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Abstract

Time-varying fading channels present a major challenge in the design of wireless communication

systems. Adaptive schemes are often employed to adapt the transmission parameters to receiver-based

estimates of the quality of the channel. We consider a pilot-based adaptive modulation scheme without

the use of a feedback link. In this scheme, pilot tones (knownby sender and receiver) are periodically sent

through the channel for the purpose of channel estimation and coherent demodulation of data symbols

at the receiver. We optimize the duration and power allocation of these pilot symbols to maximize

the information-theoretic achievable rates using binary signaling. We analyze four transmission policies

and numerically show how optimal training in terms of duration and power allocation varies with the

channel conditions and from one transmission policy to another. We prove that for a causal estimation

scheme with flexible power allocation, placing all the available power on one pilot is optimal.

Index Terms

Adaptive modulation, pilot symbol assisted modulation, fading channels, Rayleigh fading, power

allocation, training duration.

I. INTRODUCTION

In digital mobile communications, fast fading degrades theBit Error Rate (BER) of the channel

and inhibits coherent detection1. It is known that performance is limited by channel estimation

This work was performed at AUB and supported by AUB’s University Research Board.

Partial results of this study were presented at the IEEE ISSPIT’09, Dec. 2009.

1Coherent demodulation requires the extraction of a reliable phase reference from the received signal.
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errors [1]–[4]. Pilot Symbol Assisted Modulation (PSAM) isa technique that has been introduced

in [5] to mitigate these effects. In this scheme, known training symbols (pilots) are periodically

inserted into the data frame for the purpose of channel estimation and coherent demodulation

of the data symbols.

Furthermore, channel-adaptive modulation dynamically adjusts certain transmission parameters

such as the constellation size, transmitted power, and coderate according to the channel quality.

Adaptive signaling provides in general higher bit rates (relative to conventional nonadaptive

methods) by increasing the transmission throughput under favorable channel conditions and

reducing it as the channel condition is degraded.

Some of the previous adaptive schemes rely on a channel-feedback link to provide the transmit-

ter with the Channel Side Information (CSI) [6], [7]. In [8],the authors consider employment

of adaptive modulation with one pilot in addition to delayedfeedback to the transmitter and

prove that power adaptation via periodic feedback can increase the achievable rates. Similarly,

in [9], authors consider pilot-based adaptive modulation where estimate is fed back to transmitter

in order to adapt data and pilot power and study the optimal policy for power allocation for

data and pilot symbols. Authors in [10] discuss adaptive modulation with feedback and develop

an adaptive scheme that accounts for both channel estimation and prediction errors in order

to meet a target Bit Error Rate (BER). In [11], the authors attempt to optimize the spectral

efficiency subject to a specific BER constraint in a pilot-based adaptive modulation setup with

feedback. The above mentioned works study the performance of such systems and prove adaptive

modulation using pilots can increase the achievable rates in general. However, systems that rely

on a channel-feedback link present some disadvantages because of the modeling complexity on

one hand and its infeasibility on the other hand when the channel is fading faster than it can

be estimated (or predicted) and fed back to the sender. Optimizing the pilot placement, power

allocation and modulation schemes in a pilot-based setup isan active area of research, whether

in the case of a single receiver [8]–[10], [12]–[17] or multiple receivers [17]–[19].

A modified pilot-based adaptive modulation scheme over Rayleigh fading channels was pre-

sented in [20]. This scheme adapts the coded modulation strategy at the sender to the quality of

the channel estimation (estimation error variance) at the receiverwithout requiring any channel

feedback. In this work we study the performance of this non-feedback adaptive modulation

scheme over time-varying Rayleigh fading channels. Unlikethe scheme in [20], we consecutively
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send a cluster ofk pilots (k ≥ 1) per data frame withk being an optimization variable [21].

We determine the optimal duration and power allocation of the training period under different

transmission policies for both causal and non-causal estimation. We study such systems at low

Signal-to-Noise-Ratio (SNR) (we consider the received SNR) levels and the performance is

measured in terms of achievable rates using binary signaling. We prove that the “optimal” power

allocation scheme which minimizes the error variance of theestimates of the channel parameters

–which is set up offline without requiring feedback– in case of causal estimation is the one in

which all the available power is allocated on one pilot, if constraints allow it.

The organization of this paper is as follows. In Section II, we present the fading channel model,

the adaptive transmission technique we use to transmit overthe channel as well as the receiver

details. The measure of performance is discussed in SectionIII, the optimal power allocation for

causal estimation is proved in Section IV and the numerical results are presented in Section V.

In Section VI, we present possible extensions to other fading models and Section VII concludes

the paper.

II. PRELIMINARIES

A. The Channel Model

Consider the single-user discrete-time model for the Rayleigh fading channel,

Yi = RiXi +Ni,

wherei is the time index,Xi ∈ C is the channel input at timei, Yi ∈ C is its output, andRi and

Ni are independent complex circular Gaussians2 random variables with zero mean and variance

σ2
R andσ2

N respectively. The amplitude of the fading coefficientRi is then Rayleigh distributed

and its phase is uniform over[−π, π). To account for power constraints, the input is subject to

E
[
|Xi|2

]
≤ Pi,

for some parameters{Pi} –that could be all equal to a constant for example. Since from

an information theoretic perspective scaling the output by1/σR does not change the mutual

2A complex Gaussian random variable is circular if and only ifit is zero-mean and its real and imaginary parts are independent

with equal variances.
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information, we assume without loss of generality thatσR = 1. The variance of the noiseσ2
N is

to be generally interpreted as(σ2
N/σ

2
R).

We assume in this study that the fading process follows a stationary first-order Gauss-Markov

model introduced in [22], i.e.,

Ri = αRi−1 + Zi, (1)

where the samples{Zi} are Independent and Identically-Distributed (IID) complex circular

Gaussians with mean zero and variance equal toσ2
Z = (1− α2) such thatα ∈ [0, 1) to guarantee

stationarity.

Even though we analyze the benefits of pilot clustering by assuming that the autocorrelation

function of the fading process is derived from a stationary first-order Gauss-Markov model (1),

we argue in Section VI that the methodology may be readily adapted to other models and present

the case of a Jakes’ model [23] that takes into account higherorders of correlation.

B. The Adaptive Transmission Scheme

At regular intervals, the transmitter successively sendsk known pilot symbols whose purpose

is to enable the estimation of the channel at the receiver. The channel estimation is solely based

on the pilot symbols and no data-directed estimation is used. For each time samplei, the receiver

computes the Minimum Mean-Square Estimate (MMSE) of the channel, the quality of which

–measured through the estimate error variance– depends on its position with respect to the

pilot symbols. After estimation, the channel, as seen by thereceiver, is a Rician channel whose

specular part is given by the estimate and whose Rayleigh component is given by the zero-mean

Gaussian-distributed estimation error.

Although the scheme is adaptive, itdoes not use feedbackto determine its policy. The key idea

is that the transmitter adapts to the quality of channel estimation (specifically to the mean-square

error which is independent of the value of the estimate available only at the receiver) rather than

the estimate of the channel. Since the estimation error variance is computed offline, the adaptive

transmission scheme can then be determined offline as well and adopted by the transmitter. Even

though three is no feedback to the transmitter, it is aware ofthe statistics of the estimation error

beforehand.

The transmitter employs multiple codebooks in an interleaved fashion as shown in Figure 1.

It adapts its throughput to the estimation error variance bycoding the data symbols according
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to their distance from the training pilots. Symbols that arefar away from the pilots encounter

poorer channel estimates at the receiver and are therefore coded with lower rate codes, while

closer symbols benefit from small estimation error varianceand are coded with higher rate codes.

✲
✻✻✻

$ % &
✻✻✻

$ %

Codebook 1
RateR1

$ $ $ · · ·

Codebook 2
RateR2

%%% · · ·

Codebookm
RateRm

&&& · · ·

Fig. 1. Multiple Codebook Interleaving

We only consider binary signaling. The motivation for this choice is multiple folds. First,

in [24] the authors prove that for discrete-time memorylessRayleigh fading channels subject to

average power constraints, the capacity achieving distribution is discrete with a finite number

of mass points. Moreover, a binary distribution was found tobe optimal at low and moderate

values of SNR [24]–[26]. Second, for a memoryless Rician fading channel, Luo [27] established

a similar result that, combined with Gallager’s in [25], implies that the binary input distribution

is asymptotically optimal at low SNR [27]. Consequently, wechoose the alphabet of every

codebook to consist in general of two symbols:






m1 = a1 + jb1 with probability p1

m2 = a2 + jb2 with probability p2 = (1− p1).

The rate of the codebooks is adjusted by modifying the probability distribution of the mass

points. Numerical results in [12], [20] indicate that the optimal mass points always lie between

the extremes of on-off keying (optimal for the IID Rayleigh fading case where no CSI is available

at the receiver) and the antipodal signaling (optimal for a perfectly known channel). It is worth

noting that some of the work in the literature consider thesetwo extremes for designing the

constellation mapping and try to optimize the transmissionmodel in the case of imperfect CSI

based on the SNR level [12]. Moreover, any rotational transformation of the two mass points

will not affect the mutual information [24], [27]. Therefore an optimal input distribution consists

of two mass pointsm1, m2 ∈ R∗ with −
√
P ≤ m1 < 0 andm2 ≥

√
P .
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C. Channel Estimation at the Receiver

Given a pilot spacing intervalT , we sendk pilots in the beginning of every data frame as

shown in Figure 2. When transmitting a pilot at time indexi, the input of the channel is
√
Pi

and its output is,

Yi =
√

PiRi +Ni, i = 0, · · · , k − 1.

✲

✻

0

✻

1

✻

√
P0 √

Pk−1

k

✻

T

✻
✻

[R̂j , vj]

✲✛
T − k Data Symbols

✲✛
T Pilot Spacing Interval

Fig. 2. Pilot Symbols and Channel Estimation

On the receiver side, we perform MMSE estimation based on thereceived signal during

training. More precisely, we denote byS the set of indices corresponding to the received pilots

{Ys}s∈S involved in estimatingRj for j = k, . . . , T −1. Therefore, whenS = {0, . . . , k − 1} we

say we are performing causal MMSE estimation, and whenS = {0, . . . , k − 1, T, . . . , T + k − 1}
the MMSE estimate is said to be non-causal.

Next, we compute the MMSE estimatêRj

(
{Ys}s∈S

)
of Rj for j = k, . . . , T − 1. Since the

random variables{Rj, {Ys}s∈S} are jointly Gaussian, the MMSE estimator is linear and is

identical to the Linear Least-Square Estimator (LLSE) the error variancevj of which is,

vj = 1− ΛRj , {Ys}s∈S
Λ−1

{Ys}s∈S
ΛT

Rj , {Ys}s∈S
, (2)

whereΛRj , {Ys}s∈S
is the cross-covariance matrix betweenRj and {Ys}s∈S andΛ{Ys}s∈S

is the

autocovariance of the vector of received pilots{Ys}s∈S .

We note that the estimation error variance in equation (2) may be computed offline at design

time –and therefore no feedback is needed to the encoder– andis only dependent on the

autocorrelation function of{Rj}, the transmitted pilots and the noise spectral density.
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III. A CHIEVABLE RATES

We consider the transmission scheme shown in Figure 2 with symbols sent with powerPj for

j = 0, . . . , T − 1. Given a sample{ys}s∈S, the received symbols can be written

Yi = RiXi +Ni =
(

R̂i + Γi

)

Xi +Ni, for i = k, . . . , T − 1,

whereΓi is a zero-mean complex Gaussian error term that has a variance vi. Therefore,

p
(
yi|xi, {ys}s∈S

)
= NC

(

R̂ixi, vi |xi|2 + σ2
N

)

=
1

π
(
vi |xi|2 + σ2

N

)e
−

|yi−R̂ixi|
2

vi|xi|
2
+σ2

N .

When ignoring the fading correlation from one transmitted frame to another, the mutual

information per symbol due to interleaving can be written as

1

T
I
(
{Xi}T−1

i=0 ; {Yi}T−1
i=0 | {Ys}s∈S

)
= E{Ys}s∈S

[

1

T

T−1∑

i=k

I (Xi; Yi|{ys}s∈S)
]

=
1

T

T−1∑

i=k

ER̂i

[

I
(

Xi; Yi|R̂i

)]

, (3)

where the expectation is now over the random variableR̂i. Note thatR̂i is a linear combination

of the observations

R̂i =
∑

m∈S

βmYm = Ri − Γi ∼ NC(0, 1− vi). (4)

A. The Computation Method

The ith term,ER̂i

[

I
(

Xi; Yi|R̂i

)]

, in equation (3) depends on the choice of the corresponding

binary probability distribution fully characterized by the three parameters{m1, m2, p1}i. This

distribution (fori = k, . . . , T −1) determines the rate of the corresponding codebook and should

be chosen to maximize the mutual information quantity in (3). Therefore, we are interested in

solving
1

T

T−1∑

i=k

max
{m1,m2, p}i

ER̂i

[

I
(

Xi; Yi|R̂i

)]

, (5)

subject toE [|Xi|2] ≤ Pi for all i = k, . . . , T − 1.

Furthermore, examining the probability law (4) ofR̂i indicates that the elementary quantity

max
{m1, m2, p}i

ER̂i

[

I
(

Xi; Yi|R̂i

)]

in (5) is only a function of the estimation error variancevi and

powerPi of the symbol. We define

Isub(Pi, vi) = max
{m1,m2, p}i

ER̂i

[

I
(

Xi; Yi|R̂i

)]

,



7

where the maximization is subject toE [|Xi|2] ≤ Pi and R̂i ∼ NC(0, 1 − vi). Thereafter the

achievable rates become

1

T
I
(
{Xi}T−1

i=0 ; {Yi}T−1
i=0 | {Ys}s∈S

)
=

1

T

T−1∑

i=k

Isub(Pi, vi). (6)

The two dimensional curveIsub(P, v) is computed over a fine gridV = {0 ≤ P ≤ Pmax, 0 ≤
v ≤ 1} as shown in Figure 3. Then given a transmission strategy consisting of an inter-pilot

spacingT , k-pilot clustering, and a power allocationPj for j = 0, . . . , T − 1, we calculate

using equation (2) the estimation error variancevj for j = k, . . . , T − 1. The corresponding

elementary mutual information quantityIsub(Pj , vj) can now be interpolated from the data set

{V , Isub(P, v)} and used to compute the normalized sum in (6).
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Fig. 3. The two-dimensional curveIsub(P, v)

Finally, note that the error variance is a function of the power of the pilots{Ps}s∈S. Hence

equation (6) can also be written as

I
(
{Xi}T−1

i=k ; {Yi}T−1
i=k | {Ys}s∈S

)
=

1

T

T−1∑

i=k

Isub (Pi, {Ps}s∈S) . (7)

B. The transmission policy

We consider four types of transmission policies and we studyhow the optimal training strategy

differs from one policy to another, analytically in SectionIV and numerically in Section V.
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1) Policy I: The pilot symbols and the data symbols are transmitted with the same amount

of power, i.e.,

Ps = P, ∀s = 0, . . . , k − 1 & Pi = P, ∀ i = k, . . . , T − 1.

Therefore. for a given channel model,k-pilot training, and an inter-pilot spacingT , the

achievable rate in equation (7) is a function ofP only.

2) Policy II: In this policy, a flat power allocation is adopted for both thepilot symbols and

the data symbols, but we allow the two levels to be different.More precisely,

Ps = Ptr ∀s = 0, . . . , k − 1 & Pi = Pd, ∀ i = k, . . . , T − 1.

The achievable rate is a function ofPtr & Pd which satisfy

1

T

T−1∑

j=0

Pj =
1

T

[
kPtr + (T − k)Pd

]
≤ P.

3) Policy III: Following a flat power allocation for pilots (Ps = Ptr, ∀s = 0, . . . , k − 1), the

data symbols are sent with powerPi for i = k, . . . , T − 1. These power levels satisfy

1

T

T−1∑

j=0

Pj =
1

T

[

kPtr +

T−1∑

j=k

Pj

]

≤ P.

4) Policy IV: We send both the pilots and data symbols with variable powerPj for j =

0, . . . , T − 1. The constraint on the power levels is now given by

1

T

T−1∑

j=0

Pj ≤ P.

IV. OPTIMAL POWER ALLOCATION FOR CAUSAL ESTIMATION

In this section we find the optimal power allocation and training duration for policies II, III

and IV under causal estimation. These optimal solutions arefound by applying the result of

Theorem 1 stated hereafter. The theorem implies that if we let kPtr be thetotal power “budget”

for the training period, everything else being equal, amongall the training power allocation

schemes{Ps}k−1
s=0 such that

k−1∑

s=0

Ps = kPtr, (8)
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the optimal one is the one where all the power is allocated to the last time slot(k − 1).

For causal MMSE estimationS = {0, · · · , k − 1} and equation (2) can be written as

vj = 1− ΛRj , {Ys}s∈S
Λ−1

{Ys}s∈S
ΛT

Rj , {Ys}s∈S
j = k, · · · , (T − 1)

= 1− α2(j−k+1)
(
αk−1 αk−2 · · · 1

)
DT

[
D A DT + σ2

N I
]−1

D








αk−1

...

1








, (9)

whereA is thek × k symmetric, positive definite autocovariance matrix of the channel fading

coefficients{Rs}s∈S , andD is thek × k “input” matrix:

A =










1 α · · · αk−1

α 1 · · · αk−2

...
...

. . .
...

αk−1 αk−2 · · · 1










, D =










√
P0 0 · · · 0

0
√
P1 · · · 0

...
...

. . .
...

0 0 · · · √
Pk−1










.

A power allocation that minimizes the error variances of theestimates for all{j}’s –subject

to the power constraint (8)– is naturally an optimal one. Examining (9), we note that a power

allocation that minimizesvjo for somejo will also minimizevj for all {j}’s, as it will be one

that maximizes

(
αk−1 αk−2 · · · 1

)
DT

[
D A DT + σ2

N I
]−1

D








αk−1

...

1








. (10)

The power allocation that maximizes (10) is the subject of the following theorem, proven in

Appendix A.

Theorem 1. The expression (10) is maximized when all the available power is allocated to the

last pilot, i.e.,Pj = 0, for all 0 ≤ j ≤ (k − 2) andPk−1 = kPtr.

We note that Theorem 1 holds whenever one allows the power allocation during the training

period to vary across the pilots. We also note that the resultholds irrespective of how the power

is allocated for the data.



10

Implications on the training duration:

• When considering policy IV, the powers of the individual training symbols are allowed

to vary and the theorem states that all the power should be allocated to the last training

symbol. Factoring in the loss of achievable rates due to training, it becomes clear that the

optimal duration is that ofonepilot transmission.

• Since the achievable rates using policy III are less or equalto those of policy IV, and since

the optimal solution for policy IV is that of a “flat” power allocation over the duration of

the training –which is one, then the solution is also optimalfor policy III.

• Finally, since the statement of the theorem is valid irrespective of how the power is allocated

during data transmission and specifically even when a flat power allocation is used, the result

implies that for policy II, using a training duration of one pilot is optimal as well.

Naturally, these statements are true if the power level during training is optimized. In Section V

we validate numerically these results.

V. NUMERICAL RESULTS

For a given channel model, a given SNR (power constraints), and estimation technique (causal

or non-causal), we numerically determine the optimal training strategy consisting of:

1. The duration of training or the number of pilotsk.

2. The inter-pilot spacingT .

3. The power allocation for the pilots and data symbols in a transmitted frame, according to the

transmission policy used.

In our work, the quality measure is the achievable rates which we compute for pilot cluster-

ing/training period of up to six pilots in each frame. We study the low receivedSNR regime

(SNR values of -3dB, 0dB, 3dB, and 6dB) for a first-order Gauss-Markov fading process with

values ofα = 0.9, 0.95, 0.97, and0.99. On the receiver side, causal and non-causal estimation

are investigated. We present hereafter graphs for some chosen test cases and compare the rates

achieved using 1, 2, 3, 4, 5, and 6-pilot clustering strategies for different scenarios of SNR and

fading correlation levels.

We note first that the numerical results confirm the observation previously made that the achiev-

able rate in equation (3) depends on the choice of{m1, m2, p1}i, i.e., the input distribution of the

i-th symbol. As the symbol gets further away from the trainingpilots, the channel estimation
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quality (measured through the estimate error variance) is degraded and hence the amount of

information sent over the channel decreases. This is translated by shifting{m1, m2, p1}i from

the antipodal distribution (optimal for a perfectly known channel) withp1 ≈ p2 (high entropy)

toward the other extreme of on-off keying (optimal for the IID Rayleigh fading case) with

p1 ≫ p2 (low entropy).

We also note that in the case of causal estimation, our numerical results are consistent with

the results in Section IV.

A. Results for Transmission Policy I

For transmission policy I, pilot clustering proves to achieve higher rates under certain con-

ditions compared to the 1-pilot scheme. In Figure 4, for an SNR = 0dB,α = 0.99 and causal

estimation, training with 4 pilots and inter-pilot spacingof T=29 symbols is optimal. A percent

increase of 8.2% in information rate is achieved relative tothe best rate achievable with a 1-pilot

scheme. The results for other test cases are shown in Table I.
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Achievable Rates at SNR =0 dB & α =0.99 (First Order−Causal)

 

 

← Max. Rate for nP =4 & T =29

# of Pilots = 1
# of Pilots = 2
# of Pilots = 3
# of Pilots = 4
# of Pilots = 5
# of Pilots = 6

Fig. 4. Achievable Rates for policy I, for SNR = 0dB andα = 0.99 with Causal Estimation.

However there are some scenarios when pilot-clustering is not useful. For the case when SNR

= 6dB, α = 0.97 and causal estimation, the 1-pilot scheme presents optimal rates.
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TABLE I

ACHIEVABLE RATES FORDIFFERENTTRANSMISSIONPOLICIES

Test Case Policy I Policy II Policy III Policy IV

α = 0.9 nP=4 nP=1 nP=1 nP=1

SNR = 0dB T=29 T=22 T=23 T=22

Causal Estimation Rate≈0.2247 Rate≈0.2418 Rate≈0.2422 Rate≈0.2422

8.2%↑1 7.6%↑2

α = 0.97 nP=1 nP=1 nP=1 nP=1

SNR = 6dB T=15 T=15 T=15 T=15

Causal Estimation Rate≈0.3782 Rate≈0.3829 Rate≈0.3836 Rate≈0.3836

1.2%↑2

α = 0.97 nP=3 nP=1 nP=1 nP=1

SNR = -3dB T=19 T=18 T=18 T=18

Non-Causal Estimation Rate≈0.1374 Rate≈0.1470 Rate≈0.1472 Rate≈0.1472

4.3%↑1 6.9%↑2

Using Jakes’ model:

fd = 100Hz, fs = 10KHz nP=2 nP=1 nP=1 nP=1

SNR = 3dB T=14 T=13 T=13 T=13

Causal Estimation Rate≈0.3224 Rate≈0.3508 Rate≈0.3510 Rate≈0.3510

4%↑1 8.8%↑2

Using Jakes’ model:

fd = 100Hz, fs = 10KHz nP=4 nP=1 nP=1 nP=1

SNR = 0dB T=29 T=30 T=30 T=30

Non-Causal Estimation Rate≈0.2843 Rate≈0.3064 Rate≈0.3064 Rate≈0.3064

16%↑1 7.7%↑2

1 relative to the rate achieved by the 1-pilot scheme (Policy I).
2 relative to the achievable rate under Policy I.

Moreover in Figure 5 at an SNR=0dB, andα=0.9 with causal estimation, training is not

beneficial in the first place because the information rate is less than that achieved over an IID

Rayleigh fading channel.

As a conclusion, we can distinguish three cases. The first is when training is not applicable.

The second is when the 1-pilot scheme gives the highest rates. And finally the third when pilot

clustering is beneficial. From our numerical results, we note that as SNR increases and coherence

time decreases, clustering becomes useless and the whole scheme is pushed toward the 1-pilot

training strategy and even to the extreme case of no trainingat all. This is directly related to
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Fig. 5. Achievable Rates for policy I, for SNR = 0dB andα = 0.9 with Causal Estimation.

the fact that training is inefficient (less CSI) when fading decorrelates quickly or when SNR is

high.

B. Results for Transmission Policy II

In this policy, the pilots are sent with fixed powerPtr ( per pilot) and so are the symbols

that are transmitted with powerPd (Section III-B2), such that
1

T

T−1∑

j=0

Pj ≤ P . Therefore, the

optimal training strategy includes determining the optimal power allocation (Ptr andPd) for the

transmitted frame. Here the notion of SNR is naturally associated with the average powerP .

Figure 6 shows the achievable rates for SNR=0dB, andα=0.99 with causal estimation. Unlike

the results for policy I (Figure 4), training with 4 pilots isnot optimal anymore. The 1-pilot

scheme (withT=22) now offers 7.6% increase in the achievable rate compared to the 4-pilot

scheme for policy I. The corresponding optimal power allocation across the transmission frame

is shown in Figure 7.

The rest of the results are presented in Table I and they all confirm that, as expected pilot

clustering is not optimal for policy II, and for any transmission strategy where the pilots’ power

is subject to optimization for that matter. In this case, thetransmitter decreases the estimation

error variance (higher throughput) by boosting the power ofthe single pilot instead of increasing
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Fig. 6. Achievable Rates for policy II, for SNR = 0dB andα = 0.99 with Causal Estimation.
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Fig. 7. Optimal Symbol Power Allocation (one frame) for policy II, for SNR = 0dB andα = 0.99 with Causal

Estimation.
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the number of pilotsk and getting penalized by the normalizing term
1

T
in equation (7).

If a peak power constraint is imposed on the power of the pilots, the optimal training duration

will not necessarily be one pilot. This can be seen from Figure 8 which shows the optimal

power allocation across the transmission frame for SNR=0dB, andα=0.99 with causal estimation

whenever a peak constraintPtr ≤ 3P is imposed. This constraint is effectively imposing a

maximum Peak-to-Average Power Ratio (PAPR) value of 3.
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Fig. 8. Optimal Symbol Power Allocation (one frame) for policy II, for SNR = 0dB andα = 0.99 with Causal

Estimation and peak constraintPtr ≤ 3P .

As mentioned earlier, there are some scenarios where training is not useful and the rate is

always less than that achieved over an IID Rayleigh fading channel. This is observed with causal

estimation for an SNR=0dB andα=0.9 for example. In that case all the power is allocated to

the data symbols indicating that training is not beneficial.

C. Results for Transmission Policy III

For policy III, we send the data symbols with varying power aswe hold on to a flat power

allocation for the pilots. As already shown in the Section IV, clustering is not useful for this

case as well. The transmitter boosts the power of the single pilot used in training to decrease

the error variance and increase the achievable rate.
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The numerical results are in accordance with those of Section IV and they show how the power

of the symbols is adapted to the estimation error variance. In Figure 9, the power allocated to

each symbol and the variation of the error variance are presented for an SNR=0dB, andα=0.99

with non-causal estimation. This shows that symbols with lower variance are sent with higher

power and vice versa. However we should note that power variations among the data symbols

is not profound.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

Transmission Frame

P
ow

er
 D

is
tr

ib
ut

io
n 

(%
)

Symbol Power Allocation at SNR =0 dB & α =0.99 (First Order−Non−causal)

 

 
Pilot Symbol
Data Symbol

E
st

im
at

io
n 

E
rr

or
 V

ar
ia

nc
e

 

 

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Error Variance

Fig. 9. Optimal Symbol Power Allocation (one frame) for policy III,for SNR = 0dB andα = 0.99 with Non-Causal

Estimation.

The achievable rates for other cases are summarized in TableI. It is noticed that adapting

the symbol power to the quality of estimation introduces a slight increase in achievable rates

compared to policy II. As a result, one can say that uniform power allocation for the data symbols

is sufficiently close to optimal and presents a more practical transmission strategy.

D. Results for Transmission Policy IV

Here both the pilots and data symbols are sent with varying power (Section III-B4). However

from the results for transmission policy III, we already know that sending the data symbols with

uniform power is very close to optimal.

Let us consider the case for an SNR=0dB, andα=0.99. We choose a 4-pilot training scheme.

For causal estimation, the power allocated to the pilots is shown in Figure 10. We notice that all
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of the power was found numerically to be allocated to the pilot closest to the symbols leaving the

rest of the pilots that are further away with no power and therefore useless, which is consistent

with the results of Theorem 1 and Section IV. Combining this result with the penalty factor
1

T
in equation (3), we reach the conclusion that the 1-pilot scheme is always optimal (Table I).
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Fig. 10. Optimal Symbol Power Allocation (one frame) for policy IV, for SNR = 0dB andα = 0.99 with Causal

Estimation.

A similar result is shown in Figure 11 for the non-causal estimation scenario. The powers of

the first pilot (playing a prominent role in the non-causal part) and last pilot (with a prominent

role in the causal part) are increased.

Whenever a peak power constraint is imposed on the power of the pilots, the optimal training

duration will potentially involve pilot clustering. The optimal duration and power allocation in

Figure 12 are for an SNR=0dB, andα=0.99 with causal estimation whenever a peak constraint

Ptr ≤ 3P is imposed.

VI. OTHER FADING PROCESSMODELS

Whenever the fading process follows a different model, appropriate results may be readily

derived as the numerical optimization is only dependent on the autocovariance function of the

process as seen from equation (2). In what follows, we present sample results using Jakes’ model.
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Estimation.
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Fig. 12. Optimal Symbol Power Allocation (one frame) for policy IV, for SNR = 0dB andα = 0.99 with Causal

Estimation and peak constraintPtr ≤ 3P .
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Jakes’ Model

In Jakes’ model [23], the normalized (unit variance) continuous-time autocorrelation function

of the fading process is given by

φRR(τ) = J0(2πfdτ),

whereJ0(.) is the zeroth-order Bessel function of the first kind andfd is the maximum Doppler

frequency. For the purposes of discrete-time simulation ofthis model [28], the autocorrelation

sequence becomes

φRR[l] = J0(2πfd Ts |l|),

where1/Ts is the symbol rate.

In Table I we list a sample of the results obtained for a bandwidth fs = 10 kHz and a Doppler

shift of fd = 100 Hz. For example, optimal training consists ofk = 4 and T = 29 when we

have an SNR=0dB and non-causal estimation. Throughput is improved by 16% in this case.

VII. CONCLUSION

We studied the performance of the non-feedback pilot-basedadaptive modulation scheme [20],

[21], [29] over time-varying Rayleigh fading channels. We measured the performance in terms

of achievable rates using binary signaling and we investigated the benefits of pilot clustering as

well as power allocation.

We introduced a modular method to compute the rates in an efficient manner. Moreover, four

types of transmission policies were analyzed. For each policy, we determined the optimal training

strategy consisting of:

1. The duration of training.

2. The inter-pilot spacing.

3. The power allocation for the pilots and data symbols in theframe.

Pilot clustering proved to be useful in thelow SNR–high coherence timerange where training

is efficient (Policy I). However, when the pilot power is subject to optimization (Policies II,

III and IV), training for a smaller period but with boosted power becomes more beneficial than

training with more pilots. We proved that the optimal training duration using causal estimation is

indeed one whenever the power level during training is optimized and allowed to take arbitrary
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values. Numerical results suggest that this is also the casewhen using non-causal estimation at

the receiver.

We also noted that the numerical computations indicate thata flat power allocation across the

data slots in a frame is very close to optimal whenever the pilot power is subject to optimization.

On the other hand, training is useless in thehigh SNR–small coherence timerange and the

rate is always less than that achieved over an IID Rayleigh fading channel. Several test cases

are shown throughout this work to analyze how optimal training varies with channel conditions

and from one transmission policy to another.

Extensions to this work can include adaptive schemes that integrate temporal and spatial

components like the Multiple-Input Multiple-Output (MIMO) scenario.

APPENDIX A

In this appendix we provide a proof for Theorem 1. For notational convenience, define

φ =̂ V T DT
[
D A DT + σ2

N I
]−1

D V,

whereV =
(
αk−1 αk−2 · · · 1

)T
, A is the k × k symmetric, positive definite autocovariance

matrix of the channel fading coefficients{Rs}s∈S, andD is thek × k “input” matrix:

A =










1 α · · · αk−1

α 1 · · · αk−2

...
...

. . .
...

αk−1 αk−2 · · · 1










, D =










√
P0 0 · · · 0

0
√
P1 · · · 0

...
...

. . .
...

0 0 · · · √
Pk−1










, V =










αk−1

αk−2

...

1










.

Note thatφ < 1 for anyk ≥ 1 becauseφ = 1− vk−1. We establish first the following lemma:

Lemma 1. LetU be ak×k diagonal matrix with non-negative entries{xi}k−1
i=0 on the diagonal.

Among all the permutations of the{xi}’s, the one that maximizesV T [A+ U ]−1 V is one where

the diagonal entries are in non-increasing order.

Proof: Assume that{xi}k−1
i=0 are in the following order:0 ≤ x0 ≤ x1 ≤ · · · ≤ xk−1.

We prove in what follows thatU = diag(xk−1, xk−2, · · · , x0) maximizesV T [A+ U ]−1 V using

induction onk. To highlight the dependence onk we denoteϕk = V T
k [Ak + Uk]

−1 Vk, which is

a positive quantity due to the positive definiteness of[Ak + Uk]
−1.
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a) Base Cases:For k = 1, ϕ1 = 1
1+x0

and the statement holds. Examine now the case

k = 2:

U = diag(x0, x1) =⇒ ϕ2 =
(α2x1 + x0 − α2 + 1)

(x0 + 1)(x1 + 1)− α2

U = diag(x1, x0) =⇒ ϕ2 =
(α2x0 + x1 − α2 + 1)

(x1 + 1)(x0 + 1)− α2
.

Sinceα < 1 andx1 ≥ x0, the second value is larger.

b) Induction Step:Suppose the property holds true up tok − 1 (k − 1 ≥ 2) and we prove

in what follows that it holds true fork:

ϕk =
(

αk−1 αk−2 · · · 1
)

[Ak + Uk]
−1










αk−1

αk−2

...

1










,

whereAk andUk are square matrices of sizek. We prove thatϕk is maximized when{xi}k−1
i=0

are placed in non-increasing order on the diagonal matrixUk. The proof proceeds as follows:

We first “fix” xk−1 on the last diagonal entry ofUk and prove that{xi}k−2
i=0 should be in a non-

increasing order to maximizeϕk. Next, we “fix” {xi}k−3
i=0 on the first(k− 2) diagonal entries of

Uk and we prove that, ifxk−2 ≤ xk−1, havingU = diag{x0, x1, · · · , xk−3, xk−1, xk−2} (versus

U = diag{x0, x1, · · · , xk−3, xk−2, xk−1}) gives us a larger value ofϕk, completing the proof.

• Using a block form, we write[Ak + Uk] as:

Ak + Uk =




E F

F T G



 ,

where

E =










x0 + 1 α · · · αk−2

α x1 + 1 · · · αk−3

...
...

. . .
...

αk−2 αk−3 · · · xk−2 + 1










, F =










αk−1

αk−2

...

α










= αVk−1 & G =
(

xk−1 + 1
)

.

This allows us to express[Ak + Uk]
−1 as [30]:

[Ak + Uk]
−1 =




E−1 + E−1F [G− F TE−1F ]−1F TE−1 −E−1F [G− F TE−1F ]−1

−[G− F TE−1F ]−1F TE−1 [G− F TE−1F ]−1




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and

ϕk =F T
[
E−1 + E−1F [G− F TE−1F ]−1F TE−1

]
F − [G− F TE−1F ]−1F TE−1F

− F TE−1F [G− F TE−1F ]−1 + [G− F TE−1F ]−1,

which reduces to:

ϕk = F TE−1F +

(
1− F TE−1F

)2

[xk−1 + 1− F TE−1F ]
= F TE−1F +

(
xk−1 + 1− F TE−1F − xk−1

)2

[xk−1 + 1− F TE−1F ]

= (−xk−1 + 1) +
x2
k−1

[xk−1 + 1− F TE−1F ]
.

The scalarF TE−1F is equal toα2ϕk−1. Indeed,F is of size(k− 1)× 1 and equal toαVk−1,

andE is a (k − 1) × (k − 1) sub-matrix of the form[Ak−1 + Uk−1]. Sinceα < 1, the scalar

F TE−1F is less than one and the denominator is a positive quantity. Therefore, withxk−1 fixed,

ϕk is maximized whenF TE−1F is maximized. By the induction step, with a fixedxk−1 the

remainingxi’s should be “placed” in decreasing order on the diagonal ofE –andU– to maximize

ϕk.

• Now fix {xi}k−3
i=0 . We prove that withxk−2 ≤ xk−1, U = diag{x0, x1, · · · , xk−3, xk−1, xk−2}

gives us a larger value forϕk. To do this, we consider a different decomposition of the matrix

[Ak + Uk],

Ak + Uk =




E F

F T G





where now

E =










x0 + 1 α · · · αk−3

α x1 + 1 · · · αk−4

...
...

. . .
...

αk−3 αk−4 · · · xk−3 + 1










F =










αk−2 αk−1

αk−3 αk−2

...
...

α α2










&G =




xk−2 + 1 α

α xk−1 + 1



 .

SinceF = (αVk−2 α2Vk−2),

ϕk =α4V T
k−2

[

E−1 + E−1F
[
G− F TE−1F

]−1
F TE−1

]

Vk−2

− 2α2
(

α 1
) [

G− F TE−1F
]−1

F TE−1Vk−2 +
(

α 1
) [

G− F TE−1F
]−1




α

1




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Noting thatϕk−2 = V T
k−2E

−1Vk−2,

ϕk =α4ϕk−2 + α6ϕ2
k−2

(

1 α
) [

G− F TE−1F
]−1




1

α





− 2α3ϕk−2

(

α 1
) [

G− F TE−1F
]−1




1

α



+
(

α 1
) [

G− F TE−1F
]−1




α

1





=α4ϕk−2 +
(

α(1− α2ϕk−2) 1− α4ϕk−2

) [
G− F TE−1F

]−1




α(1− α2ϕk−2)

1− α4ϕk−2





︸ ︷︷ ︸

ξ= ξ(xk−2,xk−1)

Examiningξ,

ξ =
(

α− α3ϕk−2 1− α4ϕk−2

)




xk−2 + 1− α2ϕk−2 α− α3ϕk−2

α− α3ϕk−2 xk−1 + 1− α4ϕk−2





−1


α− α3ϕk−2

1− α4ϕk−2





=
(α− α3ϕk−2)

2xk−1 + (1− α4ϕk−2)
2xk−2 + (1− α2ϕk−2)(1− α4ϕk−2)(1− α2)

xk−2xk−1 + (1− α4ϕk−2)xk−2 + (1− α2ϕk−2)xk−1 + (1− α2ϕk−2)(1− α2)
. (11)

Checking the two possibilities,ξ(xk−2, xk−1)− ξ(xk−1, xk−2) has the same sign as

[
(α− α3ϕk−2)

2xk−1 + (1− α4ϕk−2)
2xk−2 + (1− α2ϕk−2)(1− α4ϕk−2)(1− α2)

]

[
xk−2xk−1 + (1− α4ϕk−2)xk−1 + (1− α2ϕk−2)xk−2 + (1− α2ϕk−2)(1− α2)

]

−
[
(α− α3ϕk−2)

2xk−2 + (1− α4ϕk−2)
2xk−1 + (1− α2ϕk−2)(1− α4ϕk−2)(1− α2)

]

[
xk−2xk−1 + (1− α4ϕk−2)xk−2 + (1− α2ϕk−2)xk−1 + (1− α2ϕk−2)(1− α2)

]
,

which is zero ifα = 1 or xk−2 = xk−1. Assumingxk−2 < xk−1, it is of the same sign as

− (1−α6ϕ2
k−2)xk−2xk−1− (1−α4ϕk−2)(1−α2ϕk−2)(xk−1+xk−2)− (1−α2ϕk−2)

2(1−α2),

which is negative and henceξ(xk−2, xk−1) < ξ(xk−1, xk−2). We conclude that, when fixing

{xi}k−3
i=0 , ϕk is maximized when the last two diagonal elementsxk−2 and xk−1 are placed in

non-increasing order.

The final step in the proof is to note that if the diagonal entries are not in non-increasing

order, then either the first(k− 1) entries are not or the last two entries are not. This contradicts

the previous two properties.
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Before we state and prove the theorem, a couple of quantitiesthat will come in handy hereafter

are the partial derivatives ofξ(xk−2, xk−1) defined in (11):

∂

∂xk−2
ξ ∝ −α2(1− α2ϕk−2)

2x2
k−1 (12)

∂

∂xk−1
ξ ∝ −

[
(1− α2ϕk−2)(1− α2) + (1− α4ϕk−2)xk−2

]2
, (13)

where the expressions above are those of the respective numerators. We note that both quantities

are non-positive and everything else being constant, the value of ξ decreases asxk−2 or xk−1

increases.

Theorem. When maximizing the scalarφ over all the choices of{Pj}k−1
0 such that

k−1∑

j=0

Pj = kPtr,

the maximum is achieved when all the available power is allocated to the last pilot, i.e.,Pj = 0,

for all 0 ≤ j ≤ (k − 2) andPk−1 = kPtr.

Proof: We start by imposing a lower bound on the powers{Pj}’s. More precisely, for some

small enoughǫ > 0, we assume thatPj = ǫ+ P ′
j and

D =










√

ǫ+ P ′
0 0 · · · 0

0
√

ǫ+ P ′
1 · · · 0

...
...

. . .
...

0 0 · · ·
√
ǫ+ P ′

k−1










,

and we optimize over the{P ′
j}’s subject to the constraint

k−1∑

j=0

P ′
j ≤ kPtr − kǫ. (14)

The diagonal matrixD is non-singular, allowing us to express the objective function φ as:

φ = V T
[
A + σ2

ND
−1D−1

]−1
V.

Applying the result of Lemma 1 withU = σ2
ND

−1D−1 –and diagonal entriesxi = σ2
N

1
ǫ+P ′

i

,

yields that the optimal{P ′
j}’s have to be non-decreasing. Additionally, the derivative(13)

indicates that the upperbound (14) will be tight. Indeed, fixing {P ′
0, · · · , P ′

k−2} (or equivalently

{x0, · · · , xk−2}) and increasingP ′
k−1 (or equivalently decreasingxk−1) will increaseφ(= ϕk).

This asserts that the power on the last pilot should be as large as possible so that the upper

bound (14) is met with equality.
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The derivatives (12) and (13) allow us to make an even stronger statement: If{P ′
0, · · · , P ′

k−3}
are fixed, among the choices ofP ′

k−2 andP ′
k−1 such that

P ′
k−2 + P ′

k−1 ≤ kPtr − kǫ−
k−3∑

j=0

P ′
j =̂ M,

the one that maximizesϕk is P ′
k−2 = 0 andP ′

k−1 = M .

Indeed, since the bound will be met with equality andP ′
k−2 is less or equal toP ′

k−1 (by the

result of Lemma 1), we letP ′
k−2 = p and P ′

k−1 = M − p and optimize overp ∈ [0,M/2].

Equivalently,xk−2 = σ2
N

1
ǫ+p

, xk−1 = σ2
N

1
ǫ+M−p

, and sinceϕk−2 is fixed, the derivative ofϕk

with respect top is

d

dp
ϕk =

∂ξ

∂xk−2
· dxk−2

dp
+

∂ξ

∂xk−1
· dxk−1

dp

∝ α2(1− α2ϕk−2)
2

(ǫ+ p)2(ǫ+M − p)2
− [(1− α2ϕk−2)(1− α2)(ǫ+ p)/σ2

N + (1− α4ϕk−2)]
2

(ǫ+ p)2(ǫ+M − p)2
,

which is of the same sign as

α(1− α2ϕk−2)−
[
(1− α2ϕk−2)(1− α2)(ǫ+ p)/σ2

N + (1− α4ϕk−2)
]

≤α(1− α2ϕk−2)− (1− α4ϕk−2) = (−1 − α3ϕk−2)(1− α) ≤ 0,

for any p and therefore the maximum is attained whenp = 0. Said differently,ϕk is maximum

whenP ′
k−2 = 0 andP ′

k−1 = M .

By Lemma 1, the optimal values ofP ′
i for all i ∈ {0, 1, · · · , k− 3} are less or equal toP ′

k−2.

Since for an optimal power allocationP ′
k−2 is zero,P ′

i = 0 for all i ∈ {0, 1, · · · , k − 2} and

P ′
k−1 = kPtr − kǫ.

Finally, the same previous observations show that the smaller the ǫ the largerφ is. Conse-

quently, taking the limit asǫ goes to zero yields the optimal solution and the proof of the theorem

is complete.
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