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Energy Detection based Spectrum Sensing with
Constraint Region in Cognitive LTE Systems

Nan Wang, Yue Gao, Fengyi Yang, Qi Bi, Weiliang Xie, and Clive Parini

Abstract—Cognitive LTE system, such as LTE-U, has received
tremendous interest from almost all research disciplines in wire-
less communications. In Cognitive LTE systems, spectrum sensing
is the key enabling technology to realize dynamic spectrum
access. In this paper, an error decision probability is proposed
to solve the trade-off problem between detection and false alarm
probability with the constraint region requirement. The closed-
form expression for the error decision probability, satisfied
SNR value, number of samples and primary users’ spectrum
utilization ratio are derived for in both fixed and adaptive
threshold setting algorithms. By implementing both Welch and
wavelet based energy detectors, the adaptive threshold setting
algorithm demonstrates a more reliable and robust sensing result
for both primary users (PUs) and secondary users (SUs) in
comparison with the conventional fixed one. Furthermore, the
wavelet de-noising method is applied to improve the sensing
performance when there are insufficient number of samples.

Index Terms—Spectrum sensing, energy detection, adaptive
threshold, wavelet denoising

I. INTRODUCTION

OGNITIVE radio (CR) is being viewed as a new in-
telligent wireless communication technology to improve
efficiency of a fixed spectrum assignment policy [1], [2].
In the future the fifth generation (5G) networks, there has
been an increasing interest [3] of enhancing the mainstream
cellular technology LTE with CR for accessing a much wider
range of spectrum bands to improve the data throughput.
Long-term evolution in unlicensed spectrum (LTE-U) can be
considered as a kind of cognitive LTE system for expanding
cellular network capacity without additional spectrum cost.
For dynamically accessing wider range of spectrum bands in
a friendly manner, the cognitive LTE system should have the
capability of discovering the possible coexisting heterogeneous
wireless systems in different bands and be able to avoid the
mutual interference with them. However, this new requirement
is beyond LTE’s conventional capability of coexisting with
neighboring cells based on the measurement function of User
Equipment (UE) [4]. Thanks to the spectrum sensing tech-
niques of CR, the cognitive LTE system could monitor the
dynamic spectrum environment to avoid the mutual interfer-
ence with possible coexisting heterogeneous wireless systems
in different bands.
The spectrum sensing is one of the most challenging tasks
in the future cognitive LTE system as it requires high accuracy
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and low complexity for dynamic spectrum access [5] [6]. The
spectrum sensing performance metric is usually measured as a
trade-off between selectivity and sensitivity, and can be quan-
tified by the levels of detection and false alarm probability.
The higher the detection probability, the better primary users
(PUs) can be protected. The lower the false alarm probability,
the more chances a channel can be utilized by secondary
users (SUs). A cooperative spectrum sensing with joint energy
and correlation detection has been proposed to decrease the
probability of false alarm and miss-detection [7]. In [8], a new
detection based on four-level hypothesis for blind spectrum
sensing has been proposed to decrease the probability of false
alarm while avoiding interfering to the primary system. A
detection probability of 90% and a false alarm probability of
10% have been set as the target requirements in the IEEE
802.22 standard for all the sensing algorithms [9], [10].

The energy detection, also known as radiometry or pe-
riodogram, is the most common way of spectrum sensing
because of its low computation and implementation com-
plexities [11]. The sensing performance of energy detection
depends greatly on the setting of a detection threshold. Most
conventional energy detection methods adopt a fixed decision
threshold to distinguish PU signals from the noise. For exam-
ple, a predefined experimental threshold was set in [12], [13]
by measuring the noise power. However, it is difficult to
guarantee the detection and false alarm probability with the
fixed threshold setting method, especially when the noise
power fluctuates [14], [15]. Unlike the fixed-threshold-based
sensing algorithm, an adaptive spectrum sensing algorithm was
proposed in our previous research [16] to make the SU can dy-
namically adjust its energy threshold according to the Signal-
to-Noise ratio (SNR) and varying PUs’ spectrum utilizations.
Besides, a hybrid framework combining compressive spectrum
sensing with geo-location database was proposed in [17]. By
implementing previously developed power control based geo-
location database and adaptive spectrum sensing algorithm, a
database-augmented sensing algorithm was proposed in [18]
for a secondary access of the TV white space spectrum.

However, both fixed and adaptive threshold based energy
detection should also satisfy the IEEE 802.22 constraint region
requirement on Py > 90% and Py < 10% [9]. A number of
research work on the constraint region problem has been con-
ducted. In [19], the proposed cooperative sensing techniques
could achieve above 90% detection probability at SNR = -7dB
with observation window of 50bits and 10% false alarm rate.
For 10% false alarm probability, 90% detection probability
of BPSK signals with SNR of -8dB or greater was achieved
the cyclostationary spectrum detection in [20]. Both [19]
and [20] couldn’t detect signal at low SNR as required by the
Federal Communications Commission (FCC) in US [21] and
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the Office of Communications (Ofcom) in UK [22]. In [23],
the proposed cyclostationary spectrum density (CSD) estima-
tion could achieve greater than 90% detection probability on
BPSK signals with SNR of -18dB, when the probability of
false alarm is less than 10%. In [24], the proposed energy
detection scheme for multi-carrier systems could reach 90% in
probability of detection and 10% in probability of false alarm
for the SNRs as low as -21dB. Although the achieved sensing
SNR in both [23] and [24] could maintain a relative low
level, the effect of varying PUs’ spectrum utilizations on the
sensing performance was not taken into account. Therefore,
a closed-form expression between PUs’ spectrum utilization
ratio and the threshold is derived by considering the constraint
region required by the IEEE 802.22 standard in this paper.
The impacts of different PUs’ utilizations on the sensing
performance are also quantified. Moreover, both conventional
fixed and proposed adaptive threshold setting algorithms are
implemented with Welch and wavelet based energy detectors
for sensing OFDM signals at SNR values ranging from -25dB
to 0dB. The sensing performance is further improved by the
wavelet de-noising method.

The remainder of this paper is organized as follows: a
generic CR system model is provided in Section II. The
spectrum sensing algorithms of both Welch and wavelet
based energy detector are described in Section III. The fixed
threshold setting algorithm considering the constraint region
requirement is investigated in Section IV. A modified adaptive
threshold setting algorithm is presented in Section V with
considering the constraint region requirement. Simulations of
both proposed and conventional algorithms are compared and
analyzed in Section VI by implementing with Welch and
wavelet based energy detector. The conclusions are drawn in
Section VII.

II. SYSTEM MODEL

In this paper, an LTE-A system with cognitive radio
enhancement is being developed based on our previous
study [25]. Cognitive User Equipments (UE) are commu-
nicating with its associated LTE eNodeB base station in
Frequency-Division Duplexing (FDD) manner and tries detect
the possible emergence of coexisting LTE signals. Therefore,
the PU represents the LTE signal, and the SU represents the
cognitive UE. The energy detector at SUs is used to detect
the presence of PU signals. It firstly measures the power of
the input PU signals over a time interval T, then the received
power is compared to a predefined fixed threshold to decide
whether the frequency band is occupied or not. The sensing
decision can be formulated into a binary hypothesis problem
by

Hy :y(n) = w(n)
Hy :y(n) = h(n)s(n) + w(n) (signal present)

(signal absent)

(1

where Hy and H; denote the hypothesis PU absent and PU
present, respectively. After bandpass filtering over a bandwidth
W, the received signal is denoted as y(n) (n = 0,1,...,N-1). w(n)
represents the additive white Gaussian noise, assumed to be
independent and identically distributed (iid) with zero mean
and variance of 2. s(n) is the PU signal, also assumed to be
an iid random process with zero mean and variance of o2.

h(n) is the channel gain with an average value of ai. With the
signal and noise variance, the average SNR can be defined as
SNR =03} -02/02 [26].

The performance metric of spectrum sensing can be mea-
sured by the detection probability P; and the false alarm
probability Py. When the number of samples N is large
enough, P, can be derived by [27], [28]

A— (0} 40} -02)

<ﬁ+ﬁvw¢mﬁ @

m:PW>Amn=Q<

and Py can be given as

A—o2

Pp=P(Y > X|Hp) Q(aﬁ/W) 3)
where Y stands for the average energy. Without loss of
generality, we assume O'}QL = 1, and the average SNR is
5 = 02/o2. It can be seen that both Py and Py are mainly
dependent on the threshold A, if the signal variance a?, the
noise variance o2 and the number of samples N are known.
Therefore, the decision threshold can be derived for a target
P; or Py. Under hypothesis H, the threshold Ap, can be set

for a constant detection rate (CDR) as [29]

Ap, = (0, + s)<1+ N/2> 4)

Similarly, under hypothesis Hy, the threshold Ap, can be
set for a constant false alarm rate (CFAR) as

_ 2 Q~'(Py)
)\pf =0, (1 + 7]\[/2 (5)

It has been shown in (4) and (5) that the threshold derivation
results are similar for both CDR and CFAR. The threshold
based on CFAR is commonly applied in conventional energy
detection algorithms.

III. SPECTRUM SENSING ALGORITHMS
A. Welch’s Energy Detection

Welch’s algorithm is a modified periodogram. The principle
of the Welch algorithm is to divide the data sequence into
segments in order to reduce the large fluctuations of the
periodogram [13]. For instance, a signal s(n) is segmented
into M segments in the time domain with length L for each
segment. L is the number of frequency bins to be averaged
around the zero frequency. Therefore, an input signal s(n) can
be defined as a matrix with L x M elements

s(m,)=s(l+(m—1)-(L—1)) (6)

where m = 1,..M and [ = 1,...L. After partitioning the input
signal s(n) into M segments, FFT is first applied to each
segment, and averaging is then performed over the squared
outputs of the FFT. At this point, the average signal energy of
s(n) in the frequency domain can be presented by:

[FFT(s(m,1)|]” (7
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The signal energy P(l) is averaged over L samples in
the frequency domain. The average energy over the entire
frequency band, Y, is obtained:

L2

1
Y=7 > POzA (8)

I=—L/2

This average energy Y is then compared with the threshold
)\ obtained from either (4) or (5) to determine whether the
primary signal is present or not.

B. Discrete Wavelet Packet Transform based Energy Detection

Discrete wavelet transform (DWT) is designed from the
multi-resolution analysis, decomposes the given signal space
into an approximate space V and detail space W as [30]

Vi=WeVa=W,eW;_1 &V, €))

where W; is the orthogonal complement of V; in V;; and ®
represents the orthogonal sum of the subspace. Two spaces V;
and W; are constructed by orthogonal scaling functions ¢; j
and orthogonal wavelet functions v; 1., respectively. The scal-
ing function ¢;; and the wavelet function v;;, are obtained
as

Gin(t) =29/ §(27t — k) = Z hi—ok - 1,60t
1

Uik(t) =272 (2t — k) =Y giok - ik (10)
l

with low pass filter h;_o = (¢j,k, ¢j+1,1) and high-pass filter
gi—2k = (¥j k,¥j+1,). () means inner product. Using these
functions, the DWT of a given signal s(t) provides scaling
coefficients and wavelet coefficients. The scaling coefficient
at the j*" level and k' time is computed by:

Cik = (8,050) = D hi_op (s, 6j5010) = D hi_opCjs1
l l
(11)

The wavelet coefficient at the j* level and k" time is

djg = (s,%56) = D gion (8, j410) = Y G onCit1
l l

(12)
Discrete wavelet packet transform (DWPT) based energy
detection can be thought of as a modified DWT method, in
which DWPT decomposes not only the approximation space
but also the detail space [30]. In other words, DWPT can
separate the frequency band uniformly. In order to improve
the time-frequency resolution, the DWPT decomposition al-
gorithm is adopted to divide the received signal in this paper.
With DWPT, a signal can be represented as

s() =) (cinpin(t) + djptj i)

Jj=jo k

(13)

where c; ;. and d;; are the scaling and wavelet coefficients,
respectively. ¢; ,(t) and v, ,(t) are the wavelet bases to
describe the approximation and detailed space of a signal
respectively. jo denotes the computation starts from the first

level wavelet coefficient. The energy of signal s(¢) can be
measured with the two coefficients as

1T 2
E= T/ [Z Z Cikpik(t) + djp;k(t)] dt
O jzjo k

= % SO (ein® +din®) Z A

Jj2jo k

(14)

The obtained energy E is then compared to the threshold
A obtained from either (4) or (5) to determine whether the
primary signal is present or not.

C. The Proposed Wavelet de-noising

After a wavelet transform, there are normally more wavelet
coefficients of noise than those of signals. However, the
amplitudes of signal’s wavelet coefficients are much higher
than that of the noise. The wavelet de-noising method was
proposed in [31] to remove the noise and improve the SNR.
The wavelet de-noising process is described as follows in
Algorithm 1.

Algorithm 1 Wavelet De-noising Process
Initiazation:
1: The received signal s(n)’s wavelet packet coefficients
(wj,,) are first obtained after performing n level DWPT.
2: Compare the wavelet coefficients in the wavelet packet
tree with a threshold (7') to generate a new wavelet packet
coefficients (w*; ). Here, the VisuShrink threshold is
used [32].

T =0,v/2In(Nlog2(N)); (15)

where o, is the noise standard derivation and N is
the length of the received primary signal. The adaptive
threshold value makes the value of |w; , — w*; ;| as small
as possible.

Decision:
The revised wavelet packets coefficients (w*; ;) are used
to reconstruct the estimated original signal.

For the fixed threshold based sensing algorithms, the energy
obtained from both (8) and (14) is compared to either the
CDR threshold in (4) or the CFAR threshold in (5). However,
this conventional fixed threshold based sensing process faces
one problem that it only considers one aspect every time
in the favour of either PUs or SUs. If the CR network is
designed to guarantee PUs’ safe use of the spectrum, the CDR
method should be used and the target detection probability P,
should be set as high as possible. The higher the detection
probability, the better the PUs can be protected. If the CR
network is designed to guarantee the spectrum efficiency of
the SUs, the CFAR method should be implemented and the
target false alarm probability Py should be set as small as
possible. The lower the false alarm probability, the more
chances a channel can be utilized by SUs. In order to maximize
the benefit for both PUs and SUs, the trade-off problem
between Py and Py is investigated thoroughly. Furthermore,
the constraint region problem should be considered to meet
the IEEE 802.22 requirement on 90% probability and 10%
false alarm probability.
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IV. THE FIXED THRESHOLD SETTING ALGORITHM WITH
CONSTRAINT REGION

In this paper, the trade-off problem between P and Py is
formulated to an equivalent form of minimizing the error deci-
sion probability P, as a function of PUs’ spectrum utilization
ratio (0 < @ < 1) and the threshold X as

minimize(Pe(\)) = minimize{(1 — o) Pr + a(1 — Py)}
subject to: Py < 10%
Py >90%
(16)

where (1 — «) stands for the probability that the PU chan-
nel is vacant and full of noise, (1 — P,) represents the
missed detection probability that indicates PUs being absent
while actually present. Therefore, the weighted error decision
probability for PUs being present is a(l — P;) with PUs’
spectrum utilization cv. Similarly, (1 — «) Py is the weighted
error decision probability for PUs being absent. According
to the IEEE 802.22 standard, the detection and false alarm
probability should keep a sensing level of 90% and 10%,
respectively. Thus, the total error decision probability P,
should be minimized as much as possible to maximize the
benefit for both PUs and SUs subject to the two conditions
Pd Z 90% and Pf S 10%

Substitute Py in (2) and P; in (3) into (16), the optimization
problem can be mathematically formulated as

Pe(A) = (1 =a)Py +a(l - Fy)
(1-

22 (k) o o (@)

:%f; e ? dz——fb e dz 4 a
2

, a7
where a = (’\;;7”) -/N/2 andb—% N/2.

Based on equation (2), (3), Q(1.28) = 0.1 and Q(—1.28) =
0.9, the trade-off optimization problem considering the con-
straint region can be mathematically formulated as

l—a [
min : f(\) = e s e dz+a
T
subject to: g1(/\) <0
3=(\) <0 (18)
2 2

where g1(\) = A + L\/N—/J;U) —02 =02 go(\) = =X+
1.280, + 02 are the inequality constraint equations.
NG ey !

For the conventional fixed threshold based sensing algo-
rithm,either CFAR or CDR method is applied. Here, the CFAR
method is used as an example just as the majority of research
did in the energy detection field. Substitute (5) into g2(A), we
have Q1 (Py) > 1.28, which means P; < 10%. Substitute (5)
into g1 (), we have

1.28(02 + 02) + 02(Q~1(P}))
N/2

o2 > (19)

(19) can be further simplified as

—%— SNR=-18dB
—©— SNR=-17dB
—8— SNR=-16dB

Fig. 1: Py versus Py for different SNR with N = 16384

o2 . VIN/2 —1.28

O’2 Qil(Pf)Jrl.QS

Therefore (18) can be further formulated as

SNR = (20)

1l -«
e dy — — / -2 dz + «
\/> f

subject to: Pf < 10%
Q' (Pr)+1.28

VN/2 -1.28

The solutions for (21) can be obtained by discussing all
the possible cases of SNR and the number of samples N. For
example, if Py = 0.1, N = 16384, the corresponding SNR
should be greater than -17dB to make (21) hold and generate
the minimum error decision probability at SNR = -17dB. In
order to verify our derivation, Fig. 1 is obtained by substituting
variable SNR values into (21). It can be found from Fig. 1 that
the detection probability P will be higher than 90% if SNR
is greater than -17dB, otherwise, a lower detection probability
P, will be obtained.

Similarly, the required number of samples N satisfying the
constraint condition could also be found for a given SNR value
as shown in Fig. 2. It is shown in Fig. 2 that the minimum
number of samples N to satisfy the 90% P, and 10% Py
constraint region should be at least 16384. The larger the
number of samples N, the easier the constraint region problem
could be satisfied. These research results a theoretical guidance
when designing the energy detector to satisfy the constraint
region requirement in reality.

min: f(A) =

SNR > 2D

V. THE ADAPTIVE THRESHOLD SETTING ALGORITHM
WITH CONSTRAINT REGION

Besides the conventional fixed threshold setting algorithm,
the constraint region problem is further extended to our pre-
viously proposed adaptive threshold setting algorithm [16] in
this section. According to the method of Lagrange multipliers
and Karush-Kuhn-Tucker (KKT) conditions [33], the objection
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—O- N=16384 ||

—0- N=32768 | |

Fig. 2: Py versus Py for different number of samples N at
SNR = -17dB

f(XA) and the constraint functions g;(A) and g2(\) can be
formulated as

LA, pas p2) = FN) + p1 - g1(A) + p2 - g2(A)

Suppose the object function f(\) and the constraint func-
tions ¢1(A) and go(A\) are continuously differentiable at a
point A\*. If A\* is a local minimum that satisfies some regular
conditions (see below), then there exist constants w1 and po
called KKT multipliers, such that

(22)

QLA pantin) |y — y* —
OLQpia) |\ = ) 0

p1 - g1(A*) =0

po - g2(A*) =0 (23)
1 >0

2 >0

Equation (23) can be rewritten as

Qo240 a2, Zon(ontel) o (-a)(e24ed) _
202 (02 +02) 02N aoc? -

(24)

1.28(02 + o2
Nl.()\mrw_a?_gz):o (25)

N/2 "

s - ()\* - 1'2;\3[‘;2 _ og> -0 (26)
1 20 (27)
p2 >0 (28)

By discussing all the possible cases of p1 and o, a general
solution for any o and N can be obtained as follow
Casel: 111 =0,02 =0

The optimization equation (24) will be equivalent to the
original one (17) without considering the constraint region.
The solution is

H\/Hzx(zﬁ;oz) n ((Ueered)

aoc?
A =

(29)

(207 +03)/o7 (07 + 03)

where \* should satisfy the following two conditions (30)
and (31)
1.28(c2 + o2

(Un + Us) _ 0_2

n_UESO
N2

g(A") = A"+ (30)

1.2802
/N/2

Equations (30) and (31) can be further derived by substi-
tuting \* into g1(\) and g2(\) as

g(X) = A"+ +02<0

€1y

02 162 Ca) (62402
1+¢1+4(2N";2 S>.1n<<1 o) (r3+ n))

aocs

) =
g1(A*) R AICAC TS (32)
1.28(0,t0y) _ 52 _ 52
+ \/Ni/Z UTL O-S
02 402 —a) (02402
1+¢1+4(2]\;7:2 S).1n<<1 )0(05+ 2)
*\ s n
92()‘ )_ , (202+402)/02(c2+02) (33)
1.28
s o

For N =216384, a = 50%, it can be found g; () <0, W2hen
SNR = g,% > —15.385dB. g2(A\) < 0, when SNR = ;'721 >
—15.461dB. Therefore, when SNR = % > —15.385dB, the
constraint region can be satisfied for i = 0, 1o = 0.

Case2: 17 > 0,0 =0

According to (24),

1+\/1+W.(ln(<l—%g+w)+m)
A* - °

- (207 + 03) /07 (0% + 03)

(34)

For pq > 0, the solution of (25) is
o 1.28(07 +07)
° N/2

Therefore, A\; should be equal to A* and both of them should
make g2(A) < 0. However, the solution doesn’t exist after
computation. In other words, the case of pu; > O,ue = 0
doesn’t exist as well.

Case3: 11y = 0,0 >0
According to (24),

2 2
1+ \/ 14 28t
)\*

M=0c2+0 (35)

o (550 1)

(207 +03) /0% (07 + 03)

(36)
For o > 0, the solution of (26) is
1.2802
Ay = L 37)
2 N/ (
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Fig. 3: Py and Py versus SNR for simulation and theory line
with o = 50%

Therefore, Ao should be equal to A\* and both of them
should make g1(\) < 0. For N = 163845 o = 50%, it can
be found gy(A) < 0, when SNR = Z& > —15.4212dB.
The corresponding threshold Ay = 1.0141 for A\,% = 1. It
can be proved there exist A\* = Ay = 1.0141 to make the
condition (24) satisfied.

Cased: 1y > 0,0 >0

For p1; > 0, e > 0, the solutions of (25) and (26) are

o 1.28(0 +07)
° N/2

M=0c+0 (38)

1.2802
)\2: an 4 2
N/2

Therefore, \* = A; = Ag, which can be thought as a special
case of Case 3. It can be easily proved, all the conditions can
be satisfied. All in all, considering all the four cases, we can
conclude \* = 1.0143 is the minimum threshold that could
satisfy all the conditions in (23) with o = 50%, N = 16384.

In order to verify our derivation, an example of oo = 50%,
N = 16384 is substituted into the obtained general solution. It
can be proved that there exists such minimum \* = 1.0143,
1 and po such that all the conditions (23) are satisfied when
a = 50%, N = 16384. Furthermore, the corresponding SNR
is -15.3850 if the minimum \* = 1.0143. Therefore, it can be
found in Fig. 3 that the simulation curves are well matched to
the theory curves, which proves our theoretical analysis.

The analytical study is then extended to a range of different
number of samples N (N = 8192, 16384, 65536) as shown in
Fig. 4. It can be found that the satisfied SNR value, considering
the constraint region condition, decreases as the increase of
the number of samples N. A similar result can be found in
Fig. 5, the increased samples N improves the performance
for both Py and Py. A higher P; or lower Py value can be
obtained with the increase of the number of samples N or
SNR. Therefore, the more number of samples N there are, the
easier the constraint region condition can be satisfied. This is
echoed by the results obtained by other literature [34], [35].

The effect of spectrum utilization « on the value of satisfied
SNR considering the constraint region condition is analyzed

(39)

n

—@— P N=8192
—O - P, N=8192

—m— P N-16384
—0 - P, N=16384
—w— P N=65536
—57 - P, N=65536 |

Fig. 4: P; and Py versus SNR for different number of samples
N
1 ; ‘ ; ‘ 1
//*’H—ﬂ—__‘l
0.8 >
« 0.6] —=—P SNR=-17dB ||
o
& —v— P SNR=-15dB
© —o - P, SNR=-19dB
o
04g . —0-P,SNR=-17dB ||
iy Te— .o - —v -P,SNR=-15dB
- — -0 — .o . _
O—. 0= o — .o . _
o O—- 9. —
0.2« B'\‘:'“'-t:"B
V\'\V"v- 0= g B g _g
e
VT v -y w—y
0 1 1 1 1
0.5 1 1.5 2 2.5 3
Number of samples N x10"

Fig. 5: P; and Py versus number of samples for different SNR

in Fig. 6 as well. It is found that the satisfied SNR values
for both 10% and 90% cases show a symmetry property. In
addition, it can be seen that the satisfied SNR values for both
10% and 90% cases are a bit higher than that of the 50% case.
This is mainly due to the poor performance generated by both
10% and 90% cases in terms of either P; or P;. The results
can be useful in CR network design and deployment, such as
anticipating the minimum SNR level that can be sensed under
certain PU spectrum utilization or samples. The results also
show that the sensing performance is degraded by either bursty
activity patterns of PUs or SUs in practice.

VI. IMPLEMENTATION WITH THE WELCH AND WAVELET
BASED ENERGY DETECTORS

A. Experiment Setup

In this part, an LTE-A system with cognitive radio enhance-
ment is being developed from [25] and the well-known LTE
downlink OFDM signal is chosen for sensing. The simulation
performance of the fixed threshold setting and previously
proposed adaptive threshold setting algorithms are observed
through implementations with both Welch and wavelet based
energy detectors. In simulations, the number of samples is set
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Fig. 6: Py and Py versus SNR for different PUs’ spectrum
utilizations o
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Fig. 7: Py and Py versus SNR for fixed/adaptive Welch and
wavelet algorithms

to N = 16384, which is the same as that in the theoretical
analysis in Section IV and V. The desired probability of false
alarm for the fixed threshold is set as Py = 0.1. The initial
spectrum utilization of the primary users is set as the worse
case, o = 50%. The Welch and wavelet algorithms employed
in this session are based on the sensing algorithms used in [16]
and [36], respectively.

B. Results and Analysis

Monte-carlo simulations results shown in Fig. 7 show that
both Welch and wavelet algorithms’ results are very close
to each other and match the theoretical one. Therefore, the
correctness and reliability of our simulation platform is veri-
fied. The comparison of detection performance P, between the
Welch and wavelet algorithms by implementing the proposed
adaptive threshold setting algorithm is shown in Fig. 7. It
is found that both Welch and wavelet algorithms with the
proposed threshold setting can achieve higher detection prob-
abilities than the conventional fixed one in the lower SNR
region.

It can also be found in Fig. 7 that the false alarm probability
Py of the proposed algorithm drops quickly for both Welch
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Fig. 8: P, versus SNR for fixed/adaptive Welch and wavelet
algorithms

and wavelet algorithms compared to the conventional fixed
one when the SNR is greater than -15dB. This is because
the proposed adaptive threshold is an increasing function with
the increase of SNR values for & = 50%, which has been
observed in Fig. 1 in [16]. The adaptive threshold is equal to
the fixed one at SNR = -15dB and further increases for the
50% spectrum utilization. Therefore, the proposed adaptive
threshold performs better in terms of the detection probability
P,; when the SNR value is lower than -15dB and a better false
alarm performance Py when the SNR is greater than -15dB.
For the convectional fixed threshold method, P; remains the
same under any SNR environments since P is considered for
the case of no signal transmission and such is independent
of SNR. However, the overall performance of the adaptive
threshold outperforms the fixed threshold in terms of the error
decision probability P, as shown Fig. 8. In Fig. 8, both Welch
and wavelet algorithms’ error decision probability P, match
well with that of the theory. Moreover, the proposed adap-
tive algorithms could always achieve a lower error decision
probability P, compared to that of the conventional fixed one.
By implementing the wavelet de-noising method, the de-
tection performance P, for both fixed and proposed adaptive
threshold setting algorithm with the corresponding false alarm
performance Py is shown in Fig. 9. With the wavelet de-
noising function, both fixed and adaptive wavelet methods can
achieve a higher detection probability P, in comparison with
the original ones without de-noising methods. Meanwhile, the
wavelet de-noising method increases the false alarm probabil-
ity Py a little for both fixed and adaptive wavelet methods.
However, in comparison with the fixed wavelet de-noising
method, the adaptive wavelet de-noising method’s false alarm
probability Py drops quickly when SNR is greater than -15dB
and almost merges with the one without de-noising method.
The corresponding error decision probability P, is shown
in Fig. 10. It is found that both adaptive wavelet de-noising
and without de-noising algorithms’ error decision probability
P, can always keep a relatively low value compared to the
fixed one. This means a more reliable and robust overall
sensing result for both PUs and SUs. In summary, the proposed
adaptive threshold methods outperform the fixed ones for the
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cases of both de-noising and without de-noising. The de-
noising methods can improve the wavelet method’s sensing
performance in comparison with the one without de-noising.

In addition, a comparison of the computation complexity
in terms of the real multiplication is made between the Welch
and wavelet based energy detection algorithms as follows [37].
The number of samples is set to N.

Welch:

= 2Nlog, N

db5 FIR wavelet filtering schemes for DWPT:

10coeff.x (2N + ... 4 2(°e2N) [y /2(log2N=1))

=10 x (2NlogyN)
where coeff. represents the coefficients. db5 is the wavelet
basis used in our simulation. It can be found that the Welch
algorithm has a lower computational complexity, which makes
the spectrum sensing faster compared to the wavelet one.
Although the wavelet algorithm results in a relatively high
computation complexity, the wavelet de-noising method can
be implemented to make a further sensing performance im-
provement as shown Fig. 9

Fig. 11 shows the performance of the proposed adaptive
wavelet algorithm implemented with the de-noising method
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Fig. 11: Py versus SNR with different samples N for wavelet
algorithms with/without de-noising

at different numbers of samples, especially when the number
of samples N is not very large. In reality, the number of
samples N at the level of thousands is always preferred due to
the limitation of equipment. As shown in Fig. 11, by adopting
the wavelet de-noising method, a bigger improvement can be
obtained as the number of samples N decreases.

VII. CONCLUSION

Previous research has usually been limited to a fixed PUs’
spectrum utilization and lacks consideration of the constraint
region requirement set by the IEEE 802.22 standard. In this
paper, both conventional fixed threshold setting algorithm and
previously developped adaptive threshold setting algorithm
have been modified by considering the constraint region
requirement. The closed-form expression between satisfied
SNR value and number of samples have been derived for the
conventional fixed threshold setting algorithm. Mathematical
expression between PU’s spectrum utilization ratio o and
the proposed adaptive threshold has been derived as well
considering the constraint region requirement. Furthermore,
both threshold setting algorithms have been verified by Monte-
Carlo simulations with the constraint region requirement.
The numerical analysis demonstrated the significant impacts
of PUs’ spectrum utilization on the overall system sensing
reliability. Both analytical and numerical results have shown
that a lower error decision probability can be obtained for the
proposed adaptive threshold setting algorithm in comparison
with the conventional fixed one. Overall, the analytical study
on the PUs’ spectrum utilizations and the constraint region can
provide practical guidance when designing a cognitive LTE
system for the future 5G wireless communications.
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