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ABSTRACT

The secrecy problem in the state-dependent cognitivef@mtarce channel is considered in this paper. In our modeteth
are a primary and a secondary (cognitive) transmitteriveceairs, in which the cognitive transmitter has the mgesat

the primary one as side information. In addition, the chhimaffected by a channel state sequence which is estimated
partially at the cognitive transmitter and the correspogdeceiver, separately. The cognitive transmitter shoatiberate
with the primary one, and it wishes to keep its message setuhe primary receiver. The achievable equivocation-rate
regions for this channel are derived using two approacheshinning scheme coding, and superposition coding. Then th
outer bounds on the capacity are derived and the resultsameded to the Gaussian examples. Copyrigh2016 John
Wiley & Sons, Ltd.

1. INTRODUCTION been a significant interest in the secrecy of multi-users
systems 12] with a particular emphasis on the secrecy of
Interference channel, in which the intended signal forthe CIC P, 13, 14]. The works P, 13, 14] derived some
one receiver causes interference at the other receivers, isquivocation-rate regions for the CIC to show the trade off
a basic model to study the constraints on the practicabetween the achievable rate and the secrecy level in this
communication networksl]. The Cognitive Interference channel.
Channel (CIC) is one case of the interference channels Modeling a time-varying channel, whose instantaneous
in which one of the transmitter-receiver pair, namely the parameters depend on a random state sequence, is
primary one, has the privileges to use the chanB&gB][ introduced and studied by Shannon in his landmark
The secondary transmitter-receiver pair, i. e., the cognit paper [L5]. Moreover, the knowledge of the random state
one, uses the channel without causing problem for thesequence, i. e., the Channel State Information (CSI) is
primary one. In one approach, the cognitive transmitterassumed to be available at the transmitterlifj.[ There
cooperates with the primary party by spending theare considerable research interests in studying the effect
cognition cost §]. Although the capacity of this channel of the CSI in various channel models (se&6][ and
remains an open problem in general case, many workshe references therein). Specifically, the capacity of a
studied the achievable rate region for this chanbeB]. discrete memoryless point to point channel with non-
Under degradedness conditiof] flerived the capacity for causal CSI available at the Transmitter (CSIT) is derived
the CIC. The achievable rate cf][is improved by p—9]. by Gel'fand and Pinskerl[7], and it is extended to the
The nature of the interference channel causes to leak th&aussian channel inlf]. The CIC with CSI available
information to unintended destinations. In the informatio at the cognitive transmitter is studied i, L9 and the
theory literature, secure communication between theequivocation-rate region on this model is derived B§][
transmission parties was first studied i by Shannon.  Moreover, some works consider the impact of partial
Afterwards, Wyner introduced the wiretap channel to channel state information on the capacity and performance
model the secrecy problem in the physical lay&f]] of the cognitive radio%1,22].
Furthermore, he proposed tRandom Codingo keep the In this paper, we study the CIC with Partial Channel
sent message away from the eavesdropper. This codin§tate information (CIC-PCSI). The partial CSls are
scheme is based on the fact that a receiver cannoassumed to be known non-causally at the cognitive
decode any information more than its channel capacitytransmitter and the corresponding receiver (see Figure
with low-enough error probability. Recently, there has Here, the cognitive transmitter should mitigate its
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interference at the primary receiver. Furthermore, it @ssh

. X . . . 1 Encoder 1 244 4 |Dec0der 1 | ¥
to keep its message confidential with respect to the primary | [ata @
receiver. 2,0,
The CIC-PCSI model can be motivated by the wireless x: W
. . . . 2 Encoder 2 Decoder 2
sensor network application with different sensor tyggs [ \_T_l | |
in which one sensor has a better sensing capability thar ‘ I I
the other one. The simpler sensor provides one event tc 3 CEEY) S

its corresponding destination, but the more capable senso,Eigure 1: The cognitive interference channel with

which can sense two events, cooperates with the simple{'WO . . . .

. . partial channel states information available at the
sensor. Since the more capable sensor senses a vital event . . . ) .
T . ) . - _.._transmitter and the receiver, with a confidential message.
it wishes to keep its message confidential at the destination
of the simpler sensor. Moreover, the channel is affected by
a channel state sequence which is estimated at the mors CHANNEL MODEL AND
capable sensor and its destination, separa@&dy [These '
estimated observations of the channel state sequence are PRELIMINARIES
not equal to each other in general case.

We study the different effects of the CSIT and CSIR 2-1. The Notation

on two coding schemes to achieve the equivocation-ratesirst, we explain the notation. We ugéto denote a finite
region. For this aim, we use thBinning scheme[6, alphabet with cardinality|X|. 2" = {21, z2,...,2n}

24, 25] and theSuperposition Coding2, 3, 20] in CIC-  represents the members &f*, in which the subscripted
PCSI. In the binning scheme, the cognitive transmitter, 3ng superlative letters represent the components and
after rate splitting, bins its message against the codé&-boothe vectors, respectivelyrg is used to indicate the

of the primary one. Then, it superimposes its messag&ector (ziy...,z;). For the random vectors and the

on the primary transmitter's message and the channejandom variables, which are denoted by uppercase letters,
state sequence. In the superposition scheme, the cognitivg similar convention is used.

transmitter superimposes its message on the primary
transmitter's message and the channel state sequence.o channel Model
In each scheme, random coding is used to guaranty
the secrecy condition for the cognitive transmitter's Consider a memoryless stationary state-dependent inter-
message I[1]. Then, the outer bounds on the capacity ference channel with finite input alphabet§ and A%,
of the CIC-PCSI are proposed. Moreover, we extend thefinite output alphabety and), the channel states alpha-
results of two cases, i.e., binning scheme and superpositioP€tsS1, Sz with distributionPs, , Ps, and a conditional
coding, to the Gaussian model, and it is shown that theProbability distributionPy, y;|x, x,,s,,s,- As shown in
cognitive transmitter can choose the best coding scheméhe Figurel, the i-th transmitter, where = 1,2, wishes
to maximize the achievable equivocation-rate region. Int0 transmit the messadé’; which is uniformly distributed
comparison of our model with the different ones B [ ©ntheseW, € {1,... M;}. The messag#/, is assumed
6, 24, 25], we consider secrecy constraints in the CIC. to be known at both transmitters, but the messHgeis
Since we assume that the primary transmitter's message St known at the transmitter 2 (the cogpnitive transmitter)
fully known at the cognitive transmitter, the secrecy issue Furthermore, it is assumed that the channel is dependent
is considered for the cognitive transmitter's message (se®n two channel states. One of these channel statesyi.e.,
the similar model in f]). Furthermore, in compare with 1S @ssumed to be known non-causally at the cognitive
the model of 3] and [14], the CSI knowledge enhances transmitter. The other one, i.eS>, is assumed to be
the cognitive transmitter to improve the equivocatiorerat kKnown non-causally at the cognitive destination. Thus, the
region. cognitive party wishes to increase its achievable rategusin
The rest of the paper is as follows. In Sectidnthe  this side information.
channel model and some preliminaries and the definitons Given the inputs and the states, ie., the
are explained. In Sectio, the main results on the Sequencesty, X3, Sy, 53, the conditional distribution
achievable equivocation-rate region using the binningof the channel outputsi-sequencesyy”, Y;' take the
scheme are proposed. Furthermore, in this section w@roduct form as follows
derive the proper outer bounds on the capacity, and extend .
the results to the Gaussian case. In Sectipnusing Pypovpixp xgspsy (U1, vz o1, 23, 81, 82) =
the superposition coding, we derive the equivocation-rate =
region and an outer bound on the capacity of the channel. H Py va1x1,x5,81,85 (Y10, Y2,i |10, T2,0, 51,6, 52,6) (1)
Then, we extend the results to the Gaussian channel as ari~"
example. Finally, the paper is concluded in Secﬁom'_he 2.3, Definitions
proofs of the theorems are relegated to the appendices.
An (M, M2,n, P.)-code has two encoding-decoding
functions and an error probability. The encoding functions
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are defined as Lemma 1
[6, Lemma 1] The following rate region is achievable for
Pin WL — X a point to point communication system with non-causal
P Wi x Wox ST = X3, (2 CSIT

i : R < max min{/(X;Y|5),
and the channel decoders are defined by the mappings Pyis,f(-)

max{I(U,S;Y) — Rs, [(U;Y) — I(U;S)}}.(7)

Outline of the proof

For the casel(S;U,Y) < Rs < H(S), the binning

. . ! scheme achieves the rate given by the second term)of (
The error probabilityP. = max(Fe,1, Pe 2) is defined  po po o I(S;U,Y), SPC achieves the rate region by the

wl,n . y{L — Wh
VYon : V5 X S5 — Wh. )

as first term in (7). For more details we refer t®] Lemma
1]. O
Pt = w§2 MllMg Pl # welwr, we were senjt  (4)
_— 3. USING THE BINNING SCHEME
Definition 1

The secrecy level of the cognitive transmitter’s message
at the primary receiver (receiver 1) is measured by
normalized equivocation-rate which is defined as

n this section we derive the achievable equivocation-rate
region for the CIC-PCSI, shown in Figurk using the
binning scheme. Then, two outer bounds on the capacity
are proposed, and the results are extended to the Gaussian

R = %H(W2|Y1n)7 (5)  channel as special case.
which is known as the “weak secrecy conditiod’2]. 3.1. Aninner bound
Definition 2 To derive an achievable rate region for this channel, we use
The equivocation-rate-triple (Ri, R2, R.,) is an  theratespliting as follows.
Zﬁr}i]?}at;:; re%on if for anye, >0 ig?rg _exists Ri = Ria+ Ru, ®)
1, M2, n, P.) code such thaf/; > 2% ¢ =1,2 Ro = Rowt Ro. ©)

for which we haveP. < ¢,, and
for non-negative rate®i,, R1p, R2o and Rop,. Transmit-

0 < Re, < liminf R, (6)  ter 1, encodes the messaijé, and uses the SPC with
two code-booksX7, and X{,. Transmitter 2, by access
Definition 3 to the messagé’; and the channel staté' uses the
The capacity region is the closure of the set of all SPC with two code-books({, and X{;. Then, it splits
achievable equivocation-rate regions. the messageélz; and uses GPC againaty,, X}, ST in

two steps to creat&’y'. In the first step, transmitter 2 uses
binning againsiX{,, X7}, ST to createlU"™ of rate Rop. In

the second step, it uses binning agais},, X1, and ST
Now, we discuss the rate achieving encoding schemegonditioned onU™ to createV™ of rate Ra,. Finally, it

we will use in the CIC problem. First, consider a point- usesU", V", X7, X, S to constructX%. Based on
to-point state-dependent communication system in whichthis encoding scheme, we have the following result on the
the CSl is known non-causally at the transmitter. Assumeachievable equivocation-rate region.

_that the chanr_lel state_ sequengeplays t_he role of the Theorem XAchievable equivocation-rate region)
interference signal which can be considered as a code_-l_he set of equIVOCAtioN-rateR1a, Riy, Roa, Rap, Re,)
book with rate Rs = I(Y;S). The transmitter wishes .~ & "ol i o tao THby TR0, T20, feo
to transmit the messaglé/ at the rateR through the

channel. There are two coding schemes to achieve the  R; < I(X;1;Y1,U|Q), (10)
rgte reglon:$uperp05|t|on Codl_ng(SPC) an_dGeI’fand- Ry < I(X1p; Y1, U| X1a,Q), (11)
Pinsker Coding(GPC); depending on the interference’s

rate Rgs, either one may be chosen. Whéty is small, Roa <I(V3Y2,5:|U,Q) = I(V; X1, 51|U, @),(12)
we can improve the achievable rate using the SPC. For ~ R2 < I(V,U;Y2,52|Q) — I(V,U; X1, 51]Q), (13)
higher Rs, we can achieve the rate using the classical Ri + Roy < I(X1,U; Y1|Q), (14)
GPC. The following lemma expresses the result using )

these two coding schemes§, Lemma 1]. This lemma is By + Bap < (X, U ¥2| X010, Q), (15)
used to derive the achievable rate regions for the CIC-PCSI Rey < I(V3Y2,8,U|Q) — I(V; 515 X1, Y1, U|Q),
in the next sections. (16)

2.4. Encoding Schemes
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for input distribution factors as

p(q)p(xlad T1ib, U, V, X1, T2, S1, S2|Q)

xp(y1, ya|x1, T2, 51, 52), (17)

in which the right-hand-sides (r.h.s.) of the equatiar®-{
(16) are non-negative and) is a time-sharing random
variable.

Proof

See AppendiA. O

Using the Fourier-Motzkin elimination 1p], the
following explicit description of the region is derived.

Corollary 1

The set of equivocation-raté®?:, R2, R.,) is achievable
if it satisfies

Ry < min{I(X1;Y1,U|Q), I[(X1,U;Y1|Q)},  (18)
Ry < I(V,U;Y2,5:|Q) — I(V,U; X1, 51]Q), (19)
Ri+ Ra < I(V;Y2,5:|U,Q) — I(V; X1, 51|U, Q)
+I1(X1,U;1|Q), (20)
Rez S I(V, Y27 827 U|Q) - I(Vy Sla X17 Y17 U|Q)7(21)

for input distribution factors asl{).

Remark 1

Theorem 1 without secrecy aspect and by substitut-

ing S1 = S2 = 0, is reduced to the result 06] Theorem

1] for the CIC. Moreover, the equivocation-rateg), by
substitutingS, = S> = 0, is reduced to equivocation-rate
of [13, Theorem 1]. It means that Theorem 1 includes the
results of p] and [13].

3.1.1. The Symmetric Channel State

The special cas&, = S; = S is of special interest.
This case resembles the secret-key agreement sceh@rio [
26]. The equivocation-ratel) in this case is reduced to
the following theorem:

Theorem 2
The secrecy-rate (SR) of the CIC, when the state
sequence’ is known at the transmitter and the receiver, is
given by
R < I(V;Ya|U,S) — I(V; X1, Y4|U, S)
+H(S|U, X1,Y1). (22)

Proof
The achievability of 22) results from {6) as follows.

R, < I(V;Ys,8,U)—I(V,8;X:,Y1,U)

= I(V;Ya,U|S) — I(V; X1, Y3,U|S)
+I(V;S) — I(S; X1, Y2, U)

= I(V;Ya,U|S) — I(V; X1, Y3,U|S)
+H(S|U, X1,Y1) — H(S|V)

< I(ViYa,U|S) — I(V; X1, Y2, U|S)

+H(S|U, X1, Y1), (23)

H. G. Bafghi, et al.

in which the last inequality follows from the non-negatyvit
of the entropy function. Note thaf is an optimal choice.
Therefore, selecting” = (V,.S) leads toH(S|V) =0,
and the bound in the last inequality will be tight. An
alternative proof can be derived directly from the secret-
key agreement method taken RE[ Theorem 3]. |

Remark 2

The inner bound of Theorer can be interpreted from
the secret-key agreement point of vie®6] Theorem

3]. The termI(V;Y3|U,S) — I(V; X1, Y1|U, S) is the
rate of a multiplexed CIC in which the cognitive
transmitter and both the receivers (the primary and
the secondary receivers), have knowledge s6f and
the common message™, non-causally. The second
term H(S|U, X1,Y1) is the additional secret-key rate
which can be produced by using the fact that the channel
states™ is only known to the cognitive transmitter-receiver
pair. For more details on using the channel state as a shared
secret-key between the transmitter-receiver pair, 3 [

3.2. Outer bounds

The following theorems provide two outer bounds on
the capacity region of the CIC-PCSI. In the first outer
bound, we use the usual approach taken in the previous
work [6, 13] based on the Fano’s inequality. In the second
outer bound, we use the approach takenywhich only
depends on the conditional marginal distributions of the
channel outputs given the inputs. This outer bound does
not include auxiliary random variables and every mutual
information term involves the inputs and outputs of the
channel. Therefore, the second outer bound is looser than
the first one, but can be more easily evaluated.

Theorem 3Outer bound 1)
The set of rate$R1, R, R., ) satisfying

Ry < min{I(U,Vi;1),I(Vi;Y1,U)}, (24)
Ry < I(U, Va;Y2|S1, S2), (25)
Ri + Ry < min {I(VQ;Y2|U, Vi, 81, S2)
—I—I(Vl,U;Yl),[(VQ,U;)/ﬂSLSQ)
(ViU Va) |, (26)
Re, < min {1(1/2; Ya|U) — I(Va; Ya|U),
(Ve Yo, U) = 1(Vas Vi[Vi, U) . (27)

for input distribution that factors as

p(s1)p(s2)p(v1)p(v2)p(ulv, v2)p(z1]v1)
p(xalu, v1,v2, 51)p(y1, y2|o1, T2, 51, 52), (28)

is an outer bound on the capacity of this channel.

Proof

The proof of Theoren3 is relegated to Appendi®. [
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to be additive and independent Gaussian random variables.
This model can be motivated by the case in which two
different interfering signals affect the channel, and each
one is estimated at one of the cognitive transmitter-receiv
nodes. Now, we consider the cases in which 1 anda >

1, separately.

Figure 2: The Gaussian cognitive interference channel with3.3.1. The case a < 1
channel state available at the transmitter and the regeiver This case is reported as thesak interferencease in

with a confidential message.

Theorem 4Outer bound 2)
The set of rate$R1, R2, R., ) satisfying

Ry < I(X1, Xo;: Y1), (29)
Ry < I(X2;Y2| X1, S1,52), (30)
Ri + Ry < I(Y1; X1, X2, S1,52)

HI(Xs; V2| X1, 81, 82, Y1 ), (31)

Re, < min {[(XQ; Ya) — (X3 Y1), I(Xa; Ya| X3)

~I(XasvilX0) (32)

and Py v/ x, x,.5,.5,°

/ . . . .
where Y; has the same marginal distribution a3,
i. e, Pyl’\xl,x2,sl,s2 = Py |x,,x2,51,5,, IS an outer
bound on the capacity of this channel.

for all distributions Px, x,

Outline of the proof

The rates29)—(31) are derived using the side information
approach taken by]. The rate 82) is derived according to
the previous rate2(?) by substituting the auxiliary random
variablesi; andV; by X; and X, respectively. This outer
bound is looser than the one in Theor@nbut it does not

the literature 2, 3]. The capacity region of the CIC in
this case without CSI is determined by, £7], in which

the cognitive encoder uses Dirty Paper Coding (DPC)
[19] for W> againsti¥;. Furthermore, using the SPC in
the cognitive transmitter, the messayé; is conveyed

to receiver 2. In the weak interference case, receiver 2
does not suffer from the interference, since, transmitter 2
uses DPC onX, againstX; and known channel state.
Moreover, the primary receiver is not affected by the
interfering signal X, due to the weak interference. The
following theorem describes the achievable equivocation-
rate region of the Gaussian CIC-PCSl in this case.

Theorem FAchievable equivocation-rate region)
The set of rate$R1, Rz, R., ) satisfying

Bo< C(Kgp—lu)’ (34)
Ry < C((1-p°)P), (35)
Re, < C((1=p*)P2) —C((1 = p*)a’ P2), (36)

inwhichC(z) = (14 z) andp € [0, 1], is an achievable
equivocation-rate region of the Gaussian CIC-PCSI, shown
in Figure2 for the caser < 1.

Proof
The proof is similar to the one presented &Y] without

include auxiliary random variables and thus it can be moreSecrecy and by substituting, ~ A0, ;) for i € {1, 2}
easily evaluated. The details on the proof are relegated t@NdE[X1 X>] = pv/P1 P,. The channel staté, is treated

AppendixC. |

3.3. The Gaussian example

as interference by the cognitive transmitter in DPC and
does not affect the rate. On the other hand, the channel
state S,, which is known non-causally at the cognitive
receiver, can be easily canceled out. Thus, these channel

To clarify our results more perceptibly, consider the states do not affect the rat85). The primary receiver 1
Gaussian CIC-PCSI. The channel model is shown injg affected by the channel stats, as an additional

Figure2, and can be described as follows:

Y1
Yo

X1 +aXo+S1+ S22+ 7,

bX1 + Xo + 51 + S2 + 2o, (33)

interference, but the channel staie is canceled out for
this receiver by the cognitive transmitter's cooperatieor.
more details on the proof se21]. |

Remark 3

where X; and Y; denotes the input and the output of The achievable equivocation-rate region for the Gaussian

thed-th transmitter-receiver pai#; ~ A(0, 1) is Additive
White Gaussian Noise (AWGN) at théth receiver
where i € {1,2}. S; ~N(0,K;) denotes the partial

CIC-PCSI in Theorenb is maximized forp = 0 since
a < 1. Thus in this case, the cognitive transmitter meets its
capacity and the equivocation lead<Ct@) — C(aP).

channel state sequences which are known at the cognitive
transmitter and the corresponding receiver, respectively3.3.2. The case a > 1

The constants and b are the real-valued channel gains

In this case, which is known as ttsrong interfer-

in the interfering links and the average power constraintence[2, 3], the channel output at the cognitive receiver

is 230 (Xix(t)® < Py € {1,2}. In this model, for

is a degraded version of that at the primary one, thus

simplicity, we consider the partial channel state sequencethere is no secrecy in this condition, i. 8., = 0. In this

Trans. Emerging Tel. Tech. 2016; 00:1-14 © 2016 John Wiley & Sons, Ltd.
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case, receiver 1, having better observationXefthan the

H. G. Bafghi, et al.

Proof

cognitive receiver, can decode the message of the cognitiv@he proof is relegated to Appendix |

transmitter without any penalty rate. The capacity of the

CIC without channel state?[27], is a trivial outer bound

on the capacity of the CIC-PCSI. This outer bound is

presented in the following.

Theorem §Gaussian outer boun@,[Theorem 2])
The set of rate$R1, R2) satisfying

Ry < C((1-p")P2), (37)
Ri+ Ry < C(Pi+a*Ps+2apV/PiPs), (38)
Ri+Ry < C(b°Pi+ P+ 2bpV/PiPy), (39)

is an outer bound on the capacity of the Gaussian CIC-

PCSI for the case > 1.

4. USING THE SUPERPOSITION
CODING

The cognitive transmitter can superimpose part of its

message oKX | instead of binning. Thus, it should split its
message ab’s = Wa1 + Wasa, in which W, is intended
to both receivers and¥V», is only decodable at the
cognitive receiver. Moreover, the cognitive transmittees!
GPC via three auxiliary random variabl&s, U and V/
to reduce the channel state interference ¥ok, Wa
and Whaa, respectively. In particular,l” deals with

4.1.1. The Symmetric Channel State
For the special caseS; = S: =S, we have the
following result.

Corollary 2

For the case in whichS; =S, =S5, the set of

rates(R1, Rz, Re,) is achievable if it satisfies
Ry < I(U, X1; Y1) — I(U; S| Xa), (47)
R2 SI(XQ;Y2|X1,S) (48)
Ry + Ry < I(U, X1; Y1) + I(X2; Y2| X1, S)

—I(U; 5|X1), (49)
Re2 S min{[(XQ; Y2|U, Xl, S),
I(X2; Y2, S|U, X1) — I(X2; Y1|U, X1)},  (50)
for input distribution that factors as
Psx,x,v1v, = PsPx, Px,|x, 5Py, vs|x, x5 (51)

Proof
The proof follows directly from Theorem?7, by
substitutingl’ = X1,V = Xs andS; = S; = S. a

4.2. Outer Bound

Now, we provide an outer bound on the capacity of the
CIC-PCsl, as follows.

state interference for either receiver 1 or receiver 2 toTheorem gOuter bound 3)
decode:; U deals with state interference for either an outer bound on the capacity of the CIC-PCSI consists

receiver 1 or receiver 2 to decodi&,;; andV deals with
state interference for receiver 2 to decddlg.. Now, we

propose the main results which are derived based on this 21 < (T, U, X1; Y1) — I(T, U; S1[X1),

scheme.

4.1. An Inner Bound

Theorem TAchievable equivocation-rate region)

The set of rate§ R, Ra21, Ra2, Re,) is achievable if it
satisfies

R1+R21 SI(T7U7X1§)/1)_[(T7U; Sl|X1)7 (40)
Ras < 1(V;Ya, So|U, X1, T) — I(V; S1|U, X1,T), (41)
Ro < I(U,V;Ya, So|X1,T) — I(U,V; 81| X1,T), (42)
R2 S I(T, U, V; YQ, SQ'Xl) — I(T, U, V; SI|X1), (43)
Ri + Ra < [(T, U,V,X1;Ya, Sg) - [(T, U,V; Sl|X1),

(44)
R52 S I(Va Y27 S2|U7 X17 T)
—max{/(V;S1|U, X1, T),[(V;Y1|U, X1, T)},  (45)
for input distribution factors as
Px,5,8,TUV X5v,v, = Ps, Ps, Px,
X Pruv x,)x,81 Py Ya | X1 X051 52 (46)

in which the r.h.s. of the equationg()—(45) are non-
negative and’, U, V' are auxiliary random variables.

of the rate pair§ R1, R2) satisfying

(52)
Ry < I(T,V; Y2, 82| X1) — I(T, V; S11X1), (53)
Ri+ Ry < I(T,V, X1;Y2,82) — I(T, V; 51| X1),(54)

for input distribution that factors as

Px,5,5,7vx5v1vs = Ps; Ps, Px, Pryx,|x,s,

X Py v, X, X5, S5 (55)
Proof
The proof is similar to one taken b,[ Appendix F] by
using the Fano’s inequality. |

4.3. The Gaussian Example

In this section, we consider the CIC with partial channel
states (shown in Figur® with the channel outputs a33).
Similar to the cases considered in Section IlI-C, when

1, i. e., Strong Interferencewe have no secrecy. Thus, we
consider the other case< 1. We provide the following
theorem for the Gaussian CIC-PCSI.

Theorem 9Achievable equivocation-rate region)

For the Gaussian CIC-PCSI, in the case that 1, the
achievable equivocation-rate region consists of the rate
triples(R1, Rz, Re,) which satisfy 66)—(59), in the above

of the page, in WhichQH = pPyand0 < p, p1,p2 < 1.
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P4 a?Py + K1 + Ko 4+ 1+ 2ap1V/Pi Py + 2ap2/Po Ky
R, < C( . ) (56)
Kl(a2P2 +K2+1)
1
Ri+Ry < C(b2P1 + P2 4+ K1+ 2bp1VPL P2 + 2p2V P2 Ky ) — 3 log (K1), (58)
1" a2P2”
Re, < (( 2)76([(2—&—1) (59)

Proof

The proof is based on Theore by substituting?” =
(U,S1) andV = X, and choosing the following jointly
Gaussian distributions for the random variables:

X1 ~N(0, P1), Xo ~N(0, P2), (60)

P:
X = X2+X2 +p1\/ X1 +p2\/7251,(61)
1

XQ ’\J./\/’(O,]DQ)7 XQ NN(O,PQ )7 (62)
P+ P =(1—p} —p3)P, (63)
U= Xy +aSi, (64)

in which Xl,X;,X;/, and Si,S5; are independent.
Transmitter 2, splits its power into three parjs P,

which is used for cooperating with the primary transmitter
sending Wi; Pgl + p3 P2, which is used in dirty paper

Remark 4
Comparing the results of Corolla®with the achievable
equivocation-rate region of Theore shows that the

secrecy rate ofgp) is higher than the one 086), because

of K> > 0. It means that the SPC approach achieves higher

secrecy rate than the GPC in general case. Moreover,

comparing 65) with (34) shows that for the case af <
a’, where

S U DP+ K+ K> 1) - PIK (Ko +1)
PP,K, — P;(Kz + 1)

the SPC approach obtains higher achievable rate for the
primary transmitter than the GPC, and for the case of

a' vice versa. Thus, in the case@f> o, there is a trade

off between the secrecy rate of the cognitive transmitter
and the achievable rate of the primary one. FigGre
shows the secrecy rate of the cognitive transmitter vs. the

coding to deal with the state at receiver 1 via an achievable rate of the primary one, using the GPC and the

auxiliary random variablé/; and P, which is used for
transmittingi?. The mutual information formulas ib6)-
(59) are calculated by the approach taken By [ |

To compare the results of Theor@with the achievable

SPC approaches, and it illustrates the trade off between
the R, andR; in the case ofi > a.

5. CONCLUSIONS

equivocation-rate of Theore® we consider a simple case

of Theoren® in which the cognitive transmitter uses allits |n this paper we studied the Cognitive Interference
power to send its individual message. For this case we hav€hannel in which the partial channel state’s information
the following corollary. is available non-causally at the cognitive transmitter
and corresponding receiver. Furthermore, the cognitive
transmitter wishes to keep its message confidential at

e primary receiver, in addition to have a reliable

OCommunication with its destination. We use the Gel'fand-
Pinsker coding (GPC) and the superposition coding (SPC)
to show that how the cognitive transmitter can use the side

Corollary 3 (Perfect Secrecy Condition)

For the Gaussian CIC-PCSI, in the case that 1,
the achievable secrecy rate region consists the set o
rates(R1, R2) which satisfies

P 4+a?P, + K| + Ky +1

R < ¢( 5 ), (65) information about the primary message and the channel
Ki(a P22 + K2 +1) state sequence to improve its achievable rate and cooperate
a” P with the primary one. Therefore, we have derived the
R, < (C(R)-C 66 . X ) e . .
= (F2) (K2 + 1)’ (66) achievable equivocation-rate region for this channel i tw

1 cases: by using GPC and SPC. Moreover, in each case the
< ’ -z . . ' )
Fithe < C(b Pit Pt Kl) 2 log K1 (67) outer bounds on the capacity and extension to a simple
Broof Gaussian example is presented. In the Gaussian case, we
roo

consider a case in which the partial channel state sequences
are additive and independent Gaussian random variables,
and it is shown that in some cases, there is a trade off
between the secrecy rate of the cognitive transmitter and
the achievable rate of the primary one, using the GPC

The proof is directly derived from Theoren® by
considering the perfect secrecy condition in whigh <
min{ Rz, R., }, and by substituting; = p2 = 0 andp =
1, X, =0, O
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Secrecy rate Ry vs. achievable rate Ry

12

0.8

—————————————————————————————————————————————————————————————————————————————————————————————— SPC:a=0.1]
=== GPC:a=0.1
SPC:a =09
- —:=-=GPC:a =09

a=0.1

0.4

0.2

Figure 3. The achievable equivocation-rate region of

R

Téeob (GPC), and the achievable secrecy rate region of

Theorem9 (SPC) for special value®, =4, P, =4, K1 = Ko = 1,b = 0.3 anda = 0.1, 0.9. In this casez’ = 0.866,
and fora > o, there is a trade off between the secrecy rate of the cogritansmitter and the achievable rate of the

primary one.

and GPC approaches. Thus, the cognitive transmitter can
obtain the desired region by choosing the proper coding

scheme.

A. PROOF OF THEOREM 1

Proof
The proof is established on the proof @, [Theorem 1]

and [L3, Theorem 1]. After introducing the code-book
generation, and the encoding-decoding scheme, the proof
of Theoreml is presented in two steps. In step I, we prove

the reliability of the rate region, i. e., the condition unde
which the probability of error tends to zero fer— oo.
This step yields to the equationd0f-(15). In step II,

we will calculate the equivocation to evaluate the secrecy

level. This step provides the equatidi®).
Code-book generation:

1. For split rates &)-(9), generate 2"Fie

codewords z7, (w14), wia € {1,2,...,2"Fa},

choosing 7, (wi.) independently according

to PXla ()

. For each wi,, generate 2"l code-
words 1y, (wia, w1s) USING II7 Px | x,, (- |
xla,i(wla)), wherewq;, € {1, 2., 2"R1b}.

3. Over each pair (wia,wi) We gener-
ate z7 (wia,w1p) Where z; is a deterministic
function of (z14, T1p)-

4. Generate2™(F2v+12)  codewords u™ (wap, bas),
wap € {1,2,...,2"20} by, € {1,2,...,2" 2}
using Py ().

5. For each u™(wap, bay) generate 2"f2aF52q)

codewords  v™(wap, bop, W2a, b2a), Waq €

{1,2,...,2"%2a) by, € {1,2,...,2" 2}
usingIl;— Pyjo (- | un(wap, bay)).

. Now, define L, =1(V;Y2,8:|U) —
I(V;Y1, Xa|U), Lo =1I(V;Y1,X:|U). Note
that, here we assume th&y, > L, > 0, for the
case Ry, < Li the similar coding scheme can
be used to obtain th@erfect secrecywhich is
mentioned at the end of the proof. Let

Waa = A x B (68)

where A= {1,2,...,2"F2«a=L} and B =
{1,2,...,2"1}.  Then, we define the
mapping f: B — C to partition B into 2"
subsets with nearly equal size which means

IlF " (e < 2||f " (e2)]| for eaches, ez € C.
(69)
Now we define the mappingua. = (a,c) —
(a,b), in which b is chosen randomly from the
setf~!(c) C B.

. Over each paiw, andws (w2q(a, ¢), w2 ), We gen-
erate 7 and x5 (w1, wap, w2a(a, ), bap, b2a, 1)
where z2 is a deterministic function
of (u, v, x1,s1).

Encoding:

1. Encoder 2 splits the Rz bitsws into n Ra, bitswa,
and nRop bits wqp. Similarly, it splits thenR;
bits w1y into nR1, bits wi, and nRyp bits wip.

Thus,
wa = (W2q,Wa), W1 = (Wia,W1p). (70)
2. Encoder 2, finds a bin indexbs, such

that (un (w257 be): x?a(wla)v x?b(wlch wlb)7 S?)
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are jointly typical. If such abs;, is not found, it
choosedy, = 1.

3. For each(way, bep) and givenst encoder 2 finds
a bin indexbga such that(v”(wgb, bgb, W2gq, bga),
u” (wap, bav ), T (W1a), 2T (W1a, w1p), ST) are
jointly typical.

4. Transmitter 1 transmits} (w1a, wip)-

5. Transmitter 2 transmits
xg(wlmwllnw2a7b2a7w2b7b2b73?)-

Decoding:

1. For given Yyt decoder 1
chooses  (wia,W1p, ap, boy) ~ Such  that
(u”(%mb2b)7$?a(ﬁ)1a)7$?b(w1a7Yf)lb%y?)
are jointly typical. If there is no such quadruple it
chooseq1,1,1,1).

2. For given vy, S5 decoder 2
chooses  (tap, bap, aa, baa)  Such  that

(v"(@zb, bab, Waa, b2a ), u™ (Wap, bav), Y3, 83)

are jointly typical. If there are more than one such
quadruple, it chooses one of them. If there is not
any quadruple, it choos€s, 1,1, 1).

A.1. Step I: (Reliability) achievability of the rate
region (10)—(15)

Reliability of the rate region1(0)—(15) will be proved here
by analyzing the error probability.

Error analysis: Using this scheme for coding and
decoding, analysis of the error is derived followirg].[
First, we suppose thdtaa, wap, wia, wis) = (1,1,1,1)
is sent. An encoder error occurs in one of the following
situations.

1- &1: Encoder 2, cannot find a bin indeks,
such that (u™(1,b2p), 27, (1), 27, (1,1),s7) €

T (Pyx,, . x1,.5,) 0 which T (Pxy) denotes
the jointly e-typical set with respect tdPxy. It can be
shown, by covering lemmalf], that forn — oo suchba,
exists with high probability if we have

Ray > I(U; X1, X14, S1) + 6, (71)
in which ¢ tends to zero as — oo [6].
2- Eo: After finding bop = 1,
encoder 2 cannot find b2, such that

(v™(1,1,1,b2a),u™ (1, 1), 274 (1), 275(1, 1), s7) €
T (Puvxy, x1p.6:). It can be shown € that
for n — oo, suchbsy, exists with high probability if we
have

Riyu > I(V; X1a, X1, S1|U) + 6. (72)

Now, we should compute the probabilities of the error
events at the decoder, which are shown in TABLE

The second column of the table shows the correspondin(‘%3
bounds of the rates, which can be shown, make the erro

probability of each event tend to zero, as— co. For

more details about the derivation of the bounds proposed

Trans. Emerging Tel. Tech. 2016; 00:1-14 © 2016 John Wiley & Sons, Ltd.
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in TABLE | see p]. Using these bounds, the achievability
of (10)—(15) are proved.

A.2. Step ll: (Security) achievability of the
equivocation-rate region (16)

In this step, the achievability of the equivocation-rate
region (L6) will be driven. To this purpose, we compute
the equivocation.

Equivocation-rate calculation: To prove (6), for the
equivocation-rateR..,, we follow the proof reported in?j
13,28]. We establish computing of the equivocation for the
cognitive transmitter as follows.

H(Waa, Way | Y1)

H(Waq, Way, | Y{*, W1, Way)

H(Wao, YT" | Wi, Wap) — H(YT" | Wi, Was)
H(Wao, Y", V"™ | Wi, Way)
—HV"™ | Waq, Wi, Wap,, Y7") —
H(Waa, V" | Wi, Way)
+HYT | Wi, Way, Waq, V™)
—H(V" | Waa, W1, Way, ¥1") — H(Y{" | W1, Whp)

H(Y\" | Wi, Wap)

HWV™ | Wi, W) + H(Y?" | V™", U™, XT")
—H(V"™ | Waq, W1, Way,, Y1) — H(YT" | W1, Was)
(73)

where (a) is because of the fact that giveri”, Wa,

is uniquely determined andY* is independent
of (Wl,ng,WQa) given (V",Un,XIL). Now, we
bound each term in r.h.s. of §). For the first term in713),

we have

HWV™ | Wi, Wa)

S
N

> HWV"|U",X7)

> H(Vn|U",XF)—H(V”|U",YQH,SS)

= I(V"Ys', Sy |[U™) —I(V" X1 | UY)

(c)

> n[I(V;Y2,S:|U)—I(V; X1 | U)] (74)

where (b) is derived by using the data processing
inequality 9], which implies thatV"™ is independent
of (Wi, Wa) given (U™, XT'), and (c) is derived using
the approach taken i), Lemma 3]. For the second term
in the r.h.s of {3) we follow the related equations ][
and obtain

CHYP VLU XT) 2 HOG | VU X1, 81) - a,
(75)
wheree; is negligible forn — oo. To compute the third
rm in the r.h.s of {3), similar to 2, Lemma 2], by using
ano’s inequality we obtain

1 " n
EH(V | Waa, W1, Wap, Y7") < €2 (76)
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Table I: Error events in joint decoding and correspondirig beunds

Error event Arbitrarily small positive error probability if
Wop # 1, 1b20 = 1) Raoy + Roy < I(U, V3 Ya, Sa)

Wop = 1,124 # 1) Roa + Roy < I(V; Ya, S5|U)

A2b7£1 Waq # 1) Roy + Ry, + Roa + Ry, < I(U,V; Y5, S2)

Ry < I(X1p; Y1, U|X14)
Rip + Rop + Rop < I(X1p, U; Y1 |X1a) + [(U; X1a, X1b)

E, o # 1,1 =1, wgb—l) Ria < I(X1a, X163 U, Y1)
; ) | Ria + Ry < I(Xia, X16;U, Y1)
By | (10 # 1,01 = 5 w% #1) | Ria + Riy + Ry < I(U, X14, X13; Y1) + 1(U; X140, X15)
E; lf)m # 1,1 #1 w2b 75 1) | Ria + Riv + Rop + R/2b < I(U, Xia, X155 Y1) + 1(U; Xia, X1p)
=1)
)

1a—1 wlb#l w2b7é1

where €5 is negligible, whenn — co. To compute the where (d) is based on AEPZ9], and €3 is negligible
fourth term in {3), first we define for n — oco. To bound the second term in the r.h.s 88)
we use Fano’s inequality and obtain
yr f (u"(wzb,bgb),w’fa(wla% 1
an— n n n = PriWi = wi, Wy, =
g = xlb(wla,w1b),y1) e T! )(PUXlYl) (77) o Z r{W1 = w1, Wap = wap }

] w1 ,Wap
z" Otherwise n on
HY{" | Wi = w1, Way, = wap, Y7")

wherez" is an arbitrary sequence that is containe@’ih < 1 Z Pr{Wi = w1, Wap = wa}
Now, we have -~ n '

w1,Ww2p
LHOT | Wi, Way) (1 +Pri{Y{" £ V" | Wi = w1, Wa, = wa}
n
1 n
T D Pr{W = w1, Wap = w2} x log |1 )
wi1,W2p 1
= =41 Pr{Wi = wi, Way =
H(Y?" | Wi = wi, Wap = way)] n e wlzw:Qb = W =)
1 .
< o Z [Pr{W1 = w1, Wa, = wap} Pr{Y" #Y{" | W1 = w1, Wap = wap }
o < e (80)
HY", V" | Wi = w1, Wap = way)] . .
1 where ¢4 is negligible for n — oo. Hence, from T9)
= - Z Pr{Wi = w1, Way = wap} and @0), the forth term of the r.h.s. of@) is bounded as
wi1,W2p
1 n
[H(Yq" | Wi = wr, Way = wap) SHT [Wi, Wa) SHW U, X0) + 65, (81)
HY? | Wy = wi, Way = wayln)} (78) ?n which €5 tends to zero forn — o0 Substitut-
ing (74), (75), (76) and @1) into (73), we obtain
For the first term in 18) we can write 1 N
- H  (Waa, Way | Y1)
> Pr{Wi =wi, Way = wap} > I(V;Ya,S,U) — I(V; X1, U)
w}’wzb +H(Y1 | V,U,Xl,Sl)fH(Yl | U,Xl)fe(;
HOA [ W= w1, Wap = wap) > (V3 Y2, 52,U) — 1V, 815 X1, U)
(d)
< % Z Pr{W, = wi, Wap = wap} —I(Yi; V. 51U, X0) — e
w1, wap = I(V;Ys,S2,U)—I(V,51; X1,Y1,U) — 6
xlog [T (Pyy ju,x, )| (82)
whereeg is negligible forn — oo. Regard to the definition
< Z Pr{Wy = w1, Wap = wap} of R, in (5)-(6) we conclude
wi1,W2p
Re, < I(V;Y2,5,U) —I(V,S1; X1,Y1,U0). 83
CH(Y: | U, X1) + €3] » SI(V3Y2,8,U) = I(V,51; X1, Y1,U). (83)
< H(Y1|U, X))+ es, (79) and thereforeX(6) is proved. |
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B. PROOF OF THEOREM 3

Proof of Theorend

For a quadruple codé\V/,, Ma, n, P.) for the CIC-PCSI,
we consider the outer bound &h proposed inZ4). Using
the Fano’s inequality we have

nR1

IA

I(W; Y7")

= > (Wi YaalYi'ipa)

i=1

n
< D I(WL Y Y5 Vi)

i=1

= > I(W, Ui Vi),

i=1

(84)

where(e) is derived by substituting; = (Y3 ", Y7";,1)-
Then, by substituting’, ; = W1, the outer bound o, is
derived. Similarly, we have

an I(Wl; Yln)

IN

Z I(W1§ Y;717 er,Li-Q-lv Yl,i)
i=1

I~

> (W Vi, Us),

=1

(85)

where( f) is derived by substituting; = (Y, ", Y7";,1).
Thus, the outer bound oR; is proved. The outer bound
for Rs is derived as follows:

nRQ

IN

I(Wa3 Y5'| ST, 82)

= Z[(W27Y17,Li+1§Y2,i|Y2i7175?7Sg)
i=1

— IV Y3 |Ys 1, ST, S5, Wa)

= Z [(W2§ Y2,z‘|Y2i717 Y17,Li+17 S?v S;)
=1
(Y3 Youl Vs 1, ST, S3)
*[(Yf,ti+1; Y2,z‘|Y2i71: 5?7 5517 WQ)

S

= Z I(Wa; Y2,i|Y2i_17 Y{'i41,51,5%)

=1

JF[(YQFlS Y, W2|Y17,Li+17 S?v SS)
—I(Wa3 Yy '|Y41, Y1, ST, S5)
—I(Ys ' Y1 Yi . ST, S5, Wa)
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n
= D I(Wy Y5 |¥{41, ST, 55)
i=1

7[(W2, Y2i71|Y17,1i7 5?7 S;L)

n
> (W Y5 Y4, ST, S5)

i=1

IN

= Z[(WQ,Ui;YQ,i|S?7Sg)7

i=1

(86)

where(g) is derived by Csiszar sum identitit§]. Then,

by substituting/1,; = W, andVz,; = Wa, the outer bound
on Ry is derived. From Fano’s inequalit9, Chapter 7]
we have

n(R1 + RQ)
I(Wy; Y1) + T(Wa; Yo' ST, S3)

IN

INZ

[(Wla Yln) + [(WQ;Y2n|W17 S{Ly S;L)

n
> I(Was Vil Yiig)

i=1
+1(Wa; Y2i|W17 Y17,Li+17 ST, S;)
_ [[(WQ, Vi Y W, YY)

—I(Y1, Y3 YW, Y{fi)]

< D I Ys S YY)
i=1

+1(Wa; Yo | W, ST, S5, Us)
—I(Y13; )/'27”'71|VV27 Wi, Y1li41)
I(W1,Us; Y1)

+I(Wo; Ya,;|W1, ST, Sg, Us),

IA

(87)

where(h) is since thai¥> is independent of; and (4)
is derived by substituting; = (Y7, Y1%41). Similarly,
we have

n(R1 + R2)
) <
< I(Wh; Y1,:|\Ui, Wa) + I(Wa, Us; Ya.4|ST, S5 ),

i=1

(88)

and (j) is derived by using the same approach &8).(
Finally, for the equivocation-rate regidi., , we derive the
outer bound, using the approach takenlifi] as follows:

nRe, < H(Wa|Y")
H(W2) — I(Wa; Y7)
= I(WayY3) — I(Way YT + H(Wa|Y3)

(k)
< I(Wa Y5') — I(Wo; YT') + 2nep,

(89)

where (k) is derived from theChannel Coding Theo-
rem[29, Chapter 7] which implies that in a reliable com-
munication, the entropy oft> givenYs" is less tharg,

11
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which is negligible ag. — oo. Then, we have inequality we have
IWo; YY) = > T(Wa; Vi | Yiipn) nRy < I(WaxY3'|ST,S5)
i=1 S [(W27)/2n|W17S?7Sg)
- ZI(W2;Y1,i | Y Vi) < 10, X5V W, XT (W), S1, 53)
=1 == H(Y2n|W17X’1n7S?7S;)
HI(Y, Y | Yiliga) —H(Y3'|Wh, We, XT', X3, ST, S3)
o i—1, . n. (n)
I(Y2 ,Yl,z | Y1,1+17 WQ) (90) < ];I(Y;L')({L7 5?7 Sg)
Therefore, for 89) we have —H(Y3' X1, X3, 51, S5)
§ = I(X3;YPIXT, ST, 88), (94)
TLR62 S Z [[(W27Y17ji+1;Y2,i | YQi_l)
i=1 where (n) is because of the fact that conditioning does
—I(Yi1; Yaui | vt Wg)] not increase the entropy function ak@" is independent

of (W1, Ws) given (X7, X3, ST, S3). Now, for Ry +

~ il om R,, from Fano's inequality we have
7Z[(WQ§YM | Y5 Vi) ’ ey
i=1

—I(Ys v Y1) (Bt }jQ)n n n
+I(Y3 ™ Y | Y, Wa) < I(WasY'|ST, 83 ) + I(Was Y77)
o < I(Was Y3 [Wh, ST, S2) + T(Ws Y7°)
. ) i—1 n !
S Z[(WQ’YQ’Z | YV2 7Y1’7;+1) S [(WQ;Y2n7Y1n|W17S?7SS) +I(W1ayln)
i=1 '
—T(Wo; Vi, | Y55 Y ), (91) < IV 71w, 51, 55)

() q HI(Wa Y3 Yy, W, ST, 83) + T(Wa; Y{)

where (1) is derived from the Csiszar sum identity 'm n o ' -

WhICh Implles thatz?il I()/;_1§)ﬁ,i | YIT,Li+17W2) — H(Yl |W1/7 Sl 752) - H(Yl |W17W27Sl 752)

S I3 Y | Yo 0, W),  and  the  non- +H(Y3'|Y1", Wi, ST, S5)

negativity of the mutual information function. Similariy, B o n o an n

can be shown that H(Y2n|Y1 W1, W2, 51, 57) + H(YT")
—H(Yl |W1)

nRe, < Y I(WaYau|Ys ' Y%, Wh) < —H(Y,"|Wh, Wa, ST, S3)
=1 ’
+H(Y2n|yln7wlys{17S;)

—I(Wa; Vi | Yy 5 Y, Wh). (92) ’
—H(Y5' V", Wi, W2, ST, S3) + H(Y{")

Now, by substituting U; = (Yo', Y% ), Vii= () . o om
W1, Va ;s = Wha, the proof is completed. O < —HY " |Wh, Wa, Xa, Xa, ST, 5%)
+H (Y5 Y1 ", Wi, X1, ST, 5%)
C. PROOF OF THEOREM 4 —HEZT, W, Wa, X0, X, 57, 53) + HOYT)
Proof of Theorend
For R4, using Fano’s inequality we have 'niyn yn o an an
! 9 q y < —HY)"|X{,X3,S7,5%)
nRi < I(WiYPd) FH(Y Y, XY, ST, S5
< I(Wh, Wa; YY) ~H(YY,", X7, X5, ST, 85) + H(Y!")
< HY") - H(Y{" W1, Wa) < I X{, X3, ST, %)
< H(Y") - H(Y{"|W1, W2, XT', X3') LY XY™, X, ST, S5, (95)
(m)
< HYP) - HYPIXTE, X5 ,
< I(XP XD Y, (93)  Where (o) is because thatH(Y,"|W1,ST,S3)—

H(Y"|W1) <0, and (p) is due to the fact the
where (m) is due to the fact thab;" is independent conditioning does not increase the entropy. Thus, the
of (Wi, Ws2) given (X7,XZ). Now, from Fano's Pproofis completed. o

12 Trans. Emerging Tel. Tech. 2016; 00:1-14 © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/ett
Prepared using ettauth.cls



H. G. Bafghi, et al. On The Secrecy of the Cognitive Interference Channel with Partial Channel States

D. PROOF OF THEOREM 7 (U"(Tf)h 171, UA}21, 13217 ﬁ)zz(a, b), @22), u”(ﬁ}l, @1, Tf)21, 1721),
t" (1, 01), 7 (1), 85) € Tg(n)(PV,U,T,Xl,SQ)-
Proof of Theoren? Error analysis: First, fix the channel joint distribution

To derive the equivocation-rate regiod0f—(45), first as 65). The error analysis is similar to the one presented
we should propose the code-book generation and then [3]. Thus, the equations4()—(44) are derived by
encoding-decoding schemes. combining these results.

Code-book generation: Equivocation-rate calculation: The equivocation of

R the - at receiver 1 is calculated as follows:
1. Generate 2""*'  codewords zfT(wi),w; €

{1,2,...,2""1}, choosingz? (w;) independently

according toPx, (.). ~ H(Wa2[Y7")
2. For each z7(wi), generate 2"  code- H(W2, Y1) = H(YY")
words ¢" (w1, v1) using [Ti_, Prix, (=7 (w1)), = H(Ws, Y", A, Wh) — HY\") — H(A, W1|W2,Y{")
wherev; € {1,2,...2"" Y, = H(Ws, AW, Y™, V™) — HV" |Wa, A, W1, YT")
> ggr:erat:a(:h"( e ar;d V\fi;fwh ﬁ)d —HY) = H(A,Wi|Ws, YT')

u (w1, V1, W21, V21 .l n n n y,n n
components based off|x,r, i which wa; € = HWe, A, WY, V) + HY, VT) - H(YY)
{1,2,...2" } andva € {1,2,...2" 71}, —H(V W2, A, Wi, Y1) — H(A, Wi W2, Y77)

n n (2)
4. For ea(;h 7 (w1), t" (w1, v1) L HWTIYE) — BV Wa, A, W, Y
and u" (wy, v1, war, va1) gener- .
ate U"(wl,Ul,wgl,vgl,wgg,vgg) with  i.i.d 7H(A7W1|W27Y1 )
components based oRy | x, 7y, in which was € @

HWV"\Y",U", X1, T") — HV"|Wa, A, W1, Y7")
_IOg |A| - H(Vn|Y2n7 Sg7 Un7X{l7Tn)

{1,2,...2"F2} anduy, € {1,2,...2"F22},

5. Now, distribute »™ sequences randomly
to 2"% bin such that each bin contairg™"
sequences, whereR = Rys — M and M = n[[(V’YQ’SQW’Xl’T)7I(V’Y1|U’X1’T)]
max{I(V;$|U, X1,T), [(V; Y1|U, X1, T)}. —H(V"|Wa, A, W1, Y7")

Then, index each bin byj € {1,2,... 2"}, . .
Next, partition 2" sequences in every bin _[max{l(v’SI|U’XI’T)’I(V’YllU’XI’T)}

Ve

into 2nM—I(ViVilU.X0, D] gybbin each subbin ]
-I(V;vi|U, X1, T

contains 2/ (ViY1lU: X1, 1) sequences. Index each Vint, X1, T)

subbin bya € {1,2,..., 2MM-I(VYIUX1D) > n[z(v;y2,52|U, X1, 7)

and let A be the random variable to represent

the index of the subbin, and € be the random —max{I(V;S51|U, X1,T),1(V;Y1|U, Xl,T)}](%)

variable to represent the index of the sequences in

h in. .
each subbin where (¢) follows from the non-negativity of entropy
Encoding. Define A=1,2,...,A and B—  function;(r) follows from the fact that conditioning does

1,2,...,B where A and B are defined before. not increase the entropy, the non-negativity of entropy

Let Wiy =AxC where C=1{1,2,...,B} function, annd the fact thatiI(A, Wi |[Wa, YI) =
Now, define the mappingg: B —C to map B H(A[W2, Y1) + H(W1|A, W2, Y1) < H(A) <

into C subsets with nearly equal size. Encoder 1108|Al thanks to H(WilA, W2, Y")=0; (s) is
for given w;, transmits 27 (w;). Encoder 2 for because of Fano’'s inequality which implies that the

given w1, 7 (wy) and s?, choosest(w:,vi) such term H(V"|W2,A,W1,Y1”) tends to zero fom — oo
that (¢"(wr,v1), a7 (w1),s7) € Ts(n)(PT,Xl,Sl)- For (see RQ]). The proof is completed. O
givenwsg; and¢™ (w1, v1) it choosesu™ (w1, v1, wa1, v21)
such that(u™, t", 27, s7) € T\™ (Pu.r.x,.5, ). Next, for

given waz, it uses the mappinguvz: = (a,¢) = (a,b)  ACKNOWLEDGEMENT
which b is chosen randomly from the set *(c) C B.

Then, it chooses™ (w1, v1, w1, 21, w22(a,b),v22) sUCh This work was partially supported by Iran National Science
that (v",u",t", 27, s7) € T." (Pv,u,r,x,,5,). Finally,  Foundation (INSF), under contracts’ numbers 91/s/26278

it transmitszy (v™, u™, t", 2T, 7). and 92/32575. Parts of this paper was presented in
Decoding: Decoder 1, given  yT',  the International Symposium on Information Theory and

finds (1, 01,21, D21) such that  Application (ISITA) 2010.

(" (1, D1, W21, 021), " (W1, 01), 27 (1), 55) € The authors gratefully acknowledge the anonymous

TE(")(PU,T,XI&). Decoder 2, givenyy and s3, reviewers for their suggestions, comments and corrections
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