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ABSTRACT

The secrecy problem in the state-dependent cognitive interference channel is considered in this paper. In our model, there
are a primary and a secondary (cognitive) transmitter-receiver pairs, in which the cognitive transmitter has the message of
the primary one as side information. In addition, the channel is affected by a channel state sequence which is estimated
partially at the cognitive transmitter and the corresponding receiver, separately. The cognitive transmitter shouldcooperate
with the primary one, and it wishes to keep its message secureat the primary receiver. The achievable equivocation-rate
regions for this channel are derived using two approaches: the binning scheme coding, and superposition coding. Then the
outer bounds on the capacity are derived and the results are extended to the Gaussian examples. Copyrightc© 2016 John
Wiley & Sons, Ltd.

1. INTRODUCTION

Interference channel, in which the intended signal for
one receiver causes interference at the other receivers, is
a basic model to study the constraints on the practical
communication networks [1]. The Cognitive Interference
Channel (CIC) is one case of the interference channels
in which one of the transmitter-receiver pair, namely the
primary one, has the privileges to use the channel [2, 3].
The secondary transmitter-receiver pair, i. e., the cognitive
one, uses the channel without causing problem for the
primary one. In one approach, the cognitive transmitter
cooperates with the primary party by spending the
cognition cost [4]. Although the capacity of this channel
remains an open problem in general case, many works
studied the achievable rate region for this channel [5–8].
Under degradedness condition, [5] derived the capacity for
the CIC. The achievable rate of [4] is improved by [6–9].

The nature of the interference channel causes to leak the
information to unintended destinations. In the information
theory literature, secure communication between the
transmission parties was first studied in [10] by Shannon.
Afterwards, Wyner introduced the wiretap channel to
model the secrecy problem in the physical layer [11].
Furthermore, he proposed theRandom Codingto keep the
sent message away from the eavesdropper. This coding
scheme is based on the fact that a receiver cannot
decode any information more than its channel capacity
with low-enough error probability. Recently, there has

been a significant interest in the secrecy of multi-users
systems [12] with a particular emphasis on the secrecy of
the CIC [2, 13, 14]. The works [2, 13, 14] derived some
equivocation-rate regions for the CIC to show the trade off
between the achievable rate and the secrecy level in this
channel.

Modeling a time-varying channel, whose instantaneous
parameters depend on a random state sequence, is
introduced and studied by Shannon in his landmark
paper [15]. Moreover, the knowledge of the random state
sequence, i. e., the Channel State Information (CSI) is
assumed to be available at the transmitter in [15]. There
are considerable research interests in studying the effect
of the CSI in various channel models (see [16] and
the references therein). Specifically, the capacity of a
discrete memoryless point to point channel with non-
causal CSI available at the Transmitter (CSIT) is derived
by Gel’fand and Pinsker [17], and it is extended to the
Gaussian channel in [18]. The CIC with CSI available
at the cognitive transmitter is studied in [3, 19] and the
equivocation-rate region on this model is derived by [20].
Moreover, some works consider the impact of partial
channel state information on the capacity and performance
of the cognitive radio [21,22].

In this paper, we study the CIC with Partial Channel
State information (CIC-PCSI). The partial CSIs are
assumed to be known non-causally at the cognitive
transmitter and the corresponding receiver (see Figure1).
Here, the cognitive transmitter should mitigate its
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interference at the primary receiver. Furthermore, it wishes
to keep its message confidential with respect to the primary
receiver.

The CIC-PCSI model can be motivated by the wireless
sensor network application with different sensor types [5],
in which one sensor has a better sensing capability than
the other one. The simpler sensor provides one event to
its corresponding destination, but the more capable sensor
which can sense two events, cooperates with the simpler
sensor. Since the more capable sensor senses a vital event,
it wishes to keep its message confidential at the destination
of the simpler sensor. Moreover, the channel is affected by
a channel state sequence which is estimated at the more
capable sensor and its destination, separately [23]. These
estimated observations of the channel state sequence are
not equal to each other in general case.

We study the different effects of the CSIT and CSIR
on two coding schemes to achieve the equivocation-rate
region. For this aim, we use theBinning scheme[6,
24, 25] and theSuperposition Coding[2, 3, 20] in CIC-
PCSI. In the binning scheme, the cognitive transmitter,
after rate splitting, bins its message against the code-book
of the primary one. Then, it superimposes its message
on the primary transmitter’s message and the channel
state sequence. In the superposition scheme, the cognitive
transmitter superimposes its message on the primary
transmitter’s message and the channel state sequence.
In each scheme, random coding is used to guaranty
the secrecy condition for the cognitive transmitter’s
message [11]. Then, the outer bounds on the capacity
of the CIC-PCSI are proposed. Moreover, we extend the
results of two cases, i.e., binning scheme and superposition
coding, to the Gaussian model, and it is shown that the
cognitive transmitter can choose the best coding scheme
to maximize the achievable equivocation-rate region. In
comparison of our model with the different ones in [3,
6, 24, 25], we consider secrecy constraints in the CIC.
Since we assume that the primary transmitter’s message is
fully known at the cognitive transmitter, the secrecy issue
is considered for the cognitive transmitter’s message (see
the similar model in [2]). Furthermore, in compare with
the model of [13] and [14], the CSI knowledge enhances
the cognitive transmitter to improve the equivocation-rate
region.

The rest of the paper is as follows. In Section2, the
channel model and some preliminaries and the definitions
are explained. In Section3, the main results on the
achievable equivocation-rate region using the binning
scheme are proposed. Furthermore, in this section we
derive the proper outer bounds on the capacity, and extend
the results to the Gaussian case. In Section4, using
the superposition coding, we derive the equivocation-rate
region and an outer bound on the capacity of the channel.
Then, we extend the results to the Gaussian channel as an
example. Finally, the paper is concluded in Section5. The
proofs of the theorems are relegated to the appendices.

Figure 1: The cognitive interference channel with
two partial channel states information available at the
transmitter and the receiver, with a confidential message.

2. CHANNEL MODEL AND
PRELIMINARIES

2.1. The Notation

First, we explain the notation. We useX to denote a finite
alphabet with cardinality|X |. xn = {x1, x2, . . . , xn}
represents the members ofXn, in which the subscripted
and superlative letters represent the components and
the vectors, respectively.xj

i is used to indicate the
vector (xi, . . . , xj). For the random vectors and the
random variables, which are denoted by uppercase letters,
a similar convention is used.

2.2. Channel Model

Consider a memoryless stationary state-dependent inter-
ference channel with finite input alphabetsX1 and X2,
finite output alphabetsY1 andY2, the channel states alpha-
betsS1, S2 with distributionPS1

, PS2
and a conditional

probability distributionPY1,Y2|X1,X2,S1,S2
. As shown in

the Figure1, the t-th transmitter, wheret = 1, 2, wishes
to transmit the messageWt which is uniformly distributed
on the setWt ∈ {1, . . .Mt}. The messageW1 is assumed
to be known at both transmitters, but the messageW2 is
just known at the transmitter 2 (the cognitive transmitter).
Furthermore, it is assumed that the channel is dependent
on two channel states. One of these channel states, i.e.,S1,
is assumed to be known non-causally at the cognitive
transmitter. The other one, i.e.,S2, is assumed to be
known non-causally at the cognitive destination. Thus, the
cognitive party wishes to increase its achievable rate using
this side information.

Given the inputs and the states, i.e., then-
sequencesXn

1 , Xn
2 , Sn

1 , Sn
2 , the conditional distribution

of the channel outputsn-sequencesY n
1 , Y n

2 take the
product form as follows

PY n
1

,Y n
2

|Xn
1
,Xn

2
,Sn

1
,Sn

2
(yn1 , y

n
2 |xn

1 , x
n
2 , s

n
1 , s

n
2 ) =

n
∏

i=1

PY1,Y2|X1,X2,S1,S2
(y1,i, y2,i|x1,i, x2,i, s1,i, s2,i).(1)

2.3. Definitions

An (M1,M2, n, Pe)-code has two encoding-decoding
functions and an error probability. The encoding functions
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are defined as

ϕ1,n : W1 → Xn
1 ,

ϕ2,n : W1 ×W2 × Sn
1 → Xn

2 , (2)

and the channel decoders are defined by the mappings

ψ1,n : Yn
1 → Ŵ1,

ψ2,n : Yn
2 × Sn

2 → Ŵ2. (3)

The error probabilityPe = max(Pe,1, Pe,2) is defined
as

Pe,t =
∑

w1,w2

1

M1M2
P [ŵt 6= wt|w1, w2 were sent]. (4)

Definition 1
The secrecy level of the cognitive transmitter’s message
at the primary receiver (receiver 1) is measured by
normalized equivocation-rate which is defined as

R
(n)
e2

=
1

n
H(W2|Y n

1 ), (5)

which is known as the “weak secrecy condition” [12].

Definition 2
The equivocation-rate-triple (R1, R2, Re2) is an
achievable region if for anyǫn > 0 there exists
an (M1,M2, n, Pe) code such thatMi ≥ 2nRi , i = 1, 2
for which we havePe ≤ ǫn, and

0 ≤ Re2 ≤ lim inf
n→∞

R
(n)
e2
. (6)

Definition 3
The capacity region is the closure of the set of all
achievable equivocation-rate regions.

2.4. Encoding Schemes

Now, we discuss the rate achieving encoding schemes
we will use in the CIC problem. First, consider a point-
to-point state-dependent communication system in which
the CSI is known non-causally at the transmitter. Assume
that the channel state sequenceS plays the role of the
interference signal which can be considered as a code-
book with rateRS = I(Y ;S). The transmitter wishes
to transmit the messageW at the rateR through the
channel. There are two coding schemes to achieve the
rate region:Superposition Coding(SPC) andGel’fand-
Pinsker Coding(GPC); depending on the interference’s
rateRS , either one may be chosen. WhenRS is small,
we can improve the achievable rate using the SPC. For
higherRS , we can achieve the rate using the classical
GPC. The following lemma expresses the result using
these two coding schemes [6, Lemma 1]. This lemma is
used to derive the achievable rate regions for the CIC-PCSI
in the next sections.

Lemma 1
[6, Lemma 1] The following rate region is achievable for

a point to point communication system with non-causal
CSIT

R ≤ max
PU|S,f(.)

min{I(X;Y |S),

max{I(U,S;Y )−RS, I(U ;Y )− I(U ;S)}}. (7)

Outline of the proof
For the caseI(S;U, Y ) ≤ RS ≤ H(S), the binning
scheme achieves the rate given by the second term of (7).
ForRS ≤ I(S;U, Y ), SPC achieves the rate region by the
first term in (7). For more details we refer to [6, Lemma
1].

3. USING THE BINNING SCHEME

In this section we derive the achievable equivocation-rate
region for the CIC-PCSI, shown in Figure1, using the
binning scheme. Then, two outer bounds on the capacity
are proposed, and the results are extended to the Gaussian
channel as special case.

3.1. An inner bound

To derive an achievable rate region for this channel, we use
the rate splitting as follows.

R1 = R1a +R1b, (8)

R2 = R2a +R2b, (9)

for non-negative ratesR1a, R1b, R2a andR2b. Transmit-
ter 1, encodes the messageW1 and uses the SPC with
two code-booksXn

1a andXn
1b. Transmitter 2, by access

to the messageW1 and the channel stateSn
1 uses the

SPC with two code-booksXn
1a andXn

1b. Then, it splits
the messageW2 and uses GPC againstXn

1a, Xn
1b, S

n
1 in

two steps to createXn
2 . In the first step, transmitter 2 uses

binning againstXn
1a,Xn

1b, Sn
1 to createUn of rateR2b. In

the second step, it uses binning againstXn
1a, Xn

1b andSn
1

conditioned onUn to createV n of rateR2a. Finally, it
usesUn, V n, Xn

1a, X
n
1b, S

n
1 to constructXn

2 . Based on
this encoding scheme, we have the following result on the
achievable equivocation-rate region.

Theorem 1(Achievable equivocation-rate region)
The set of equivocation-rates(R1a, R1b, R2a, R2b, Re2)
is achievable if it satisfies

R1 ≤ I(X1;Y1, U |Q), (10)

R1b ≤ I(X1b; Y1, U |X1a, Q), (11)

R2a ≤ I(V ;Y2, S2|U,Q)− I(V ;X1, S1|U,Q),(12)

R2 ≤ I(V,U ;Y2, S2|Q)− I(V,U ;X1, S1|Q), (13)

R1 +R2b ≤ I(X1, U ;Y1|Q), (14)

R1b +R2b ≤ I(X1b, U ; Y2|X1a, Q), (15)

Re2 ≤ I(V ;Y2, S2, U |Q)− I(V,S1;X1, Y1, U |Q),

(16)
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for input distribution factors as

p(q)p(x1a, x1b, u, v, x1, x2, s1, s2|q)
×p(y1, y2|x1, x2, s1, s2), (17)

in which the right-hand-sides (r.h.s.) of the equations (10)–
(16) are non-negative andQ is a time-sharing random
variable.

Proof
See AppendixA.

Using the Fourier-Motzkin elimination [16], the
following explicit description of the region is derived.

Corollary 1
The set of equivocation-rates(R1, R2, Re2) is achievable
if it satisfies

R1 ≤ min{I(X1;Y1, U |Q), I(X1, U ;Y1|Q)}, (18)

R2 ≤ I(V,U ; Y2, S2|Q)− I(V,U ;X1, S1|Q), (19)

R1 +R2 ≤ I(V ;Y2, S2|U,Q)− I(V ;X1, S1|U,Q)

+I(X1, U ;Y1|Q), (20)

Re2 ≤ I(V ;Y2, S2, U |Q)− I(V, S1;X1, Y1, U |Q),(21)

for input distribution factors as (17).

Remark 1
Theorem 1 without secrecy aspect and by substitut-
ing S1 = S2 = ∅, is reduced to the result of [6, Theorem
1] for the CIC. Moreover, the equivocation-rate (16), by
substitutingS1 = S2 = ∅, is reduced to equivocation-rate
of [13, Theorem 1]. It means that Theorem 1 includes the
results of [6] and [13].

3.1.1. The Symmetric Channel State
The special caseS1 = S2 = S is of special interest.

This case resembles the secret-key agreement scenario [16,
26]. The equivocation-rate (16) in this case is reduced to
the following theorem:

Theorem 2
The secrecy-rate (SR) of the CIC, when the state
sequencesn is known at the transmitter and the receiver, is
given by

R
SR
e2

≤ I(V ;Y2|U, S)− I(V ;X1, Y1|U, S)
+H(S|U,X1, Y1). (22)

Proof
The achievability of (22) results from (16) as follows.

Re2 ≤ I(V ;Y2, S, U)− I(V, S;X1, Y1, U)

= I(V ;Y2, U |S) − I(V ;X1, Y1, U |S)
+I(V ;S)− I(S;X1, Y1, U)

= I(V ;Y2, U |S) − I(V ;X1, Y1, U |S)
+H(S|U,X1, Y1)−H(S|V )

≤ I(V ;Y2, U |S) − I(V ;X1, Y1, U |S)
+H(S|U,X1, Y1), (23)

in which the last inequality follows from the non-negativity
of the entropy function. Note thatV is an optimal choice.
Therefore, selectingV = (V, S) leads toH(S|V ) = 0,
and the bound in the last inequality will be tight. An
alternative proof can be derived directly from the secret-
key agreement method taken in [26, Theorem 3].

Remark 2
The inner bound of Theorem2 can be interpreted from
the secret-key agreement point of view [26, Theorem
3]. The termI(V ;Y2|U, S)− I(V ;X1, Y1|U, S) is the
rate of a multiplexed CIC in which the cognitive
transmitter and both the receivers (the primary and
the secondary receivers), have knowledge ofsn and
the common messageun, non-causally. The second
term H(S|U,X1, Y1) is the additional secret-key rate
which can be produced by using the fact that the channel
statesn is only known to the cognitive transmitter-receiver
pair. For more details on using the channel state as a shared
secret-key between the transmitter-receiver pair, see [26].

3.2. Outer bounds

The following theorems provide two outer bounds on
the capacity region of the CIC-PCSI. In the first outer
bound, we use the usual approach taken in the previous
work [6,13] based on the Fano’s inequality. In the second
outer bound, we use the approach taken by [7], which only
depends on the conditional marginal distributions of the
channel outputs given the inputs. This outer bound does
not include auxiliary random variables and every mutual
information term involves the inputs and outputs of the
channel. Therefore, the second outer bound is looser than
the first one, but can be more easily evaluated.

Theorem 3(Outer bound 1)
The set of rates(R1, R2, Re2) satisfying

R1 ≤ min{I(U,V1;Y1), I(V1;Y1, U)}, (24)

R2 ≤ I(U,V2;Y2|S1, S2), (25)

R1 +R2 ≤ min
{

I(V2;Y2|U, V1, S1, S2)

+I(V1, U ;Y1), I(V2, U ; Y2|S1, S2)

+I(V1;Y1|U, V2)
}

, (26)

Re2 ≤ min
{

I(V2;Y2|U)− I(V2;Y1|U),

I(V2;Y2|V1, U) − I(V2;Y1|V1, U)
}

, (27)

for input distribution that factors as

p(s1)p(s2)p(v1)p(v2)p(u|v1, v2)p(x1|v1)
p(x2|u, v1, v2, s1)p(y1, y2|x1, x2, s1, s2), (28)

is an outer bound on the capacity of this channel.

Proof
The proof of Theorem3 is relegated to AppendixB.
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Figure 2: The Gaussian cognitive interference channel with
channel state available at the transmitter and the receiver,
with a confidential message.

Theorem 4(Outer bound 2)
The set of rates(R1, R2, Re2) satisfying

R1 ≤ I(X1, X2;Y1), (29)

R2 ≤ I(X2;Y2|X1, S1, S2), (30)

R1 +R2 ≤ I(Y1;X1, X2, S1, S2)

+I(X2;Y2|X1, S1, S2, Y
′

1 ), (31)

Re2 ≤ min
{

I(X2;Y2)− I(X2;Y1), I(X2;Y2|X1)

−I(X2;Y1|X1)
}

, (32)

for all distributions PX1,X2
and P

Y2,Y
′
1
|X1,X2,S1,S2

,

where Y
′

1 has the same marginal distribution asY1,
i. e., P

Y
′
1
|X1,X2,S1,S2

= PY1|X1,X2,S1,S2
, is an outer

bound on the capacity of this channel.

Outline of the proof
The rates (29)–(31) are derived using the side information
approach taken by [7]. The rate (32) is derived according to
the previous rate (27) by substituting the auxiliary random
variablesV1 andV2 byX1 andX2, respectively. This outer
bound is looser than the one in Theorem3, but it does not
include auxiliary random variables and thus it can be more
easily evaluated. The details on the proof are relegated to
AppendixC.

3.3. The Gaussian example

To clarify our results more perceptibly, consider the
Gaussian CIC-PCSI. The channel model is shown in
Figure2, and can be described as follows:

Y1 = X1 + aX2 + S1 + S2 + Z1,

Y2 = bX1 +X2 + S1 + S2 + Z2, (33)

whereXi and Yi denotes the input and the output of
thei-th transmitter-receiver pair.Zi ∼ N (0, 1) is Additive
White Gaussian Noise (AWGN) at thei-th receiver
where i ∈ {1, 2}. Si ∼ N (0,Ki) denotes the partial
channel state sequences which are known at the cognitive
transmitter and the corresponding receiver, respectively.
The constantsa and b are the real-valued channel gains
in the interfering links and the average power constraint
is 1

n

∑n

k=1(Xi,k(t))
2 ≤ Pi, i ∈ {1, 2}. In this model, for

simplicity, we consider the partial channel state sequences

to be additive and independent Gaussian random variables.
This model can be motivated by the case in which two
different interfering signals affect the channel, and each
one is estimated at one of the cognitive transmitter-receiver
nodes. Now, we consider the cases in whicha ≤ 1 anda >
1, separately.

3.3.1. The case a ≤ 1
This case is reported as theweak interferencecase in

the literature [2, 3]. The capacity region of the CIC in
this case without CSI is determined by [5, 27], in which
the cognitive encoder uses Dirty Paper Coding (DPC)
[19] for W2 againstW1. Furthermore, using the SPC in
the cognitive transmitter, the messageW1 is conveyed
to receiver 2. In the weak interference case, receiver 2
does not suffer from the interference, since, transmitter 2
uses DPC onX2 againstX1 and known channel state.
Moreover, the primary receiver is not affected by the
interfering signalX2 due to the weak interference. The
following theorem describes the achievable equivocation-
rate region of the Gaussian CIC-PCSI in this case.

Theorem 5(Achievable equivocation-rate region)
The set of rates(R1, R2, Re2) satisfying

R1 ≤ C
( P1

K2 + 1

)

, (34)

R2 ≤ C((1− ρ
2)P2), (35)

Re2 ≤ C((1− ρ
2)P2)− C((1− ρ

2)a2P2), (36)

in whichC(x) = 1
2
(1 + x) andρ ∈ [0, 1], is an achievable

equivocation-rate region of the Gaussian CIC-PCSI, shown
in Figure2 for the casea ≤ 1.

Proof
The proof is similar to the one presented in [27] without
secrecy and by substitutingXi ∼ N (0, Pi) for i ∈ {1, 2}
andE[X1X2] = ρ

√
P1P2. The channel stateS1 is treated

as interference by the cognitive transmitter in DPC and
does not affect the rate. On the other hand, the channel
stateS2, which is known non-causally at the cognitive
receiver, can be easily canceled out. Thus, these channel
states do not affect the rate (35). The primary receiver 1
is affected by the channel stateS2 as an additional
interference, but the channel stateS1 is canceled out for
this receiver by the cognitive transmitter’s cooperation.For
more details on the proof see [27].

Remark 3
The achievable equivocation-rate region for the Gaussian
CIC-PCSI in Theorem5 is maximized forρ = 0 since
a ≤ 1. Thus in this case, the cognitive transmitter meets its
capacity and the equivocation leads toC(P2)− C(a2P2).

3.3.2. The case a > 1
In this case, which is known as thestrong interfer-

ence [2, 3], the channel output at the cognitive receiver
is a degraded version of that at the primary one, thus
there is no secrecy in this condition, i. e.,Re2 = 0. In this
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case, receiver 1, having better observation ofX2 than the
cognitive receiver, can decode the message of the cognitive
transmitter without any penalty rate. The capacity of the
CIC without channel state [2,27], is a trivial outer bound
on the capacity of the CIC-PCSI. This outer bound is
presented in the following.

Theorem 6(Gaussian outer bound [2, Theorem 2])
The set of rates(R1, R2) satisfying

R2 ≤ C((1− ρ
2)P2), (37)

R1 +R2 ≤ C(P1 + a
2
P2 + 2aρ

√
P1P2), (38)

R1 +R2 ≤ C(b2P1 + P2 + 2bρ
√
P1P2), (39)

is an outer bound on the capacity of the Gaussian CIC-
PCSI for the casea > 1.

4. USING THE SUPERPOSITION
CODING

The cognitive transmitter can superimpose part of its
message onXn

1 instead of binning. Thus, it should split its
message asW2 =W21 +W22, in whichW21 is intended
to both receivers andW22 is only decodable at the
cognitive receiver. Moreover, the cognitive transmitter uses
GPC via three auxiliary random variablesT , U andV
to reduce the channel state interference forW1, W21

and W22, respectively. In particular,T deals with
state interference for either receiver 1 or receiver 2 to
decodeW1; U deals with state interference for either
receiver 1 or receiver 2 to decodeW21; andV deals with
state interference for receiver 2 to decodeW22. Now, we
propose the main results which are derived based on this
scheme.

4.1. An Inner Bound

Theorem 7(Achievable equivocation-rate region)
The set of rates(R1, R21, R22, Re2) is achievable if it
satisfies

R1 +R21 ≤ I(T,U,X1;Y1)− I(T,U ;S1|X1), (40)

R22 ≤ I(V ;Y2, S2|U,X1, T )− I(V ;S1|U,X1, T ), (41)

R2 ≤ I(U,V ;Y2, S2|X1, T )− I(U,V ;S1|X1, T ), (42)

R2 ≤ I(T,U, V ; Y2, S2|X1)− I(T,U, V ;S1|X1), (43)

R1 +R2 ≤ I(T,U, V,X1;Y2, S2)− I(T,U, V ;S1|X1),

(44)

Re2 ≤ I(V ;Y2, S2|U,X1, T )

−max{I(V ;S1|U,X1, T ), I(V ;Y1|U,X1, T )}, (45)

for input distribution factors as

PX1S1S2TUV X2Y1Y2
= PS1

PS2
PX1

×PTUV X2|X1S1
PY1Y2|X1X2S1S2

, (46)

in which the r.h.s. of the equations (40)–(45) are non-
negative andT, U, V are auxiliary random variables.

Proof
The proof is relegated to AppendixD.

4.1.1. The Symmetric Channel State
For the special caseS1 = S2 = S, we have the

following result.

Corollary 2
For the case in whichS1 = S2 = S, the set of
rates(R1, R2, Re2) is achievable if it satisfies

R1 ≤ I(U,X1;Y1)− I(U ;S|X1), (47)

R2 ≤ I(X2;Y2|X1, S) (48)

R1 +R2 ≤ I(U,X1;Y1) + I(X2;Y2|X1, S)

−I(U ;S|X1), (49)

Re2 ≤ min{I(X2;Y2|U,X1, S),

I(X2;Y2, S|U,X1)− I(X2;Y1|U,X1)}, (50)

for input distribution that factors as

PSX1X2Y1Y2
= PSPX1

PX2|X1SPY1Y2|X1X2S. (51)

Proof
The proof follows directly from Theorem7, by
substitutingT = X1, V = X2 andS1 = S2 = S.

4.2. Outer Bound

Now, we provide an outer bound on the capacity of the
CIC-PCSI, as follows.

Theorem 8(Outer bound 3)
An outer bound on the capacity of the CIC-PCSI consists
of the rate pairs(R1, R2) satisfying

R1 ≤ I(T,U,X1; Y1)− I(T,U ;S1|X1), (52)

R2 ≤ I(T, V ;Y2, S2|X1)− I(T, V ;S1|X1), (53)

R1 +R2 ≤ I(T, V,X1;Y2, S2)− I(T, V ;S1|X1),(54)

for input distribution that factors as

PX1S1S2TV X2Y1Y2
= PS1

PS2
PX1

PTV X2|X1S1

×PY1Y2|X1X2S1S2
. (55)

Proof
The proof is similar to one taken by [3, Appendix F] by
using the Fano’s inequality.

4.3. The Gaussian Example

In this section, we consider the CIC with partial channel
states (shown in Figure2) with the channel outputs as (33).
Similar to the cases considered in Section III-C, whena >

1, i. e.,Strong Interference, we have no secrecy. Thus, we
consider the other casea ≤ 1. We provide the following
theorem for the Gaussian CIC-PCSI.

Theorem 9(Achievable equivocation-rate region)
For the Gaussian CIC-PCSI, in the case thata ≤ 1, the
achievable equivocation-rate region consists of the rate
triples(R1, R2, Re2) which satisfy (56)–(59), in the above
of the page, in whichP

′′

2 = ρP2 and0 ≤ ρ, ρ1, ρ2 ≤ 1.
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R1 ≤ C
(P1 + a2P2 +K1 +K2 + 1 + 2aρ1

√
P1P2 + 2aρ2

√
P2K1

K1(a2P
′′

2 +K2 + 1)

)

, (56)

R2 ≤ C
(

P
′′

2

)

, (57)

R1 +R2 ≤ C
(

b
2
P1 + P2 +K1 + 2bρ1

√
P1P2 + 2ρ2

√
P2K1

)

− 1

2
log

(

K1

)

, (58)

Re2 ≤ C
(

P
′′

2

)

− C
( a2P

′′

2

K2 + 1

)

, (59)

Proof
The proof is based on Theorem7, by substitutingT =
(U,S1) andV = X2 and choosing the following jointly
Gaussian distributions for the random variables:

X1 ∼ N (0, P1), X2 ∼ N (0, P2), (60)

X2 = X
′

2 +X
′′

2 + ρ1

√

P2

P1
X1 + ρ2

√

P2

K1
S1,(61)

X
′

2 ∼ N (0, P
′

2), X
′′

2 ∼ N (0, P
′′

2 ), (62)

P
′

2 + P
′′

2 = (1− ρ
2
1 − ρ

2
2)P2, (63)

U = X
′

2 + αS1, (64)

in which X1, X
′

2, X
′′

2 , and S1, S2 are independent.
Transmitter 2, splits its power into three parts:ρ21P2,
which is used for cooperating with the primary transmitter
sendingW1; P

′

2 + ρ22P2, which is used in dirty paper
coding to deal with the state at receiver 1 via an
auxiliary random variableU ; andP

′′

2 which is used for
transmittingW2. The mutual information formulas in (56)-
(59) are calculated by the approach taken by [3].

To compare the results of Theorem9 with the achievable
equivocation-rate of Theorem5, we consider a simple case
of Theorem9 in which the cognitive transmitter uses all its
power to send its individual message. For this case we have
the following corollary.

Corollary 3 (Perfect Secrecy Condition)
For the Gaussian CIC-PCSI, in the case thata ≤ 1,
the achievable secrecy rate region consists the set of
rates(R1, R2) which satisfies

R1 ≤ C
(P1 + a2P2 +K1 +K2 + 1

K1(a2P2 +K2 + 1)

)

, (65)

R2 ≤ C
(

P2

)

− C
( a2P2

K2 + 1

)

, (66)

R1 +R2 ≤ C
(

b
2
P1 + P2 +K1

)

− 1

2
logK1. (67)

Proof
The proof is directly derived from Theorem9 by
considering the perfect secrecy condition in whichR2 ≤
min{R2, Re2}, and by substitutingρ1 = ρ2 = 0 andρ =

1, X
′

2 = ∅,

Remark 4
Comparing the results of Corollary3 with the achievable
equivocation-rate region of Theorem5 shows that the
secrecy rate of (66) is higher than the one of (36), because
ofK2 ≥ 0. It means that the SPC approach achieves higher
secrecy rate than the GPC in general case. Moreover,
comparing (65) with (34) shows that for the case ofa ≤
a†, where

a
† =

√

(K2 + 1)(P1 +K1 +K2 + 1)− P1K1(K2 + 1)

P1P2K1 − P2(K2 + 1)

the SPC approach obtains higher achievable rate for the
primary transmitter than the GPC, and for the case ofa >

a† vice versa. Thus, in the case ofa > a†, there is a trade
off between the secrecy rate of the cognitive transmitter
and the achievable rate of the primary one. Figure3
shows the secrecy rate of the cognitive transmitter vs. the
achievable rate of the primary one, using the GPC and the
SPC approaches, and it illustrates the trade off between
theR2 andR1 in the case ofa > a†.

5. CONCLUSIONS

In this paper we studied the Cognitive Interference
Channel in which the partial channel state’s information
is available non-causally at the cognitive transmitter
and corresponding receiver. Furthermore, the cognitive
transmitter wishes to keep its message confidential at
the primary receiver, in addition to have a reliable
communication with its destination. We use the Gel’fand-
Pinsker coding (GPC) and the superposition coding (SPC)
to show that how the cognitive transmitter can use the side
information about the primary message and the channel
state sequence to improve its achievable rate and cooperate
with the primary one. Therefore, we have derived the
achievable equivocation-rate region for this channel in two
cases: by using GPC and SPC. Moreover, in each case the
outer bounds on the capacity and extension to a simple
Gaussian example is presented. In the Gaussian case, we
consider a case in which the partial channel state sequences
are additive and independent Gaussian random variables,
and it is shown that in some cases, there is a trade off
between the secrecy rate of the cognitive transmitter and
the achievable rate of the primary one, using the GPC
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Figure 3: The achievable equivocation-rate region of Theorem 5 (GPC), and the achievable secrecy rate region of
Theorem9 (SPC) for special valuesP1 = 4, P2 = 4, K1 = K2 = 1, b = 0.3 anda = 0.1, 0.9. In this casea† = 0.866,
and fora > a†, there is a trade off between the secrecy rate of the cognitive transmitter and the achievable rate of the
primary one.

and GPC approaches. Thus, the cognitive transmitter can
obtain the desired region by choosing the proper coding
scheme.

A. PROOF OF THEOREM 1

Proof
The proof is established on the proof of [6, Theorem 1]
and [13, Theorem 1]. After introducing the code-book
generation, and the encoding-decoding scheme, the proof
of Theorem1 is presented in two steps. In step I, we prove
the reliability of the rate region, i. e., the condition under
which the probability of error tends to zero forn→ ∞.
This step yields to the equations (10)-(15). In step II,
we will calculate the equivocation to evaluate the secrecy
level. This step provides the equation (16).

Code-book generation:

1. For split rates (8)-(9), generate 2nR1a

codewords xn
1a(w1a), w1a ∈ {1, 2, . . . , 2nR1a},

choosing xn
1a,n(w1a) independently according

toPX1a
(·).

2. For each w1a, generate 2nR1b code-
words xn

1b(w1a, w1b) using Πn
i=1PX1b|X1a

(· |
x1a,i(w1a)), wherew1b ∈ {1, 2, . . . , 2nR1b}.

3. Over each pair (w1a, w1b) we gener-
ate xn

1 (w1a, w1b) where x1 is a deterministic
function of(x1a, x1b).

4. Generate2n(R2b+R
′

2b
) codewords un(w2b, b2b),

w2b ∈ {1, 2, . . . , 2nR2b}, b2b ∈ {1, 2, . . . , 2nR
′

2b}
usingPU (·).

5. For each un(w2b, b2b) generate 2n(R2a+R
′

2a
)

codewords vn(w2b, b2b, w2a, b2a), w2a ∈

{1, 2, . . . , 2nR2a}, b2a ∈ {1, 2, . . . , 2nR
′

2a}
usingΠn

n=1PV |U (· | un(w2b, b2b)).
6. Now, define L1 = I(V ;Y2, S2|U)−
I(V ;Y1, X1|U), L2 = I(V ;Y1, X1|U). Note
that, here we assume thatR2a > L1 ≥ 0, for the
caseR2a < L1 the similar coding scheme can
be used to obtain theperfect secrecy, which is
mentioned at the end of the proof. Let

W2a = A× B (68)

where A = {1, 2, . . . , 2n(R2a−L1)} and B =
{1, 2, . . . , 2nL1}. Then, we define the
mapping f : B → C to partition B into 2nL1

subsets with nearly equal size which means

‖f−1(c1)‖ ≤ 2‖f−1(c2)‖ for eachc1, c2 ∈ C.
(69)

Now we define the mappingw2a = (a, c) →
(a, b), in which b is chosen randomly from the
setf−1(c) ⊂ B.

7. Over each pairw1 andw2(w2a(a, c), w2b), we gen-
erate xn

1 and xn
2 (w1, w2b, w2a(a, c), b2b, b2a, s1)

where x2 is a deterministic function
of (u, v, x1, s1).

Encoding:

1. Encoder 2 splits thenR2 bitsw2 intonR2a bitsw2a

and nR2b bits w2b. Similarly, it splits thenR1

bits w1 into nR1a bits w1a and nR1b bits w1b.
Thus,

w2 = (w2a, w2b), w1 = (w1a, w1b). (70)

2. Encoder 2, finds a bin indexb2b such
that (un(w2b, b2b), x

n
1a(w1a), x

n
1b(w1a, w1b), s

n
1 )
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are jointly typical. If such ab2b is not found, it
choosesb2b = 1.

3. For each(w2b, b2b) and givensn1 encoder 2 finds
a bin indexb2a such that(vn(w2b, b2b, w2a, b2a),
un(w2b, b2b), x

n
1a(w1a), x

n
1b(w1a, w1b), sn1 ) are

jointly typical.
4. Transmitter 1 transmitsxn

1 (w1a, w1b).
5. Transmitter 2 transmits
xn
2 (w1a, w1b, w2a, b2a, w2b, b2b, s

n
1 ).

Decoding:

1. For given yn1 , decoder 1
chooses (ŵ1a, ŵ1b, ŵ2b, b̂2b) such that
(

un(ŵ2b, b̂2b), x
n
1a(ŵ1a), x

n
1b(ŵ1a, ŵ1b), y

n
1

)

are jointly typical. If there is no such quadruple it
chooses(1, 1, 1, 1).

2. For given yn2 , sn2 decoder 2
chooses (ŵ2b, b̂2b, ŵ2a, b̂2a) such that
(

vn(ŵ2b, b̂2b, ŵ2a, b̂2a), u
n(ŵ2b, b̂2b), y

n
2 , s

n
2

)

are jointly typical. If there are more than one such
quadruple, it chooses one of them. If there is not
any quadruple, it chooses(1, 1, 1, 1).

A.1. Step I: (Reliability) achievability of the rate
region (10)–(15)

Reliability of the rate region (10)–(15) will be proved here
by analyzing the error probability.

Error analysis: Using this scheme for coding and
decoding, analysis of the error is derived following [6].
First, we suppose that(w2a, w2b, w1a, w1b) = (1, 1, 1, 1)
is sent. An encoder error occurs in one of the following
situations.

1- E1: Encoder 2, cannot find a bin indexb2b
such that (un(1, b2b), x

n
1a(1), x

n
1b(1, 1), s

n
1 ) ∈

T
(n)
ǫ (PU,X1a,X1b,S1

) in which T
(n)
ǫ (PXY ) denotes

the jointly ǫ-typical set with respect toPXY . It can be
shown, by covering lemma [16], that forn→ ∞ suchb2b
exists with high probability if we have

R
′

2b > I(U ;X1a, X1b, S1) + δ, (71)

in which δ tends to zero asn→ ∞ [6].
2- E2: After finding b2b = 1,

encoder 2 cannot find b2a such that
(vn(1, 1, 1, b2a), u

n(1, 1), xn
1a(1), x

n
1b(1, 1), s

n
1 ) ∈

T
(n)
ǫ (PU,V,X1a,X1b,S1

). It can be shown [6] that
for n→ ∞, suchb2a exists with high probability if we
have

R
′

2a > I(V ;X1a, X1b, S1|U) + δ. (72)

Now, we should compute the probabilities of the error
events at the decoder, which are shown in TABLEI.
The second column of the table shows the corresponding
bounds of the rates, which can be shown, make the error
probability of each event tend to zero, asn→ ∞. For
more details about the derivation of the bounds proposed

in TABLE I see [6]. Using these bounds, the achievability
of (10)–(15) are proved.

A.2. Step II: (Security) achievability of the
equivocation-rate region (16)

In this step, the achievability of the equivocation-rate
region (16) will be driven. To this purpose, we compute
the equivocation.

Equivocation-rate calculation: To prove (16), for the
equivocation-rateRe2 , we follow the proof reported in [2,
13,28]. We establish computing of the equivocation for the
cognitive transmitter as follows.

H(W2a,W2b | Y n
1 )

≥ H(W2a,W2b | Y n
1 ,W1,W2b)

= H(W2a, Y
n
1 |W1,W2b)−H(Y n

1 |W1,W2b)

= H(W2a, Y
n
1 , V

n |W1,W2b)

−H(V n |W2a,W1,W2b, Y
n
1 )−H(Y n

1 |W1,W2b)

= H(W2a, V
n |W1,W2b)

+H(Y n
1 |W1,W2b,W2a, V

n)

−H(V n |W2a,W1,W2b, Y
n
1 )−H(Y n

1 |W1,W1b)

(a)

≥ H(V n |W1,W2b) +H(Y n
1 | V n

, U
n
, X

n
1 )

−H(V n |W2a,W1,W2b, Y
n
1 )−H(Y n

1 |W1,W2b)

(73)

where (a) is because of the fact that givenV n, W2a

is uniquely determined andY n
1 is independent

of (W1,W2b,W2a) given (V n, Un, Xn
1 ). Now, we

bound each term in r.h.s. of (73). For the first term in (73),
we have

H(V n |W1,W2b)

(b)

≥ H(V n | Un
, X

n
1 )

≥ H(V n | Un
, X

n
1 )−H(V n | Un

, Y
n
2 , S

n
2 )

= I(V n; Y n
2 , S

n
2 | Un)− I(V n;Xn

1 | Un)

(c)

≥ n[I(V ;Y2, S2 | U)− I(V ;X1 | U)] (74)

where (b) is derived by using the data processing
inequality [29], which implies thatV n is independent
of (W1,W2b) given (Un, Xn

1 ), and (c) is derived using
the approach taken in [30, Lemma 3]. For the second term
in the r.h.s of (73) we follow the related equations in [2]
and obtain

1

n
H(Y n

1 | V n
, U

n
, X

n
1 ) ≥ H(Y1 | V,U,X1, S1)− ǫ1,

(75)
whereǫ1 is negligible forn→ ∞. To compute the third
term in the r.h.s of (73), similar to [2, Lemma 2], by using
Fano’s inequality we obtain

1

n
H(V n |W2a,W1,W2b, Y

n
1 ) < ǫ2 (76)
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Table I: Error events in joint decoding and corresponding rate bounds

Error event Arbitrarily small positive error probability if

E1 (ŵ2b 6= 1, ŵ2a = 1) R2b +R
′

2b ≤ I(U, V ; Y2, S2)

E2 (ŵ2b = 1, ŵ2a 6= 1) R2a +R
′

2a ≤ I(V ;Y2, S2|U)

E3 (ŵ2b 6= 1, ŵ2a 6= 1) R2b +R
′

2b +R2a +R
′

2a ≤ I(U,V ;Y2, S2)

E
′

1 (ŵ1a 6= 1, ŵ1b = 1, ŵ
′

2b = 1) R1a ≤ I(X1a, X1b;U, Y1)

E
′

2 (ŵ1a 6= 1, ŵ1b 6= 1, ŵ
′

2b = 1) R1a +R1b ≤ I(X1a, X1b;U, Y1)

E
′

3 (ŵ1a 6= 1, ŵ1b = 1, ŵ
′

2b 6= 1) R1a +R1b +R
′

1b ≤ I(U,X1a, X1b;Y1) + I(U ;X1a, X1b)

E
′

4 (ŵ1a 6= 1, ŵ1b 6= 1, ŵ
′

2b 6= 1) R1a +R1b +R2b +R
′

2b ≤ I(U,X1a, X1b;Y1) + I(U ;X1a, X1b)

E
′

5 (ŵ1a = 1, ŵ1b 6= 1, ŵ
′

2b = 1) R1b ≤ I(X1b;Y1, U |X1a)

E
′

6 (ŵ1a = 1, ŵ1b 6= 1, ŵ
′

2b 6= 1) R1b +R2b +R
′

2b ≤ I(X1b, U ;Y1|X1a) + I(U ;X1a, X1b)

where ǫ2 is negligible, whenn→ ∞. To compute the
fourth term in (73), first we define

ŷ
n
1 =















yn1 if
(

un(w2b, b2b), x
n
1a(w1a),

xn
1b(w1a, w1b), y

n
1

)

∈ T
(n)
ǫ (PUX1Y1

)

zn Otherwise

(77)

wherezn is an arbitrary sequence that is contained inYn
1 .

Now, we have

1

n
H(Y n

1 |W1,W2b)

=
1

n

∑

w1,w2b

[Pr{W1 = w1,W2b = w2b}

H(Y n
1 |W1 = w1,W2b = w2b)]

≤ 1

n

∑

w1,w2b

[Pr{W1 = w1,W2b = w2b}

H(Ŷ n
1 , Y

n
1 |W1 = w1,W2b = w2b)]

=
1

n

∑

w1,w2b

Pr{W1 = w1,W2b = w2b}
[

H(Ŷ n
1 |W1 = w1,W2b = w2b)

+H(Y n
1 |W1 = w1,W2b = w2b, Ŷ

n
1 )

]

(78)

For the first term in (78) we can write

1

n

∑

w1,w2b

Pr{W1 = w1,W2b = w2b}

H(Ŷ n
1 |W1 = w1,W2b = w2b)

(d)

≤ 1

n

∑

w1,w2b

Pr{W1 = w1,W2b = w2b}

× log |T (n)
ǫ (PY1|U,X1

)|

≤
∑

w1,w2b

Pr{W1 = w1,W2b = w2b}

×[H(Y1 | U,X1) + ǫ3]

≤ H(Y1 | U,X1) + ǫ3, (79)

where (d) is based on AEP [29], and ǫ3 is negligible
for n→ ∞. To bound the second term in the r.h.s of (78),
we use Fano’s inequality and obtain

1

n

∑

w1,w2b

Pr{W1 = w1,W2b = w2b}

H(Y n
1 |W1 = w1,W2b = w2b, Ŷ

n
1 )

≤ 1

n

∑

w1,w2b

Pr{W1 = w1,W2b = w2b}
(

1 + Pr{Y n
1 6= Ŷ

n
1 |W1 = w1,W2b = w2b}

× log |Y1|n
)

=
1

n
+ log |Y1|

∑

w1,w2b

Pr{W1 = w1,W2b = w2b}

Pr{Y n
1 6= Ŷ

n
1 |W1 = w1,W2b = w2b}

≤ ǫ4, (80)

where ǫ4 is negligible for n→ ∞. Hence, from (79)
and (80), the forth term of the r.h.s. of (73) is bounded as

1

n
H(Y n

1 |W1,W2b) ≤ H(Y1 | U,X1) + ǫ5, (81)

in which ǫ5 tends to zero forn→ ∞. Substitut-
ing (74), (75), (76) and (81) into (73), we obtain

1

n
H (W2a,W2b | Y n

1 )

≥ I(V ;Y2, S2, U)− I(V ;X1, U)

+H(Y1 | V,U,X1, S1)−H(Y1 | U,X1)− ǫ6

≥ I(V ;Y2, S2, U)− I(V,S1;X1, U)

−I(Y1;V, S1|U,X1)− ǫ6

= I(V ;Y2, S2, U)− I(V,S1;X1, Y1, U)− ǫ6

(82)

whereǫ6 is negligible forn→ ∞. Regard to the definition
of Re2 in (5)-(6) we conclude

Re2 ≤ I(V ;Y2, S2, U)− I(V,S1;X1, Y1, U). (83)

and therefore (16) is proved.
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B. PROOF OF THEOREM 3

Proof of Theorem3
For a quadruple code(M1,M2, n, Pe) for the CIC-PCSI,
we consider the outer bound onR1 proposed in (24). Using
the Fano’s inequality we have

nR1 ≤ I(W1;Y
n
1 )

=
n
∑

i=1

I(W1; Y1,i|Y n
1,i+1)

≤
n
∑

i=1

I(W1, Y
i−1
2 , Y

n
1,i+1;Y1,i)

(e)
=

n
∑

i=1

I(W1, Ui;Y1,i), (84)

where(e) is derived by substitutingUi = (Y i−1
2 , Y n

1,i+1).
Then, by substitutingV1,i =W1, the outer bound onR1 is
derived. Similarly, we have

nR1 ≤ I(W1;Y
n
1 )

≤
n
∑

i=1

I(W1;Y
i−1
2 , Y

n
1,i+1, Y1,i)

(f)
=

n
∑

i=1

I(W1;Y1,i, Ui), (85)

where(f) is derived by substitutingUi = (Y i−1
2 , Y n

1,i+1).
Thus, the outer bound onR1 is proved. The outer bound
for R2 is derived as follows:

nR2 ≤ I(W2;Y
n
2 |Sn

1 , S
n
2 )

=

n
∑

i=1

I(W2, Y
n
1,i+1;Y2,i|Y i−1

2 , S
n
1 , S

n
2 )

−I(Y n
1,i+1;Y

i
2 |Y i−1

2 , S
n
1 , S

n
2 ,W2)

=

n
∑

i=1

I(W2; Y2,i|Y i−1
2 , Y

n
1,i+1, S

n
1 , S

n
2 )

+I(Y n
1,i+1;Y2,i|Y i−1

2 , S
n
1 , S

n
2 )

−I(Y n
1,i+1;Y2,i|Y i−1

2 , S
n
1 , S

n
2 ,W2)

(g)
=

n
∑

i=1

I(W2; Y2,i|Y i−1
2 , Y

n
1,i+1, S

n
1 , S

n
2 )

+I(Y i−1
2 ;Y1,i,W2|Y n

1,i+1, S
n
1 , S

n
2 )

−I(W2; Y
i−1
2 |Y n

1,i+1, Y1,i, S
n
1 , S

n
2 )

−I(Y i−1
2 ;Y1,i|Y n

1,i+1, S
n
1 , S

n
2 ,W2)

=

n
∑

i=1

I(W2;Y
i
2 |Y n

1,i+1, S
n
1 , S

n
2 )

−I(W2;Y
i−1
2 |Y n

1,i, S
n
1 , S

n
2 )

≤
n
∑

i=1

I(W2;Y
i
2 |Y n

1,i+1, S
n
1 , S

n
2 )

=
n
∑

i=1

I(W2, Ui;Y2,i|Sn
1 , S

n
2 ), (86)

where(g) is derived by Csiszár sum identity [16]. Then,
by substitutingV1,i =W1 andV2,i =W2, the outer bound
onR2 is derived. From Fano’s inequality [29, Chapter 7]
we have

n(R1 +R2)

≤ I(W1;Y
n
1 ) + I(W2;Y

n
2 |Sn

1 , S
n
2 )

(h)

≤ I(W1;Y
n
1 ) + I(W2;Y

n
2 |W1, S

n
1 , S

n
2 )

=

n
∑

i=1

I(W1;Y1,i|Y n
1,i+1)

+I(W2;Y
i
2 |W1, Y

n
1,i+1, S

n
1 , S

n
2 )

−
[

I(W2, Y1,i;Y
i−1
2 |W1, Y

n
1,i)

−I(Y1,i;Y
i−1
2 |W1, Y

n
1,i)

]

(i)

≤
n
∑

i=1

I(W1, Y
i−1
2 ; Y1,i|Y n

1,i+1)

+I(W2;Y2,i|W1, S
n
1 , S

n
2 , Ui)

−I(Y1,i;Y
i−1
2 |W2,W1, Y

n
1,i+1)

≤ I(W1, Ui;Y1,i)

+I(W2;Y2,i|W1, S
n
1 , S

n
2 , Ui), (87)

where(h) is since thatW2 is independent ofW1 and(i)
is derived by substitutingUi = (Y i−1

2 , Y n
1,i+1). Similarly,

we have

n(R1 +R2)

≤ I(W1;Y
n
1 |W2) + I(W2;Y

n
2 |Sn

1 , S
n
2 )

(j)

≤
n
∑

i=1

I(W1;Y1,i|Ui,W2) + I(W2, Ui;Y2,i|Sn
1 , S

n
2 ),

(88)

and (j) is derived by using the same approach as (87).
Finally, for the equivocation-rate regionRe2 , we derive the
outer bound, using the approach taken in [13], as follows:

nRe2 ≤ H(W2|Y n
1 )

= H(W2)− I(W2;Y
n
1 )

= I(W2; Y
n
2 )− I(W2;Y

n
1 ) +H(W2|Y n

2 )

(k)

≤ I(W2; Y
n
2 )− I(W2;Y

n
1 ) + 2nǫn, (89)

where (k) is derived from theChannel Coding Theo-
rem [29, Chapter 7] which implies that in a reliable com-
munication, the entropy ofW2 given Y n

2 is less thanǫn
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which is negligible asn→ ∞. Then, we have

I(W2; Y
n
1 ) =

n
∑

i=1

I(W2; Y1,i | Y n
1,i+1)

=
n
∑

i=1

I(W2; Y1,i | Y i−1
2 , Y

n
1,i+1)

+I(Y i−1
2 ;Y1,i | Y n

1,i+1)

−I(Y i−1
2 ;Y1,i | Y n

1,i+1,W2). (90)

Therefore, for (89) we have

nRe2 ≤
n
∑

i=1

[

I(W2, Y
n
1,i+1;Y2,i | Y i−1

2 )

−I(Y n
1,i+1; Y2,i | Y i−1

2 ,W2)
]

−
n
∑

i=1

I(W2;Y1,i | Y i−1
2 , Y

n
1,i+1)

−I(Y i−1
2 ; Y1,i | Y n

1,i+1)

+I(Y i−1
2 ; Y1,i | Y n

1,i+1,W2)

(l)

≤
n
∑

i=1

I(W2;Y2,i | Y i−1
2 , Y

n
1,i+1)

−I(W2;Y1,i | Y i−1
2 , Y

n
1,i+1), (91)

where(l) is derived from the Csiszár sum identity [16]
which implies that

∑n

i=1 I(Y
i−1
2 ;Y1,i | Y n

1,i+1,W2) =
∑n

i=1 I(Y
n
1,i+1;Y2,i | Y n

2,i−1,W2), and the non-
negativity of the mutual information function. Similarly,it
can be shown that

nRe2 ≤
n
∑

i=1

I(W2;Y2,i | Y i−1
2 , Y

n
1,i+1,W1)

−I(W2;Y1,i | Y i−1
2 , Y

n
1,i+1,W1). (92)

Now, by substituting Ui = (Y i−1
2 , Y n

1,i+1), V1,i =
W1, V2,i =W2, the proof is completed.

C. PROOF OF THEOREM 4

Proof of Theorem4
ForR1, using Fano’s inequality we have

nR1 ≤ I(W1; Y
n
1 )

≤ I(W1,W2;Y
n
1 )

≤ H(Y n
1 )−H(Y n

1 |W1,W2)

≤ H(Y n
1 )−H(Y n

1 |W1,W2, X
n
1 , X

n
2 )

(m)

≤ H(Y n
1 )−H(Y n

1 |Xn
1 , X

n
2 )

≤ I(Xn
1 , X

n
2 ;Y

n
1 ), (93)

where (m) is due to the fact thatY n
1 is independent

of (W1,W2) given (Xn
1 , X

n
2 ). Now, from Fano’s

inequality we have

nR2 ≤ I(W2;Y
n
2 |Sn

1 , S
n
2 )

≤ I(W2;Y
n
2 |W1, S

n
1 , S

n
2 )

≤ I(W2, X
n
2 ;Y

n
2 |W1, X

n
1 (W1), S

n
1 , S

n
2 )

= H(Y n
2 |W1, X

n
1 , S

n
1 , S

n
2 )

−H(Y n
2 |W1,W2, X

n
1 , X

n
2 , S

n
1 , S

n
2 )

(n)

≤ H(Y n
2 |Xn

1 , S
n
1 , S

n
2 )

−H(Y n
2 |Xn

1 , X
n
2 , S

n
1 , S

n
2 )

= I(Xn
2 ;Y

n
2 |Xn

1 , S
n
1 , S

n
2 ), (94)

where (n) is because of the fact that conditioning does
not increase the entropy function andY n

2 is independent
of (W1,W2) given (Xn

1 , X
n
2 , S

n
1 , S

n
2 ). Now, for R1 +

R2, from Fano’s inequality we have

n(R1 +R2)

≤ I(W2;Y
n
2 |Sn

1 , S
n
2 ) + I(W1;Y

n
1 )

≤ I(W2;Y
n
2 |W1, S

n
1 , S

n
2 ) + I(W1;Y

n
1 )

≤ I(W2;Y
n
2 , Y

′n
1 |W1, S

n
1 , S

n
2 ) + I(W1;Y

n
1 )

≤ I(W2;Y
′n
1 |W1, S

n
1 , S

n
2 )

+I(W2;Y
n
2 |Y ′n

1 ,W1, S
n
1 , S

n
2 ) + I(W1;Y

n
1 )

= H(Y
′n
1 |W1, S

n
1 , S

n
2 )−H(Y

′n
1 |W1,W2, S

n
1 , S

n
2 )

+H(Y n
2 |Y ′n

1 ,W1, S
n
1 , S

n
2 )

−H(Y n
2 |Y ′n

1 ,W1,W2, S
n
1 , S

n
2 ) +H(Y n

1 )

−H(Y n
1 |W1)

(o)

≤ −H(Y
′n
1 |W1,W2, S

n
1 , S

n
2 )

+H(Y n
2 |Y ′n

1 ,W1, S
n
1 , S

n
2 )

−H(Y n
2 |Y ′n

1 ,W1,W2, S
n
1 , S

n
2 ) +H(Y n

1 )

(p)

≤ −H(Y
′n
1 |W1,W2, X1, X2, S

n
1 , S

n
2 )

+H(Y n
2 |Y ′n

1 ,W1, X1, S
n
1 , S

n
2 )

−H(Y n
2 |Y ′n

1 ,W1,W2, X1, X2, S
n
1 , S

n
2 ) +H(Y n

1 )

≤ −H(Y
′n
1 |Xn

1 , X
n
2 , S

n
1 , S

n
2 )

+H(Y n
2 |Y ′n

1 , X
n
1 , S

n
1 , S

n
2 )

−H(Y n
2 |Y ′n

1 , X
n
1 , X

n
2 , S

n
1 , S

n
2 ) +H(Y n

1 )

≤ I(Y n
1 ;Xn

1 , X
n
2 , S

n
1 , S

n
2 )

+I(Y n
2 ;Xn

2 |Y
′n
1 , X

n
1 , S

n
1 , S

n
2 ), (95)

where (o) is because thatH(Y
′n
1 |W1, S

n
1 , S

n
2 )−

H(Y n
1 |W1) ≤ 0, and (p) is due to the fact the

conditioning does not increase the entropy. Thus, the
proof is completed.
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D. PROOF OF THEOREM 7

Proof of Theorem7
To derive the equivocation-rate region (40)–(45), first
we should propose the code-book generation and the
encoding-decoding schemes.

Code-book generation:

1. Generate 2nR1 codewords xn
1 (w1), w1 ∈

{1, 2, . . . , 2nR1}, choosingxn
1 (w1) independently

according toPX1
(.).

2. For each xn
1 (w1), generate 2nR̃1 code-

words tn(w1, v1) using
∏n

i=1 PT |X1
(.|xn

1 (w1)),

wherev1 ∈ {1, 2, . . . 2nR̃1}.
3. For each xn

1 (w1) and tn(w1, v1),
generate un(w1, v1, w21, v21) with i.i.d
components based onPU|X1T , in which w21 ∈
{1, 2, . . . 2nR21} andv21 ∈ {1, 2, . . . 2nR̃21}.

4. For each xn
1 (w1), tn(w1, v1)

and un(w1, v1, w21, v21) gener-
ate vn(w1, v1, w21, v21, w22, v22) with i.i.d
components based onPV |X1TU , in which w22 ∈
{1, 2, . . . 2nR22} andv22 ∈ {1, 2, . . . 2nR̃22}.

5. Now, distribute vn sequences randomly
to 2nR bin such that each bin contains2nM

sequences, whereR = R22 −M and M =
max{I(V ;S1|U,X1, T ), I(V ;Y1|U,X1, T )}.
Then, index each bin byj ∈ {1, 2, . . . , 2nR}.
Next, partition 2nM sequences in every bin
into 2n[M−I(V ;Y1|U,X1,T )] subbin each subbin
contains2nI(V ;Y1|U,X1,T ) sequences. Index each
subbin by a ∈ {1, 2, . . . , 2n[M−I(V ;Y1|U,X1,T )]}
and let A be the random variable to represent
the index of the subbin, and letB be the random
variable to represent the index of the sequences in
each subbin.

Encoding: Define A = 1, 2, . . . , A and B =
1, 2, . . . , B where A and B are defined before.
Let W22 = A× C where C = {1, 2, . . . , B}.
Now, define the mappingg : B → C to map B
into C subsets with nearly equal size. Encoder 1
for given w1, transmits xn

1 (w1). Encoder 2 for
given w1, x

n
1 (w1) and sn1 , chooses tn(w1, v1) such

that (tn(w1, v1), x
n
1 (w1), s

n
1 ) ∈ T

(n)
ǫ (PT,X1,S1

). For
givenw21 andtn(w1, v1) it choosesun(w1, v1, w21, v21)

such that(un, tn, xn
1 , s

n
1 ) ∈ T

(n)
ǫ (PU,T,X1,S1

). Next, for
given w22, it uses the mappingw22 = (a, c) → (a, b)
which b is chosen randomly from the setg−1(c) ⊂ B.
Then, it choosesvn(w1, v1, w21, v21, w22(a, b), v22) such
that (vn, un, tn, xn

1 , s
n
1 ) ∈ T

(n)
ǫ (PV,U,T,X1,S1

). Finally,
it transmitsxn

2 (v
n, un, tn, xn

1 , s
n
1 ).

Decoding: Decoder 1, given yn1 ,
finds (ŵ1, v̂1, ŵ21, v̂21) such that
(un(ŵ1, v̂1, ŵ21, v̂21), t

n(ŵ1, v̂1), x
n
1 (ŵ1), s

n
2 ) ∈

T
(n)
ǫ (PU,T,X1,S2

). Decoder 2, given yn2 and sn2 ,
finds (ŵ1, v̂1, ŵ21, v̂21, ŵ22(a, b), v̂22) such that

(vn(ŵ1, v̂1, ŵ21, v̂21, ŵ22(a, b), v̂22), u
n(ŵ1, v̂1, ŵ21, v̂21),

tn(ŵ1, v̂1), x
n
1 (ŵ1), s

n
2 ) ∈ T

(n)
ǫ (PV,U,T,X1,S2

).
Error analysis: First, fix the channel joint distribution

as (55). The error analysis is similar to the one presented
in [3]. Thus, the equations (40)–(44) are derived by
combining these results.

Equivocation-rate calculation: The equivocation of
theW2 at receiver 1 is calculated as follows:

H(W2|Y n
1 )

= H(W2, Y
n
1 )−H(Y n

1 )

= H(W2, Y
n
1 , A,W1)−H(Y n

1 )−H(A,W1|W2, Y
n
1 )

= H(W2, A,W1, Y
n
1 , V

n)−H(V n|W2, A,W1, Y
n
1 )

−H(Y n
1 )−H(A,W1|W2, Y

n
1 )

= H(W2, A,W1|Y n
1 , V

n) +H(Y n
1 , V

n)−H(Y n
1 )

−H(V n|W2, A,W1, Y
n
1 )−H(A,W1|W2, Y

n
1 )

(q)

≥ H(V n|Y n
1 )−H(V n|W2, A,W1, Y

n
1 )

−H(A,W1|W2, Y
n
1 )

(r)

≥ H(V n|Y n
1 , U

n
, X

n
1 , T

n)−H(V n|W2, A,W1, Y
n
1 )

− log |A| −H(V n|Y n
2 , S

n
2 , U

n
, X

n
1 , T

n)

(s)

≥ n
[

I(V ;Y2, S2|U,X1, T )− I(V ;Y1|U,X1, T )
]

−H(V n|W2, A,W1, Y
n
1 )

−
[

max{I(V ;S1|U,X1, T ), I(V ;Y1|U,X1, T )}

−I(V ;Y1|U,X1, T )
]

≥ n
[

I(V ;Y2, S2|U,X1, T )

−max{I(V ;S1|U,X1, T ), I(V ;Y1|U,X1, T )}
]

,(96)

where (q) follows from the non-negativity of entropy
function; (r) follows from the fact that conditioning does
not increase the entropy, the non-negativity of entropy
function, and the fact thatH(A,W1|W2, Y

n
1 ) =

H(A|W2, Y
n
1 ) +H(W1|A,W2, Y

n
1 ) ≤ H(A) ≤

log |A|, thanks to H(W1|A,W2, Y
n
1 ) = 0; (s) is

because of Fano’s inequality which implies that the
term H(V n|W2, A,W1, Y

n
1 ) tends to zero forn→ ∞

(see [20]). The proof is completed.
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