (nats/channel use)
o o
o o
o [e5]
T T
G

o
o
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o

o

[N
T

o

0 10 20 30 40 50 60
Interpilot Spacing T

Fig. 5. Achievable Rates for policy I, for SNR = 0dB amd= 0.9 with Causal Estimation.

the fact that training is inefficient (less CSI) when fadirecdrrelates quickly or when SNR is
high.

B. Results for Transmission Policy Il
In this policy, the pilots are sent with fixed powet, (per pllot) and so are the symbols
that are transmitted with poweP,; (Section[1I-B2), such thatTZP < P. Therefore, the

optimal training strategy includes determining the optip@ver aIIocatlon B, and P)) for the
transmitted frame. Here the notion of SNR is naturally asded with the average powe?.

Figurel6 shows the achievable rates for SNR=0dB, @n@.99 with causal estimation. Unlike
the results for policy | (Figuré€l4), training with 4 pilots it optimal anymore. The 1-pilot
scheme (with7’'=22) now offers 7.6% increase in the achievable rate condpardhe 4-pilot
scheme for policy I. The corresponding optimal power allmraacross the transmission frame
is shown in Figurél7.

The rest of the results are presented in Table | and they alfiroo that, as expected pilot
clustering is not optimal for policy Il, and for any transisisn strategy where the pilots’ power
is subject to optimization for that matter. In this case, tf@smitter decreases the estimation

error variance (higher throughput) by boosting the powehefsingle pilot instead of increasing
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Achievable Rates at SNR =0 dB & a =0.99 (First Order—Causal)
0.25 T T T T

0.2

~ Max. Rate fornP =1 & T =22
0.15}

I

I

I

I

I

I

I

| # of Pilots = 1

| —— # of Pilots = 2
0.1F | —o— #of Pilots = 3
‘ —&— # of Pilots = 4
: —*— # of Pilots =5
I
I
I
I
|

—+—# of Pilots = 6

Achievable Rates (nats/channel use)

i i i

0 10 20 30 40 50
Interpilot Spacing T

60

Fig. 6. Achievable Rates for policy Il, for SNR = 0dB and= 0.99 with Causal Estimation.

Symbol Power Allocation at SNR =0 dB & a =0.99 (First Order—Causal)

| oo

Transmission Frame

Fig. 7. Optimal Symbol Power Allocation (one frame) for policy Iprf SNR =

Estimation.

25

0dB andr = 0.99 with Causal
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the number of pilots: and getting penalized by the normalizing te%nin equation [(¥7).

If a peak power constraint is imposed on the power of the gilibte optimal training duration
will not necessarily be one pilot. This can be seen from Fdérwhich shows the optimal
power allocation across the transmission frame for SNR=@ahB~=0.99 with causal estimation
whenever a peak constraif, < 3P is imposed. This constraint is effectively imposing a
maximum Peak-to-Average Power Ratio (PAPR) value of 3.

Symbol Power Allocation at SNR =0 dB & a =0.99 (First Order—Causal)
12 T T T T

T
=@ Pilot Symbol
[ Data Symbol
(-1-]

10

Power Distribution (%)
o

0 5 10 15 20 25 30
Transmission Frame

Fig. 8. Optimal Symbol Power Allocation (one frame) for policy IprfSNR = 0dB andx = 0.99 with Causal
Estimation and peak constraif, < 3P.

As mentioned earlier, there are some scenarios wherergisi not useful and the rate is
always less than that achieved over an 11D Rayleigh fadiranaobl. This is observed with causal
estimation for an SNR=0dB and=0.9 for example. In that case all the power is allocated to

the data symbols indicating that training is not beneficial.

C. Results for Transmission Policy Il

For policy Ill, we send the data symbols with varying powemnas hold on to a flat power
allocation for the pilots. As already shown in the Secfiof) BWstering is not useful for this
case as well. The transmitter boosts the power of the sinigé ysed in training to decrease

the error variance and increase the achievable rate.



16

The numerical results are in accordance with those of SE&d@nd they show how the power
of the symbols is adapted to the estimation error varianté=igure[9, the power allocated to
each symbol and the variation of the error variance are pteddor an SNR=0dB, and=0.99
with non-causal estimation. This shows that symbols withelovariance are sent with higher

power and vice versa. However we should note that power ti@mgamong the data symbols
is not profound.

Symbol Power Allocation at SNR =0 dB & a =0.99 (First Order-Non-causal)

35 T T T T T T 0.24
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0 n H 0.15
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Transmission Frame

Fig. 9. Optimal Symbol Power Allocation (one frame) for policy Ifgr SNR = 0dB andv = 0.99 with Non-Causal
Estimation.

The achievable rates for other cases are summarized in Malilés noticed that adapting
the symbol power to the quality of estimation introducesighslincrease in achievable rates
compared to policy Il. As a result, one can say that unifornvgraallocation for the data symbols

is sufficiently close to optimal and presents a more pralctreasmission strategy.

D. Results for Transmission Policy 1V

Here both the pilots and data symbols are sent with varyingepgSectiori II-B4). However
from the results for transmission policy Ill, we already nthat sending the data symbols with
uniform power is very close to optimal.

Let us consider the case for an SNR=0dB, am®.99. We choose a 4-pilot training scheme.

For causal estimation, the power allocated to the pilothiésve in Figurd_1D. We notice that all
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of the power was found numerically to be allocated to thetmilosest to the symbols leaving the

rest of the pilots that are further away with no power anddfae useless, which is consistent
. . . . 1

with the results of Theorem 1 and Sectlon IV. Combining tleisuft with the penalty fact%

in equation[(B), we reach the conclusion that the 1-piloesuh is always optimal (Tablé I).

Symbol Power Allocation at SNR =0 dB & a =0.99 (First Order—Causal)
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=
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+

0 5 10 15 20 25 30
Transmission Frame

Fig. 10. Optimal Symbol Power Allocation (one frame) for policy INgrfSNR = 0dB andv = 0.99 with Causal
Estimation.

A similar result is shown in Figurie 11 for the non-causalreation scenario. The powers of
the first pilot (playing a prominent role in the non-causattpand last pilot (with a prominent
role in the causal part) are increased.

Whenever a peak power constraint is imposed on the poweregbitbts, the optimal training
duration will potentially involve pilot clustering. The tpal duration and power allocation in

Figure[12 are for an SNR=0dB, and=0.99 with causal estimation whenever a peak constraint

P, <3P is imposed.

VI. OTHER FADING PROCESSMODELS

Whenever the fading process follows a different model, appate results may be readily
derived as the numerical optimization is only dependenthenautocovariance function of the

process as seen from equatibh (2). In what follows, we ptesanple results using Jakes’ model.
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Symbol Power Allocation at SNR =0 dB & a =0.99 (First Order-Non-causal)
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Fig. 11. Optimal Symbol Power Allocation (one frame) for policy I'grfSNR = 0dB andv = 0.99 with Non-Causal

Estimation.
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Fig. 12. Optimal Symbol Power Allocation

Symbol Power Allocation at SNR =0 dB & a =0.99 (First Order—Causal)

Estimation and peak constraif, < 3P.

T
I Pilot Symbol
I Data Symbol

10 15 20 25 30
Transmission Frame

(one frame) for policy INrfSNR = 0dB andy = 0.99 with Causal
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Jakes’ Model

In Jakes’ model [23], the normalized (unit variance) cambias-time autocorrelation function

of the fading process is given by

orr(T) = Jo(27 faT),

where Jy(.) is the zeroth-order Bessel function of the first kind gfgds the maximum Doppler
frequency. For the purposes of discrete-time simulatiothf model [28], the autocorrelation

sequence becomes
drell] = Jo(2m faTs|l]),

where1/Ty is the symbol rate.
In Tablell we list a sample of the results obtained for a badtwi, = 10 kHz and a Doppler
shift of f; = 100 Hz. For example, optimal training consists bf= 4 and T = 29 when we

have an SNR=0dB and non-causal estimation. Throughputpsowved by 16% in this case.

VIlI. CONCLUSION

We studied the performance of the non-feedback pilot-badaegtive modulation scheme [20],
[21], [29] over time-varying Rayleigh fading channels. Weasured the performance in terms
of achievable rates using binary signaling and we invesaayéhe benefits of pilot clustering as
well as power allocation.

We introduced a modular method to compute the rates in anegffimanner. Moreover, four
types of transmission policies were analyzed. For eacltyolie determined the optimal training
strategy consisting of:

1. The duration of training.
2. The inter-pilot spacing.
3. The power allocation for the pilots and data symbols inftame.

Pilot clustering proved to be useful in th®v SNR-high coherence timange where training
is efficient (Policy I). However, when the pilot power is set to optimization (Policies I,
lIl and 1V), training for a smaller period but with boostedvper becomes more beneficial than
training with more pilots. We proved that the optimal traigiduration using causal estimation is

indeed one whenever the power level during training is ogghand allowed to take arbitrary
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values. Numerical results suggest that this is also the was® using non-causal estimation at
the receiver.

We also noted that the numerical computations indicate&lfktt power allocation across the
data slots in a frame is very close to optimal whenever tha pibwer is subject to optimization.

On the other hand, training is useless in tigh SNR—small coherence timange and the
rate is always less than that achieved over an 1ID Rayleigmfachannel. Several test cases
are shown throughout this work to analyze how optimal trajnvaries with channel conditions
and from one transmission policy to another.

Extensions to this work can include adaptive schemes thagrate temporal and spatial
components like the Multiple-Input Multiple-Output (MIMGscenatrio.

APPENDIX A

In this appendix we provide a proof for Theoréin 1. For notalcconvenience, define
6=VT' DT [DADT +0%1)7' DV,

whereV = (af~! o*2 ... 1)T, A is the k x k symmetric, positive definite autocovariance

matrix of the channel fading coefficien{?, },cs, and D is thek x k “input” matrix:

1 a - aFt VP 0 0 a1
@ 1 . akF? 0 VP --- 0 k=2
A = . . . . 9 D = . ! 3 V ==
okl oQF2 ... 1 0 0 ce P, 1

Note thaty < 1 for any k£ > 1 because) = 1 — v,_;. We establish first the following lemma:

Lemma 1. LetU be ak x k diagonal matrix with non-negative entrigs;}*} on the diagonal.
Among all the permutations of tHe;}'s, the one that maximizds” [A + U]~ V is one where

the diagonal entries are in non-increasing order.

Proof: Assume that{z; f;ol are in the following order) < zy < z; < -+ < xp_1.
We prove in what follows thal/ = diag(x_1, 2x—o, - - - , o) MmaximizesV” [A 4+ U]~ V using

induction onk. To highlight the dependence dnwe denotep;, = VI [A; + Uk]_1 Vi, which is
a positive quantity due to the positive definitenessAf+ U] .
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a) Base Casesfor k = 1, ¢; = —— and the statement holds. Examine now the case

1420
k= 2:

(aPxy + 19— a®+ 1)
(ro+1)(x1+1)—a?
a?rg+ 11 —a?+1)
(r1+ 1)(zo+1) —a?

Sincea < 1 andz; > z, the second value is larger.

U = diag(xg,r1) = @2 =

U = diag(x1,v0) = p2 =

b) Induction Step:Suppose the property holds true upite- 1 (k — 1 > 2) and we prove
in what follows that it holds true fok:

where A, and U, are square matrices of size We prove thatp, is maximized when{z; f;ol
are placed in non-increasing order on the diagonal mdffixThe proof proceeds as follows:
We first “fix” x_; on the last diagonal entry df, and prove thafz; f;(? should be in a non-
increasing order to maximize,. Next, we “fix” {z;}*=2 on the first(k — 2) diagonal entries of
Ui, and we prove that, ifc,_o < 41, havingU = diag{zo, z1,- -, x)_3, Tp_1, Tp_o} (VErsus
U = diag{xo, x1, -+ ,T1_3,Tr_2, Tx_1}) Qives us a larger value af;, completing the proof.

e Using a block form, we writé A;, + U] as:

E F
A+ U = ;
FT @
where
xo+1 o' k=2 k=t
« 1+ 1 k=3 k=2
E= _ . F= — Vi, & Gz(g:k_1+1).

akF=2 k3 o o411 a

This allows us to expressi, + U]~! as [30]:

E-'4+ E-'F[G — FTE-'F|"'FTE-' —E-'F|G — FTE-'F]~

[Ak + Uk]_l =
-G — FTE_lF]_lFTE_l G — FTE_lF]_l
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and
op=F"[ET'"+E'FIG-F"ET'F)'FTE | F- |G- FTE'F|T'FTE™'F
—~ F'E7'FIG - FTE'F ™+ [G - FTE R,

which reduces to:

1 - FTEF)? (thr +1— FTETF —2p4)
:FTE_IF ( :FTE—IF
Pk T T 1—FTE 1P T e L FTEF
2
T
= (—l‘k_l + 1) + kol

(241 +1— FTE-1F]

The scalarF’T E~1F is equal toa?p,_;. Indeed,F is of size(k — 1) x 1 and equal taxV;,_,,
andE is a(k — 1) x (k — 1) sub-matrix of the formA,_, + Ux_1]. Sincea < 1, the scalar
FTE-'F is less than one and the denominator is a positive quantitgrefore, withr;,_; fixed,
¢, is maximized whenF” E-1F is maximized. By the induction step, with a fixag_, the
remainingz;’s should be “placed” in decreasing order on the diagondl eandU— to maximize
Pk-

e Now fix {xz}f:_g’ We prove that withey,_» < 241, U = diag{xo, 1, - , Tk_3, Tp—1, Tk—2}
gives us a larger value fap,. To do this, we consider a different decomposition of therixat
[Ax + Uk),

E F
Ay + U, =
FT @
where now
2o+ 1 a o k3 k-2 k-1
«Q 1 +1 --- k4 ak=3 k-2 Tp_o + 1 o
E=| g | F=|" &=
: : : : : « Tp1+1
abF=3  aFt o a4 1 « a?

SinceF = (aVi_s a?Vi_y),
o =a'V,l, [E—l +E'F[G - FTET' R FTE‘l] Via

—20* (0 1) [G=FTEF] " FTE Wi+ (o 1) [G— FTE'F] 1
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Noting thaty, o = V,' ,E~V} s,

11
pr = + a0}, (1 a) (G- FTEZ'F]™
«

1 1

—20% 5 (o 1) [G— FTE'F]” +(a 1)[6-FTEF]

«

1 [a(l —a?pp
=a'op_o+ (a(l —a?pp_g) 1— a4g0k_2> [G — FTE_lF} vl 2)

I Oé4<Pk—2
§=§($k\:27rk71)
Examiningé,
-1
5 A Ty + 1 —prp_s a—alpp_y o — a’pr_s
§:<a—a<ﬂk—2 1—04%—2) 5 4 4
o — PR Tt 1—a pr o I —a g2

_ (a— o)1 + (1 — aor_2)?Tp_2 + (1 — a?pp_2)(1 — app_o)(1 — a?) (11)
Tp_oTp—1 + (1 — at@p_o)rp_o + (1 — aPpp_2)T1 + (1 — @?pp_2)(1 — a?)

Checking the two possibilities,(x;_o, tx—1) — £(xr_1, Tx_2) has the same sign as

[(a — aPppo)mio1 + (1 — a'pp_2) s + (1 — @) (1 — a’pp_2)(1 — )]
[2e—2me—1 + (1 — a’op_z)ze—1 + (1 — @®0p_2)zh—s + (1 — a®pp_2) (1 — a?)]
— [(a = a®pp_2)zh—a + (1 — a*pp_2)’apo1 + (1 — @Ppp_2)(1 — a*pp_2)(1 — a?)]
[zh—2r—1 + (1 — a*op_2)tp—s + (1 — &’ pp_2) w1 + (1 — oPppa) (1 — &7)],

which is zero ifa = 1 or xy_5 = x,_1. ASSumingx,_» < z,_1, it is of the same sign as

—(1=a’pp_y)zh-om1 — (1 — app_2) (1 — &P pp_2) (@1 + Tp_2) — (1 — &P pp_2)* (1 — ),

which is negative and hencgxy_o,xx_1) < &(xx_1,71_2). We conclude that, when fixing
{z; f:‘g’ vr IS maximized when the last two diagonal elemenits, and z;_; are placed in
non-increasing order.

The final step in the proof is to note that if the diagonal @strare not in non-increasing
order, then either the firgtc — 1) entries are not or the last two entries are not. This conttadi

the previous two properties. [ |
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Before we state and prove the theorem, a couple of quarntizsvill come in handy hereafter
are the partial derivatives @f(xy_o, x;_1) defined in [(11L):
0

T X —a2(1 — ozzgpk_g)zxz_l (12)
0

5 x - [(1 — p_0)(1 —a®) + (1 — oz4<pk_2)xk_2]2 , (13)
Lk—1

where the expressions above are those of the respectiveraiionse We note that both quantities
are non-positive and everything else being constant, theevaf £ decreases as;,_, or z;,_;

increases.

k—1
Theorem. When maximizing the scalarover all the choices o{ij}’g‘l such thatz P; = kP,

7=0
the maximum is achieved when all the available power is atlet to the last pilot, i.e.; = 0,

forall 0 <j < (k—2)andP,_; = kP,.

Proof: We start by imposing a lower bound on the powgf5}’s. More precisely, for some

small enoughe > 0, we assume thab; = ¢ + P; and

Je+r B0 - 0
0  \JetP] - 0

0 0 o e+ P,

and we optimize over th¢P;}'s subject to the constraint

e
—_

P! < kPy — ke. (14)

<.
Il
o

The diagonal matrixD is non-singular, allowing us to express the objective fiomct) as:

1

6=VT[A+o3D DYV

Applying the result of Lemmall witl/ = o3, D~'D~" —and diagonal entries; = o3 5,
yields that the optimal{ Pj}'s have to be non-decreasing. Additionally, the derivat@)
indicates that the upperbourid [14) will be tight. Indeedn&{ F;,--- , P,_,} (or equivalently
{zo,- - ,xr_2}) and increasing’,_, (or equivalently decreasing,_,) will increase¢(= ).
This asserts that the power on the last pilot should be a® lasgpossible so that the upper

bound [14) is met with equality.
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The derivatives[(12) and (1L3) allow us to make an even strostg¢ement: 1§ P, --- , P,_5}

are fixed, among the choices 6f_, and P/_, such that

k=3
Ply+ Pl <kPy—ke—> P =M,

j=0
the one that maximizeg,, is P,_, =0 and P_, = M.

Indeed, since the bound will be met with equality ald , is less or equal ta&®,_, (by the
result of Lemma_ 1), we le?,_, = p and P,_, = M — p and optimize ovep € [0, M/2].
Equivalently,z; s = 03 o5, Tk-1 = 0% o= @nd sincepy, is fixed, the derivative ofp,

with respect t is

i _ 23 ) dry_o 4 43 ) dry_y
™ T Ow s dp | Ome dp
L ak(1—a%p)’ [(1-a%pi)(1—a®)(e +p)/ok + (1 - alpr)]’
(e +p)2(e + M —p)? (e +p)2(e+ M —p)? ’

which is of the same sign as

a(l—a*pp_s) — [(1 — a®pp_2)(1 — a®)(e +p) /o3 + (1 — a’pp_)]
<ol — Ppps) — (1 — a'pp_g) = (=1 —a’pp_s)(1—a) <0,

for any p and therefore the maximum is attained whes 0. Said differently,p, is maximum
whenP/_, =0andP,_, = M.

By Lemmal1l, the optimal values d@¥/ for all i € {0,1,--- ,k— 3} are less or equal t&;_,.
Since for an optimal power allocatioR;_, is zero, P, = 0 for all i € {0,1,--- ,k — 2} and
P | = kP, — ke.

Finally, the same previous observations show that the sm#ike ¢ the larger¢ is. Conse-
guently, taking the limit as goes to zero yields the optimal solution and the proof of iemtem

is complete. [ |
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