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Summary
With the ever growing diversity of devices and applications that will be connected

to 5G networks, flexible and agile service orchestration with acknowledged QoE that

satisfies end-user’s functional and QoS requirements is necessary. SDN (Software-

Defined Networking) and NFV (Network Function Virtualization) are considered

key enabling technologies for 5G core networks. In this regard, this paper proposes

a reinforcement learning based QoS/QoE-aware Service Function Chaining (SFC)

in SDN/NFV-enabled 5G slices. First, it implements a lightweight QoS information

collector based on LLDP, which works in a piggyback fashion on the southbound

interface of the SDN controller, to enable QoS-awareness. Then, a DQN (Deep Q

Network) based agent framework is designed to support SFC in the context of NFV.

The agent takes into account the QoE and QoS as key aspects to formulate the

reward so that it is expected to maximize QoE while respecting QoS constraints.

The experiment results show that this framework exhibits good performance in

QoE provisioning and QoS requirements maintenance for SFC in dynamic network

environments.
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1 INTRODUCTION

Communication networks have evolved through four major

generations from 1G to 4G, which respectively features ana-

log voice service, digitalized voice service, data service, and

mobile broadband service. With the increment of diversity

of devices and applications connected to 4G networks, net-

work operators are faced with CAPEX (capital expenditure)

and OPEX (operational expenditure) pressures due to the

fact that revenues do not come proportionally to the mas-

sive investment, given the current technological architecture.

Recent years have witnessed a large amount of efforts by dif-

ferent nations, companies, standardization bodied, etc., poured

into the research and development of the 5th generation of

communication networks, i.e., 5G networks. It is well acknowl-

edged that 5G covers a wide spectrum of research topics in

wired core networks as well as wireless networks1, where net-

work heterogeneity2,3, security4,5,6,7, mobility8,9, etc., should

be collectively considered to push forward its development.

Different entities hold different technological visions of 5G

networks. According to reference10, the architecture of 5G net-

works can be roughly divided as three layers, i.e., physical

infrastructure layer, virtualized layer, service layer. The phys-

ical infrastructure layer holds various compute, storage, and

network resources, which are abstracted as virtual resource

pools to enable easy utilization and resource sharing. By invok-

ing API exposed by virtualized layer, service layer delivers

services oriented to end-users or devices.
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The physical infrastructure layer is comparatively static

while the virtualized layer on top of that is dynamic. More

concretely, it can be assumed that the number and configu-

rations of physical compute, storage, and network resources

are comparatively immutable in the short term, while the

number and configurations of VMs (Virtual Machines) and

VNF (Virtualized Network Functions) instances are mutable

on demand to support their application-specific service lay-

ers. This implies two entailments. On one hand, the underlying

network resources should be “sliced” for different service ren-

derers (i.e., tenants) with minimal conflicts, i.e., the concept

of slicing where network is vertically tailored into multi-layer

slices independently controlled and managed by corresponding

tenants.

On the other hand, network services nowadays are orches-

trated by different network functions (NF, e.g., firewall, deep

packet inspection, WAN optimizer, proxy, etc.), often in a vir-

tualized fashion (i.e., VNF) to provide required functionalities

as well as possibly improving QoE and maintaining QoS. This

is where service function chaining (SFC)11 comes into the

picture. Therefore, an SFC framework that is QoS/QoE-aware

inside a slice is a key in successful service orchestration and

delivery in 5G core networks. While MEC (Mobile Edge Com-

puting)12 aims to handle issues related to 5G edge networks,

SDN (Software-Defined Networking)13 and NFV (Network

Function Virtualization)14 are considered key enabling tech-

nologies for 5G core networks which fabricate the backbone of

5G ecosystems and offer critical network services. We envision

that at least three aspects should be addressed for SFC orches-

tration with regard to the highly dynamic SDN/NFV-enabled

5G slices.

1. A “smart” orchestration agent that is adaptive to the

changing environment so that it can learn to approxi-

mate the optimal SFC orchestration policy with minimal

human interference for automation purpose, i.e., the

learning aspect.

2. A lightweight mechanism to evaluate the QoE of a ser-

vice function chain in changing environments so that

the agent can learn to maximize the user experience

which is the key factor for 5G user subscriptions, i.e., the

awareness aspect.

3. The ability to explore VNF alternatives that can

potentially orchestrate the chain (e.g., for the purpose

of load-balancing), while exploiting the best known

VNF instances to optimize QoE, i.e. the exploration-

exploitation aspect.

Reinforcement learning15, with its trial-and-error mech-

anism (for aspect 1), reward mechanism (for aspect 2),

exploration-exploitation ability (for aspect 3), etc., makes a

competitive candidate for the SFC orchestration framework in

5G slices. Meanwhile, recent years have also seen its applica-

tion in modern network paradigms for user experience opti-

mization16, cost minimization in resource allocation17, etc.

Based on the discussion above, this paper proposes the rein-

forcement learning based QoS/QoE-aware service function

chaining framework in the context of software-driven (i.e.,

SDN/NFV-enabled) 5G slices. The authors believe the work

presented by this paper addresses some missing parts of the

current research on SFC. On one hand, many previous works

abstract the SFC problem as a mathematical programming

problem and present heuristic algorithms to balance efficiency

and optimality. The quality of the service function chain is

usually judged by the derived cost (the smaller the better) or

utility (the bigger the better). The calculation of cost/utility

usually depends on QoS metrics (such as bandwidth, delay,

throughput, etc.). Existing literature often assumes that these

metrics have been readily collected through some mechanism

behind the hood. However, the collection of QoS information

of various entities is often challenging and needs an elaborate

design to implement a lightweight framework. On the other

hand, although QoS is well studied with regard to SFC, QoE

is not extensively considered in previous works. QoE and QoS

exhibits a non-linear mutual relationship; thus the guarantee

of QoS dose not necessarily ensure highly acknowledged QoE.

Therefore, QoE should be explicitly considered for SFC. To

summarize, the contribution of this paper is twofold:

• A lightweight QoS information collecting scheme with

regard to SDN deployment in 5G slice. This scheme uses

LLDP18 as the “ferry” to load QoS information collected

from underlying switches in a piggyback fashion so that

no fundamental modification of the current OpenFlow-

based southbound interface needs to be made. QoS

information collecting is helpful in evaluating QoE and

maintaining QoS constraints.

• A MDP (Markov Decision Processes) modeled rein-

forcement learning based service function chaining

algorithm is proposed in the context of NFV. This

algorithm takes into account the QoE and QoS as key

aspects to formulate reward so that it is expected to

maximize QoE while respecting QoS constraints.

The remainder of this paper is organized as follows. Section

2 summarizes related works and makes a brief comparison to

our work. Section 3 exhibits the general system architecture.

Section 4 explains the novel lightweight QoS information col-

lecting scheme and how the collected information is used to

simplify the network topology. Section 5 gives the details of

MDP-modeled reinforcement learning based QoS/QoE-aware

SFC framework. Section 6 takes experiments on both the novel

lightweight QoS collecting scheme and the QoS/QoE-aware
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service function chaining. Finally, this paper is concluded in

Section 7.

2 RELATED WORKS

2.1 Service Function Chaining
The trend of software-ized control led by SDN and virtu-

alized network functions led by NFV has made the flexible

service function chaining feasible which is also knowns as ser-

vice/middlebox chaining. StEERING19 extended OpenFlow

and the NOX controller and implemented middlebox-based

service chaining. The key of the extension is the split of a

monolithic flow table into several micro tables to constrain

the “rule explosion (i.e., too many rules)” during the mapping

between service function chains and rule table entries. StEER-

ING abstracts the service chaining as a graph theory problem

for which a greedy algorithm combined with heuristics was

proposed to solve it.

SIMPLE20 proposed to conduct service function composi-

tion in the context of SDN. Service composition is split into 2

stages: online stage and offline stage. During the offline stage,

the TCAM capacity is treated as the primary constraint based

on which Integer Linear Programming is adopted to solve the

problem; during the subsequent online stage, a simplified Lin-

ear Programming algorithm is used to tackle the load-balance

problem.

FlowTags21,22 holds the opinion that it is difficult to track the

states of user traffic while traversing operator networks, which

might result in the incorrect enforcement of network-wide poli-

cies. It is, therefore, also difficult to construct a service function

chain to satisfy a user’s business logic requirements and policy

requirements of operator networks. FlowTags tags the traffic

traversing middleboxes in a way that context information of

middleboxes are organized as packet header tags shared along

the service function chain. It can be invoked through south-

bound interface APIs so that the correctness of the service

function chains and the consistency of network-wide policies

are both possibly guaranteed.

References23,24 advocated to use the named NF instances

to facilitate the decoupling of the service plane and the data

plane, so that the execution of service instances need not locate

concrete positions of these instances, such as IP addresses,

etc. Meanwhile, traffic steering is conducted according to the

instance names stored in the packet headers, without being

translated to flow table entries stored in switches, so that

the size of the flow table is contained. On the contrary,

switches store only the mapping of instance names and their

IP addresses.

Reference25 studied the function composition that maxi-

mizes throughput. Two algorithms (namely TMA and PDA)

are designed corresponding to offline requests (i.e., those

requests whose traffic characteristics can be determined by his-

torical data or SLA (Service Level Agreement)) and online

requests (i.e., those requests whose traffic characteristics can

only be determined upon arrival). Both algorithms try to solve

the utility-based (i.e., the throughput) optimization problem.

Reference26 studied the NF consolidation problem, attempt-

ing to deploy more NFs onto fewer physical nodes so that

utilization of NFs in the entire network can be made as high

as possible. Regarding problem modeling, it is modeled as

an integer programming problem, which is solved using IBM

CPLEX optimization software in small-scale networks. For

large-scale networks, a greedy-based heuristic algorithm is

designed to solve a configuration that tries to minimize the

number of VNFs. Similar work was conducted by reference27,

whose focus is the service function chaining in data centers. By

taking into account the resource (computing, bandwidth, etc.)

consumption by computing and switching devices, the energy

utilization model is established for data centers. Besides, the

traffic intensity is used to express the affinity between service

functions, based on which service functions with high affinities

could be placed nearby or on the same physical server. In this

way, extra energy consumption due to long distance interaction

is minimized.

The works presented by references19,20,21,22,23,24 are func-

tional service function chaining with little QoS consideration,

whereas those by references25,26,27,28,29 consider QoS metrics

or other relative properties while QoE is not considered. On

the other hand, our work takes into account both QoS and QoE

in service function chaining.

2.2 MDP-based Path/Chain Composition
MDP has long been used in resource composition, such as Web

services composition in early works30. It has also been exten-

sively used in network path and service chain composition

recently. Reference31 proposes the QoS-Aware Routing based

on reinforcement learning. It gives a reward model that takes

into account the QoS metrics such as bandwidth, delay, etc.,

and a Softmax-based policy to choose the next-hop forward-

ing device. The methodology is similar to our work. However,

it is applied in forwarding plane routing with QoS awareness.

Also, it does not combine the QoS constraints with reinforce-

ment learning framework like our work. Reference17 proposes

the MDP model for NFV resource allocation to form a service

chain with cost optimization. It adopts the Bayesian probabil-

ity to predict the transition probabilities among VNF instances,

thus it boils down to the model-based reinforcement learn-

ing where transition probabilities are fully observable and the

value iteration approach is used for solution. However, in their

framework, QoS awareness is not deeply considered.
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Our work differs from the previous works in that both QoS

and QoE are considered in the reward modeling.

3 SYSTEM ARCHITECTURE

The ETSI NFV specification is believed to be one of most

suitable to deploy our QoS/QoE-aware SFC framework. In

addition, we also advocate the deployment of an SDN con-

troller inside of a 5G slice on the control plane to implement

QoS information collecting along with the topology discov-

ery. Based on ETSI specifications, reference32 proposes a

network slice management and orchestration (MANO) archi-

tecture for 5G networks, as shown in Figure 1 , where the VIM

(Virtual Infrastructure Manager, e.g., OpenStack, KVM, etc.)

corresponds to the Infrastructure Manager, the VNFM (Vir-

tual Network Function Manager) corresponds to the Network

Slice Manager, while the NFVO (Network Function Virtual-

ization Orchestrator, e.g., OpenStack Tacker) corresponds to

the Service Instance Layer. We extend this architecture by

implementing a QoS information collector as an SDN con-

troller module (the green rounded rectangle in the middle on

the right. See details in Section 4.1). We also extend the NFV

MANO (Management and Orchestration) with a reinforcement

learning based QoE/QoS-aware SFC agent as a service man-

ager module (the green rounded rectangle on the top of the

right. See details in Section 5).

FIGURE 1 Network Slice Management and Orchestration

(MANO) Overview.

4 QOS INFORMATION COLLECTING
AND TOPOLOGY SIMPLIFICATION

4.1 QoS over LLDP Scheme
In standard SDN networks, controllers are aware of switches

directly connected to them through bidirectional Hello mes-

sages in the standard OpenFlow protocol. However, the under-

lying link states between switches (i.e., how switches are

mutually connected) are not visible to controllers in the first

place. Therefore, in the initial stage of an SDN network, con-

trollers do not have the topology knowledge of the whole

SDN network. In order to perform centralized control over an

SDN network, controllers must carry out topology discovery.

Controllers usually use LLDP to fulfill such a task. LLDP is

an IEEE proposed protocol widely used in network arena for

topology discovery.

The controller instructs a switch to multicast the LLDP

packet to all of its ports through a packet-out (instructive pack-

ets from controllers to switches). In this packet-out, topological

information of the switch such as chassis information, port

information, etc., is all contained. All other switches connected

to this sender switch receive the LLDP packet, and then match

this packet against the flow table entries of their own, only to

find no matches for LLDP packets. Thus, switches will send a

packet-in (packets from switches to controllers) containing this

LLDP to the controller asking how to process this packet. Since

the packet-in contains topology information about both the

sender switch and the receiver switch, the controller can now

assert that there exists a link between the two switches based

on the received packet-in. By means of this iterative packet-

in/out interaction, topology of the whole SDN network can be

discovered by the central controller. This centralized topology

discovery in SDN is quite different from how LLDP works in

traditional networks where topology discovery is done by indi-

vidual switches independently, although LLDP is used in both

cases.

Standard LLDP packets usually contain basic information

such as the MAC address, chassis information, port informa-

tion, etc. We can see from the above topology discovery phase,

no QoS information is contained in LLDP packets. Should QoS

information be incorporated, the QoS-aware topology discov-

ery can be done to enable further QoS-aware decisions and

policies, thus QoS provisioning becomes possible.

LLDP is a TLV (Type/Length/Value, i.e., key-value pair

with length information) based protocol where TLVs are used

for property descriptions. We can include QoS information as

custom TLVs in LLDP packets. In this way, LLDP can be

seen as the “ferry” containing QoS information (i.e., QoS over

LLDP) and other useful properties as its payload. We define

QoS TLV as follows in Figure 2 .
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FIGURE 2 QoS over LLDP Packet Format.

In the TLV Type field, it must be designated as 127 to indi-

cate that this is a custom TLV. The Length field specifies the

variable-length value contained in the TLV. The Organization

Code field indicates the designer of this customized TLV. We

use the Organization Code as 0xabcdef for the time being. The

Subtype field specifies the detailed type of the contained value.

The Value String field (i.e., the QoS field in Figure 2 ) gives

the real value. We contain various QoS metrics in the Value

String. In order for the receiver to conveniently parse the dif-

ferent QoS metrics, we use the predefined property order and

length. We can see from Figure 2 that several metrics are

included in fixed length in our current settings, namely delay,

bandwidth, packet loss, and jitter, 8 bytes for each property.

Therefore, a QoS over LLDP packet is 38 bytes longer than a

pure LLDP packet in length. Note that more metrics such as

availability can be included in the future work. Upon receiving

the QoS over LLDP packet, the switch fills QoS metrics in cor-

responding TLV fields. We have implemented this mechanism

in Floodlight controller and OVS (Open vSwitch)33.

4.2 Topology Simplification
To orchestrate a service function chain is to chain a set of VNF

instances distributed on virtual machines or containers initi-

ated on physical commodity servers, usually one instance per

VM/container. Servers are inter-connected by physical/virtual

forwarding devices (e.g., switches) and links. According to ref-

erence34, the total number of middleboxes (i.e., VNF instances

in the context of NFV) is comparable to the number of forward-

ing devices in modern ISP networks or datacenters. Therefore,

if entities in the forwarding plane are explicitly involved dur-

ing the process of SFC orchestration, which essentially boils

down to a service plane problem, the problem complexity is

much greater than that only VNF instances are taken into

account. However, if forwarding entities are not explicitly con-

sidered during orchestration, the forwarding-plane datapath is

still needed to be planned separately after orchestration, as a

second step, for traffic steering that sequentially traverses VNF

instances, resulting in a two-tier solution.

If forwarding devices and links are collectively viewed

as an “aggregated link” between two servers hosting VNF

instances, the topology can be simplified as one with VNF

instances as nodes and “aggregated links” as edges, without the

involvement of forwarding-plane entities. Therefore problem

complexity can be reduced during orchestration. Note that

QoS over LLDP collects QoS information alongside topol-

ogy discovery, which means that the QoS status of aggregated

links can be mathematically inferred to support quality eval-

uation of orchestration. Let 𝑣𝑖𝑗 denote the real value of the

𝑗-th QoS metric of device 𝑖 in an aggregated link, where

𝑗 ∈ {𝑑𝑙, 𝑏𝑤, 𝑝𝑙, 𝑎𝑣, 𝑗𝑡}, namely delay, bandwidth, packet loss,

availability, and jitter, the algorithms to evaluate the QoS

metrics of an aggregated link are shown as follows in Table 1 .

TABLE 1 QoS of the Aggregated Link.

QoS Metric Aggregation Algorithm
dl (delay)

∑𝑛

𝑖=1 𝑣𝑖𝑗
bw (bandwidth) min𝑖∈𝑛 𝑣𝑖𝑗
pl (packet loss) 1 −

∏𝑛

𝑖=1(1 − 𝑣𝑖𝑗)
av (availability)

∏𝑛

𝑖=1 𝑣𝑖𝑗
jt (jitter)

∑𝑛

𝑖=1 𝑣𝑖𝑗

Now that forwarding-plane entities (e.g., switches, links, etc.)

are consolidated as aggregated links between VNF instances,

the topology can be, at large, simplified. Figure 3 gives a sim-

ple example of topology simplification. Server-1, which hosts

a VNF instance v-ins-1, is connected to Server-2, which hosts

v-ins-2, v-ins-3 and v-ins-4, through switch-1 and switch-2 via

3 links. QoS over LLDP discovers the forwarding topology

with corresponding QoS metrics, shown in the bottom with

solid squares. Switch-1, Switch-2 and links in between form

an aggregated links whose QoS metrics are inferred accord-

ing to Table 1 . Therefore, v-ins-1 is connected to v-ins-2, 3

and 4 with an aggregated link with 25 us delay and 100 Mbps

available bandwidth (i.e., the dashed square).

FIGURE 3 An Aggregated Link Example.
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5 REINFORCEMENT LEARNING BASED
QOS/QOE-AWARE SFC

5.1 Problem Statement of SFC Orchestration
Suppose an SFC request imposes 𝑁 network functions (e.g.,

traffic sequentially passes through firewall, DPI, etc.). Each

function can be accomplished by a VNF type, 𝑡𝑖, 𝑖 ∈
{1, 2,⋯ , 𝑁}, and each VNF type 𝑡𝑖 has 𝑀𝑖 candidate VNF

instances. Let 𝑖𝑛𝑠𝑖𝑗 denote the 𝑗-th VNF instance of VNF type

𝑡𝑖, 𝑖 ∈ {1, 2,⋯ , 𝑁}, 𝑗 ∈ {1, 2,⋯ ,𝑀𝑖}.

Definition 1 (Functional SFC Orchestration, F-SFC). Let

𝑥𝑖𝑗 ∈ {0, 1} denote whether 𝑖𝑛𝑠𝑖𝑗 is selected (𝑥𝑖𝑗 = 1) or not

(𝑥𝑖𝑗 = 0) to accomplish the 𝑖-th function required by the SFC

request. The functional SFC orechestration (F-SFC) is to select

one and only one VNF instance from 𝑡𝑖 for the 𝑖-th function.∑𝑀𝑖

𝑗=1 𝑥𝑖𝑗 = 1∑𝑁

𝑖=1
∑𝑀𝑖

𝑗=1 𝑥𝑖𝑗 = 𝑁 (1)

The previous definition implies that there should exist

𝑀𝑖 deployed VNF instances so that one of them can be

“selected” to fulfill the 𝑖-th function. However, in the con-

text of SDN/NFV, a VNF instance can be instantiated on-

demand without prior existence. In other words, the remaining

resources of the commodity server that hosts VNF instances

can be seen as the potential VNF instances (e.g., v-ins-4 in

Figure 3 ) as long as there are enough resources for instantia-

tion. To capture this dynamic nature of VNF instantiation, we

regard the remaining resources of the direct successive com-

modity server as a potential VNF instance for the algorithm

to select from. This instantiate-then-select operation is differ-

ent from pure selection from existing VNF instances in that

it incurs extra booting time, extra power consumption, extra

operational activities, etc., which can be considered as opera-

tional expenditures (OPEX). In this regard, equation (1) covers

the both the deployed VNF instance selection and on-demand

VNF instantiation commonly seen in SDN/NFV scenarios.

Definition 2 (QoE-aware SFC Orchestration, QoE-SFC). Let

𝐶 denote the set of all service function chains that can func-

tionally satisfy the SFC request. Let 𝑞𝑜𝑒𝑐 denote the the end-

to-end QoE of service function chain 𝑐 ∈ 𝐶 . QoE-aware SFC

orchestration (QoE-SFC) is the F-SFC that maximizes the end-

to-end QoE of all candidate chains. The QoE evaluation of 𝑞𝑜𝑒𝑐
will be discussed in Section 5.3.1.

max𝑐∈𝐶 𝑞𝑜𝑒𝑐
𝑠.𝑡.

∑𝑀𝑖

𝑗=1 𝑥𝑖𝑗 = 1∑𝑁

𝑖=1
∑𝑀𝑖

𝑗=1 𝑥𝑖𝑗 = 𝑁 (2)

Definition 3 (QoE/QoS-aware SFC Orchestration, Q2-SFC).
Let 𝑞𝑜𝑠𝑐 denote an𝐿 dimensional vector that indicates the QoS

metrics of service function chain 𝑐 ∈ 𝐶 . Let 𝑞𝑐𝑜𝑛 denote an

𝐿 dimensional vector that indicates the QoS constraints of the

SFC request. Without losing generality, let assume that the first

𝐾 dimensions of the QoS vector that are positive metrics (i.e.,

the greater values the better, e.g., bandwidth) and the (𝐿−𝐾)
remaining dimensions of the QoS vector are negative metrics

(i.e., the smaller values the better, e.g., delay). QoE/QoS-aware

SFC Orchestration (Q2-SFC) is the QoE-SFC that satisfies the

QoS constraints of the SFC request.

max𝑐∈𝐶 𝑞𝑜𝑒𝑐
𝑠.𝑡. 𝑞𝑜𝑠𝑡

𝑐
≥ 𝑞𝑐𝑜𝑛𝑡, 𝑡 ∈ {1, 2,⋯ , 𝐾}

𝑞𝑜𝑠𝑡
𝑐
≤ 𝑞𝑐𝑜𝑛𝑡, 𝑡 ∈ {𝐾 + 1, 𝐾 + 2,⋯ , 𝐿}∑𝑀𝑖

𝑗=1 𝑥𝑖𝑗 = 1∑𝑁

𝑖=1
∑𝑀𝑖

𝑗=1 𝑥𝑖𝑗 = 𝑁 (3)

Note that the topology to be dealt with is a simplified topol-

ogy using aggregated links to reduce complexity. Also the

QoS vector 𝑞𝑜𝑠𝑐 can be formulated by the QoS information

collected by QoS over LLDP scheme.

During the SFC orchestration process, two strategies can be

adopted:

• Incremental orchestration: The selection of VNF

instances for functions are conducted in a hop-by-hop

fashion. Therefore, the length of the service function

chain gradually increases.

• Monolithic orchestration: Every step gives a complete

service function chain (i.e., one VNF instance is selected

for each function) and checks whether it maximizes QoE

and meet QoS constraints. If not, find another complete

service function chain in the next step.

In this paper, we adopt the incremental orchestration strat-

egy due to that 1) it can be easily mapped to a multi-step

reinforcement learning problem modeled using MDP; and 2) it

is finer-grained, and thus a sophisticated policy can be derived

for QoE maximization and QoS constraints. Meanwhile, we

envision that the monolithic strategy fits better in QoS mainte-

nance during the runtime of an existing chain, which is out of

the scope of this paper.

Our goal in this paper is to implement Q2-SFC using rein-

forcement learning. The reasons why we choose reinforcement

learning for Q2-SFC solution lie as follows:

• Fewer requirements are needed during training by rein-

forcement learning, compared with supervised learning,

in that no prior extensive training dataset is required.

Training dataset from real-world networks is hard to

acquire. On the one hand, great efforts are required both

in computing and storage to store operational statistics.

On the other hand, a dataset might (unintentionally)
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contain or infer sensitive data which is why network

operators are not quite willing to share.

• The model trained by supervised learning can hardly

reflect the dynamics of a continuously changing net-

work environment. On the contrary, through the reward

mechanism, reinforcement learning can better adapt to

environmental changes.

5.2 The MDP of SFC Orchestration
The MDP usually consists of five ingredients, i.e.,

{𝑆,𝐴, 𝑃 ,𝑅, 𝛾} where 𝑆 denotes the finite set of states 1, 𝐴

denotes the finite set of actions, 𝑃 denotes the finite set of

state transition probabilities, and 𝑅 denotes the finite set of

immediate rewards. 𝛾 ∈ [0, 1] is the discount factor, indicat-

ing the importance of future of rewards to the current reward.

The solution of the MDP is called a policy given that in the

current state 𝑠 ∈ 𝑆, an action 𝑎 ∈ 𝐴 is selected to maximize

the long term rewards. If the state transition probability 𝑝𝑎
𝑠→𝑠′

from state 𝑠 to 𝑠
′

given that action 𝑎 is selected is unknown,

the model of the MDP is unknown. In that case, the solving of

the MDP is called model-free reinforcement learning.

Note that the quality of a policy 𝜋(𝑠, 𝑎) is not determined

by the immediate reward 𝑟; instead, it is evaluated by long

term rewards, thus two value functions are defined to cap-

ture this: the state value function 𝑉 𝜋(𝑠), which indicates the

expected accumulated discounted rewards from initial state 𝑠;

and the action value function𝑄𝜋(𝑠, 𝑎) (also called state-action

value function), which indicates the expected accumulated

discounted rewards by action 𝑎 from initial state 𝑠. Mathemat-

ically, we have the following:

𝑉 𝜋(𝑠) = 𝐸(
∞∑
𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠)

= 𝐸(𝑟𝑡+1 + 𝛾𝑉 𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠) (4)

𝑄𝜋(𝑠, 𝑎) = 𝐸(
∞∑
𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎)

= 𝐸(𝑟𝑡+1 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (5)

where 𝑟𝑡 indicates the immediate reward of step 𝑡 ∈
{1, 2,⋯ , 𝑇 }; 𝐸(⋅) is the mathematical expectation operator.

To find the optimal solution of MDP is to find the policy that

maximizes state value function:

𝜋∗ = argmax𝑉 𝜋(𝑠) (6)

1We can see that infinite states can also be dealt with in reinforcement learning

in later sections.

According to Bellman Optimality Equation, the optimal

policy 𝜋∗ is the one that holds the following:

𝑉 𝜋
∗ (𝑠) = max

𝑎∈𝐴
𝑄𝜋

∗ (𝑠, 𝑎) (7)

We model the Q2-SFC orchestration as an MDP in that:

• 𝑆: Every state 𝑠 ∈ 𝑆 represents the system environment

including network topology, VNF instances’ QoS/QoE

status, functional and QoS requirements of the SFC

request being processed, etc.

• 𝐴: Every action 𝑎 ∈ 𝐴 represents the selection of a

certain direct successive VNF instance from the current

VNF instance. Obviously, for the 𝑖-th function there exist

𝑀𝑖 actions (selections).

• 𝑃 : Every transition probability 𝑝𝑎
𝑠→𝑠′

∈ 𝑃 represents the

possibility that the QoS/QoE status changes from 𝑠 to

𝑠′ under VNF instance selection action 𝑎. However, it is

unknown here thus a model-free reinforcement learning.

• 𝑅: Every immediate reward 𝑟 ∈ 𝑅 represents the contri-

bution of the selected VNF instance 𝑖𝑛𝑠𝑖𝑗 to the current

QoE of the chain.

The solution of MDP-modeled Q2-SFC is to find the optimal

service function chain 𝑐∗ ∈ 𝐶 (where𝐶 is a finite set of service

function chains) under policy 𝜋 such that:

𝑐∗ = argmax
𝑐∈𝐶

𝐸(
𝑇∑
𝑡=0
𝛾𝑡𝑟𝑡+1) (8)

5.3 The Reward Design
According to equation (8), the key to solve MDP-modeled Q2-

SFC is the reward model that reflects QoE, possibly under QoS

and other constraints, and the policy design that maximizes

long term rewards. Therefore, the reward design should cover

aspects not just QoE. We consider the QoE gain, the QoS con-

straints penalty, and the OPEX penalty to be ingredients that

constitute the overall reward of an action during incremental

SFC orchestration.

5.3.1 The QoE Gain
The evaluation of QoE can be roughly divided into two cate-

gories, namely subjective and objective evaluation. The sub-

jective evaluation involves end-user’s participation in rating

the service from the perspective of direct user perception.

Usually, the MOS (Mean Opinion Score)35 scale is used dur-

ing subjective evaluation. Although it has advantages, such as

intuitiveness, accuracy, etc., in evaluating service experience,

subjective evaluation requires great efforts in mobilizing user

participation and is subjected to the varying understanding
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and preferences of the various experience metrics. Therefore,

subjective evaluation can hardly be applied in large networks,

whereas its main application lies within the evaluation of other

QoE evaluation methods, such as objective evaluation.

Objective evaluation, on the contrary, derives QoE from

measurable metrics without end-user involvements, thus the

automation of QoE evaluation becomes possible. QoS metrics

are prominently used in the automated QoE evaluation, among

others, where QoE is calculated as per measured QoS metrics

as well as the consideration of psychological perception from

end-users. Two well-known principles, i.e., the WFL (Weber-

Fechner Law)36 and IQX (Exponential Interdependency of

QoE and QoS) hypothesis37, are used in the deriving from QoS

to QoE, both of which give non-linear relationship between

QoS and QoE as shown in the following equations:

𝑑𝑄𝑜𝑆 ∝ 𝑄𝑜𝑆 ⋅ 𝑑𝑄𝑜𝐸,WFL (9)

𝑑𝑄𝑜𝐸
′ ∝ 𝑄𝑜𝐸 ′

⋅ 𝑑𝑄𝑜𝑆, IQX (10)

Although, seemingly, WFL and IQX give contradictory

relationships between QoE and QoS (i.e., differential v.s. expo-

nential), we argue that WFL and IQX apply in QoS metrics

with different tendencies. For positive QoS metrics (the big-

ger value the better), the corresponding QoE can be derived in

equation (11) according to WFL while for negative QoS met-

rics (the smaller value the better), the corresponding QoE can

be derived in equation (12) according to IQX, where 𝑞𝑜𝑠𝑡
𝑐

is

the 𝑡-th QoS metric of service function chain 𝑐, whose value

can be calculated using algorithms in Table 1 . 𝛼𝑝, 𝛽𝑝, 𝛾𝑝, 𝜃𝑝,

𝛼𝑛, 𝛽𝑛, 𝛾𝑛 and 𝜃𝑛 are constant parameters to fine-tune QoS/QoE

relationships. Study and fine-tuning of these parameters are

out of the scope of this paper. Interested readers can refer to

reference36,37 for detailed mathematical relationships.

𝑞𝑜𝑒𝑡
𝑐
= 𝛾𝑝 × log(𝛼𝑝 × 𝑞𝑜𝑠𝑡𝑐 + 𝛽𝑝) + 𝜃𝑝, 𝑡 ∈ {1, 2,⋯ , 𝐾} (11)

𝑞𝑜𝑒𝑡
𝑐
= 𝛾𝑛 × 𝑒𝛼𝑛×𝑞𝑜𝑠

𝑡
𝑐
+𝛽𝑛 + 𝜃𝑛, 𝑡 ∈ {𝐾 + 1, 𝐾 + 2,⋯ , 𝐿} (12)

To give better intuitions of these equations, we give some

daily experiences as examples. Suppose a user has a 10 Mbps

access bandwidth (i.e., a positive QoS metric). According

to daily experience, the increase of bandwidth to 20 Mbps

does not give the user the perception that the speed is twice

as fast; on the contrary, it gives very limited perception of

speed upgrade. However, if the bandwidth is upgraded to 100

Mbps, the perception of speed upgrade is somehow obvious.

This can be well captured by equation (11) (i.e., WFL). For

another example, glitches or paused buffering in video stream-

ing caused by minor packet loss (i.e., a negative QoS metric)

would greatly compromises the user experience, resulting in

their possible refreshing of the Web pages impatiently, which is

captured by equation (12) (i.e., IQX). The overall QoE of a ser-

vice function chain can be derived by the following equation:

𝑞𝑜𝑒𝑐 =
𝐾∑
𝑡=1
𝑤𝑡 × 𝑞𝑜𝑒𝑡

𝑐
−

𝐿∑
𝑡=𝐾+1

𝑤𝑡 × 𝑞𝑜𝑒𝑡
𝑐

(13)

The QoE gain of constructing a chain 𝑐 by taking action 𝑎

(i.e., selecting all those VNF instances 𝑖𝑛𝑠𝑖𝑗s that form chain

𝑐) under state 𝑠 is shown as follows in equation (14). Note that

how to select VNF instances 𝑖𝑛𝑠𝑖𝑗s to construct a chain 𝑐 will

be discussed in Section 5.5.

𝑔𝑎𝑖𝑛𝑞𝑜𝑒
𝑐

= 𝑞𝑜𝑒𝑐 (14)

5.3.2 The QoS Constraints Penalty
Intuitively, QoE can be used as the estimate of immediate

reward. In this way, service function chain with the high-

est accumulated rewards is considered the best one, which

also maps well to the standard reinforcement learning whose

solution is the answer to QoE-SFC that maximizes QoE. Nev-

ertheless, in the standard reinforcement learning model, no

constraints are explicitly specified. If we adopt the standard

reinforcement learning in Q2-SFC and simply regard QoE as

reward, no QoS constraints are enforced. Therefore, we believe

that the standard reinforcement learning does not serve well in

Q2-SFC. The key to adapt reinforcement learning to Q2-SFC is

to embrace QoS constraints. However, if we explicitly specify

QoS constraints in reinforcement learning as do in mathemati-

cal programming approaches (like that in Definition 3), we are

very likely to face the NP-hardness that leads to an impractical

solution within polynomial time.

Obviously, there exists a paradox between QoE and QoS,

in that maximizing QoE requires high resource consumption,

while respecting QoS constraints requires low resource con-

sumption. High resource consumption narrows the “distance”

between QoS metrics and QoS constraints. If the “distance”

between the QoS metrics of the chain and the QoS constraints

is very close, the probability of violating QoS constraints is

high. This should generate a penalty against the reward, i.e.,

a negative reward. The closer the “distance”, the bigger the

penalty against the reward. If any QoS metric violates the cor-

responding constraint, the penalty is considered very severe.

To capture this, we define the penalty due to the distance

between QoS metrics 𝑞𝑜𝑠𝑐 of chain 𝑐 and the QoS constraints

𝑞𝑐𝑜𝑛 as follows in equation (15), where 𝑃 is a large-enough

constant to penalize QoS constraints violations.

𝑝𝑒𝑛
𝑞𝑐𝑜𝑛

𝑖𝑗
=

{
𝑃 , if any QoS constraint violation

𝑃 ⋅ 𝑒−
√∑𝐿

𝑡=1 ||𝑞𝑜𝑠𝑡𝑐−𝑞𝑐𝑜𝑛𝑡||2 , otherwise
(15)



XI CHEN ET AL 9

5.3.3 The OPEX Penalty
In the discussion of Definition 1, we distinguished deployed
VNF instances and potential VNF instances which captures

the nature that VNF instances can be instantiated on-demand

by sufficient remaining resources on physical commodity

servers hosting VNF instances. The instantiation of new VNF

instances shall suffer from great OPEX since it might incur

the loading of remote virtual machine images stored in image

repositories and the instantiation of VNF instances, which as

well we consider a penalty against rewards. The operational

expenditure for VNF instance 𝑖𝑛𝑠𝑖𝑗 is defined as follows:

𝑝𝑒𝑛
𝑜𝑝𝑒𝑥

𝑖𝑗
=
{
𝑜𝑝𝑒𝑥𝑛𝑜𝑟𝑚𝑎𝑙 + 𝑜𝑝𝑒𝑥𝑣𝑚

𝑖
+ 𝑜𝑝𝑒𝑥𝑣𝑛𝑓

𝑖
, if 𝑖𝑛𝑠𝑖𝑗 is potential

𝑜𝑝𝑒𝑥𝑛𝑜𝑟𝑚𝑎𝑙, otherwise
(16)

𝑜𝑝𝑒𝑥𝑣𝑚
𝑖

indicates the operational expenditure for booting the

corresponding virtual machine for the 𝑖-th function whereas

𝑜𝑝𝑒𝑥
𝑣𝑛𝑓

𝑖
indicates the operational expenditure for launching

the corresponding VNF instance. Note that once a potential

VNF instance is instantiated and selected, it is a deployed

VNF instance whose OPEX penalty is 𝑜𝑝𝑒𝑥𝑛𝑜𝑟𝑚𝑎𝑙, which is the

normal operational expenditure (e.g., normal energy consump-

tion, etc.), if it is selected in the future.

Therefore, the OPEX penalty of chain 𝑐 is the sum of all

VNF instances along 𝑐, formulated as follows:

𝑝𝑒𝑛𝑜𝑝𝑒𝑥
𝑐

=
𝑁∑
𝑖=1
𝑝𝑒𝑛

𝑜𝑝𝑒𝑥

𝑖𝑗
(17)

With the previous definitions of QoE gain, QoS constraints

penalty and OPEX penalty, we define the immediate reward

associated with chain 𝑐 as follows:

𝑟𝑐 = 𝑔𝑎𝑖𝑛𝑞𝑜𝑒𝑐 − 𝑝𝑒𝑛𝑞𝑐𝑜𝑛
𝑐

− 𝑝𝑒𝑛𝑜𝑝𝑒𝑥
𝑐

(18)

For those VNF instances that participate in the construction

of chain 𝑐 under state 𝑠 and action 𝑎, the reward 𝑟𝑐 of the chain

𝑐 is evenly distributed among them, formulated as follows.

𝑟𝑖𝑗 =
𝑟𝑐

𝑁
, 𝑖𝑛𝑠𝑖𝑗 ∈ 𝑐 (19)

5.4 Action Value Function
The action value function 𝑄(𝑠, 𝑎) is the long term discounted

accumulation of immediate reward 𝑟. Every time a VNF

instance 𝑖𝑛𝑠𝑖𝑗 is selected, immediate reward 𝑟𝑖𝑗 is generated

and observed as shown in equation (19), which is then used

to update the current value of action value function 𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗)
for 𝑖𝑛𝑠𝑖𝑗 as the evidence for future selections. Recall that in

Section 5.2 when we defined state 𝑠 ∈ 𝑆, among others, its

main ingredient is the QoS/QoE status, which is non-discrete

space (i.e., QoS and QoE have continuous values and change

values due to resource consumption). Therefore, tabular based

reinforcement learning algorithms such as Q-learning38 are

not applicable for state storage and updates. To this end, DQN

(Deep Q Network)39 is employed to fit the long term rewards

𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗)s from a specific state 𝑠 and immediate rewards 𝑟𝑖𝑗s.

DQN is the modification of Q-learning that uses Convolu-

tional Neural Network (CNN) to approximate an action value

function𝑄(𝑠, 𝑎) with a fit value𝑄(𝑠, 𝑎; 𝜃), where 𝜃 is the CNN

parameter. Structurally in our framework, CNN is in charge of

the state 𝑠 processing and 𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗 ; 𝜃) generation and policy

(e.g., 𝜖-greedy. See Section 5.5) directs 𝑖𝑛𝑠𝑖𝑗 selection. DQN

have two independent networks, namely evaluation network

(eval-net) and target network (target-net), which are identical

in structure. However, the network parameter 𝜃 of eval-net

updates after every iteration while the network parameter 𝜃−

of target-net is frozen temporarily and updated after every 𝐶

iterations by 𝜃. In our framework, first of all, the loss function

is defined as mean square error in the follows:

𝐿(𝜃) = 𝐸
⎡⎢⎢⎣
(
𝑟𝑖𝑗 + 𝛾 max

𝑖𝑛𝑠
′
𝑖𝑗

𝑄(𝑠′ , 𝑖𝑛𝑠′
𝑖𝑗
; 𝜃−) −𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗 ; 𝜃)

)2⎤⎥⎥⎦
(20)

Then, the gradient is derived accordingly as follows:

𝜕𝐿(𝜃)
𝜕𝜃

=

𝐸

[(
𝑟𝑖𝑗 + 𝛾 max

𝑖𝑛𝑠
′
𝑖𝑗

𝑄(𝑠′ , 𝑖𝑛𝑠′
𝑖𝑗
; 𝜃−) −𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗 ; 𝜃)

)
𝜕𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗 ; 𝜃)

𝜕𝜃

]
(21)

With gradient descent and back propagation, we can acquire

the optimal 𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗) for a specific 𝑖-th function.

5.5 VNF Instances Selection
For a given function, the reinforcement learning agent has two

strategies to select VNF instances: 1) it may prefer to choose

new VNF instances that have not been executed, enhancing

the perception of the network situation (i.e., exploration) and

improving their probability of making optimal decisions; or

2) it may also prefer to repeatedly select currently known best

VNF instances according to the current network situation and

obtain the maximum known return (i.e., exploitation) with

a relatively conservative approach. In fact, controllers face

the Exploration-Exploitation Dilemma40: the risk of excessive

exploration is that it is difficult to maximize rewards while

excessive exploitation may lose the chance of discovering bet-

ter alternatives; at the same time, the available resources may

also be exhausted by excessive exploitation (e.g., some nodes

might be overloaded).

To this end, it is not sufficient to conduct VNF instance

selection purely based on the observed QoE/QoS which con-

stitute the deterministic aspect (although transiently) of the

network status, but certain probability models should also be
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adopted to capture the stochastic nature of a dynamic envi-

ronment. In other words, the policy, which governs the VNF

instance selection in SFC context, should take into account

QoE/QoS as well as probability distributions.

The Exploration-Exploitation is often modeled as the Multi-

Armed Bandit Problem (MAB)41 in the field of reinforcement

learning. MAB describes the problem that a gambler repeat-

edly pulls on one of the arms of a gambling machine (i.e., the

bandit) for a certain amount of rewards (such as spitting a cer-

tain amount of coins). However, the distribution of each arm’s

reward is unknown. The goal of the MAB is to maximize the

average reward after pulling arms several times. Obviously, in

MAB, there is a discovery process to know the distribution

of rewards for each arm (i.e., exploration) and there is also a

process to maximize the average rewards after multiple arms

pulling (i.e., exploitation).

Commonly seen algorithms for MAB include greedy,

𝜖-greedy, Softmax, UCB (Upper Confidence Bound). The

greedy policy selects the action with the highest value func-

tion𝑄𝜋(𝑠, 𝑎) repeatedly. However, reward 𝑟𝑖𝑗 (which is used to

accumulate 𝑄𝜋(𝑠, 𝑎)) as we defined in SFC scenario is a non-

static value, thus it is not practical to achieve long term rewards

maximization using the greedy policy. 𝜖-greedy, however, bal-

ances exploration and exploitation by conducting the greedy

policy with probability (1 − 𝜖) and selecting a random action

with probability 𝜖.

𝜋 ←

{
1 − 𝜖 + 𝜖

𝑀𝑖

, if 𝑖𝑛𝑠𝑖𝑗 = argmax𝑀𝑖

𝑗=1𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗)
𝜖

𝑀𝑖

, if 𝑖𝑛𝑠𝑖𝑗 ≠ argmax𝑀𝑖

𝑗=1𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗)
(22)

Softmax adopts the Boltzmann distribution in selecting

actions, which is formulated in equation (23). 𝜏 > 0 is

the “temperature” parameter, approximating pure exploitation

when it approaches 0, while approximating pure exploration

when it approaches 1. 𝜏 offers the possibility to balance

between exploration and exploitation. Meanwhile, 𝜏 can be

decremented to reduce exploration in a later phase when the

convergence is reached.

𝜋 ←
𝑒
𝑄(𝑠,𝑖𝑛𝑠𝑖𝑘)

𝜏∑𝑀𝑖

𝑗=1 𝑒
𝑄(𝑠,𝑖𝑛𝑠𝑖𝑗 )

𝜏

(23)

UCB is another common algorithm for policy enforcement.

UCB takes the form of (mean + upper confidence bound) as

shown in equation (24), which is also the reason for its nam-

ing. According to the large number theorem, the mean can be

replaced by the arithmetic average as shown in the first part on

the right; the upper confidence bound is given by the Chernoff-

Hoeffding inequality as shown in the second part on the right.

𝑐𝑜𝑢𝑛𝑡𝑖𝑗 represents the number of times 𝑖𝑛𝑠𝑖𝑗 was selected and

𝑐𝑜𝑢𝑛𝑡 represents the total number of SFC requests that have

been solved. One of the advantages offered by UCB is that the

workload is adaptively balanced between VNF instances 𝑖𝑛𝑠𝑖𝑗s

of the same VNF type 𝑡𝑖. The more times a VNF instance 𝑖𝑛𝑠𝑖𝑗
is selected, the greater value 𝑐𝑜𝑢𝑛𝑡𝑖𝑗 is, leading to the decrease

of upper confidence bound. For those VNF instances with sim-

ilar𝑄(𝑠𝑖, 𝑎𝑖𝑗), the smaller value 𝑐𝑜𝑢𝑛𝑡𝑖𝑗 has, the greater chance

it is selected, thus the workload is adaptively balanced.

𝜋 ←
𝑀𝑖max
𝑗=1

(
𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗) +

√
2 log(𝑐𝑜𝑢𝑛𝑡)
𝑐𝑜𝑢𝑛𝑡𝑖𝑗

)
(24)

5.6 QoS/QoE-aware SFC Algorithm
Based on the previous modeling, we give the DQN_Q2_SFC

training algorithm in Algorithm 1. 𝑄 is the 𝑀𝑖-dimensional

vector of 𝑄(𝑠, 𝑖𝑛𝑠𝑖𝑗)s for the 𝑖-th function. 𝐸𝑃𝐼_𝐶𝑂𝑈𝑁𝑇 is

the number of training episodes. 𝑅𝐸𝐶_𝐶𝑂𝑈𝑁𝑇 is the num-

ber of SFC requests used for training. Note that in line 9, the

selection of VNF instances is restricted in that 𝑖𝑛𝑠𝑖𝑗 must be

connected to the current instance so as to adapt to the topo-

logical dynamics (e.g., instance shutdown, etc.). Note also

that, in our real implementation, we use the 𝜖-greedy (i.e.,

equation (22)), therefore, we can balance between exploration

and exploitation by tuning hyper parameter 𝜖.

Algorithm 1 DQN_Q2_SFC

1: initialize replay memory 𝐷 to capacity𝑁

2: initialize action value function 𝑄 with random weights 𝜃

3: initialize target action value function 𝑄̂ with weights 𝜃−

4: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1..𝐸𝑃𝐼_𝐶𝑂𝑈𝑁𝑇 do
5: reset environment

6: for 𝑠𝑓𝑐_𝑟𝑒𝑞 = 1..𝑅𝐸𝑄_𝐶𝑂𝑈𝑁𝑇 do
7: initialize chain 𝑐 and observe initial observation 𝑠

8: for 𝑖 = 1..𝑁 do
9: select a connected instance 𝑖𝑛𝑠𝑖𝑗 by eq. (22),

(23) or (24)

10: observe 𝑠 by QoS over LLDP, etc. and observe

𝑟𝑖𝑗 by eq. (19)

11: store transition (𝑠, 𝑖𝑛𝑠𝑖𝑗 , 𝑟𝑖𝑗 , 𝑠
′) in 𝐷

12: if 𝑠 is terminal state, break

13: 𝑠 = 𝑠′
14: end for
15: sample minibatch of transitions (𝑠, 𝑖𝑛𝑠𝑖𝑗 , 𝑟𝑖𝑗 , 𝑠

′)

from 𝐷

16: every 𝐶 iterations, reset 𝑄̂ = 𝑄
17: update 𝑄 by gradient descent (eq. (20), (21))

18: end for
19: end for
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6 EXPERIMENTS

The experiment environment is as follows: Ubuntu 14.04

Server with 64 GB memoery, 40 logical CPUs with 1200

MHz, 2 Tesla GPUs (only one used during experiments), and

TensorFlow 1.0.0 (compiled on GPU).

6.1 Experiments on QoS over LLDP
The QoS over LLDP is deployed in Mininet and Floodligth

1.3 environment. It is tested in a topology (see Figure 4 )

where a video streaming application is deployed. Host h1 is

the video server, hosting a video (about 500 MB in size and 15

min in length) and h3 is the client, streaming the video from

h1 using Firefox browser. During the streaming, QoS status is

constantly changing in bandwidth, delay, etc., due to resource

consumption. In order to evaluate the impact on network traffic

caused by QoS over LLDP, we capture traffic using Wireshark

in two scenarios (video streaming v.s. no video streaming) with

the above topology. The evaluation duration is 15 min. The

evaluation results are shown in Table 2 .

FIGURE 4 The Topology for QoS over LLDP Experiment

We first analyze the “no video streaming” scenario. As we

stated above, QoS over LLDP causes extra network overhead

since it contains several QoS TLV bytess. However, the per-

centages of QoS over LLDP (6.56%) is just slightly greater

than pure LLDP (5.27%) by bytes, meaning that QoS over

LLDP does not deteriorate the network traffic performance.

For the “video streaming” scenario, both QoS over LLDP

and pure LLDP take almost the same percentage, 0.021% and

0.015% of the total traffic by bytes, respectively and by packets,

0.59% and 0.58% of the total traffic by packets, respectively.

This indicates that QoS over LLDP works in a piggyback

fashion with very minor traffic overhead to achieve QoS infor-

mation collecting. The experiment results indicate that QoS

over LLDP is an applicable approach for QoS information

delivering in an SDN environment.

6.2 Experiments on DQN-based
QoS/QoE-aware Service Function Chaining
Our DQN-based QoS/QoE-aware SFC algorithm is tested

by TensorFlow simulation in this section. We compare our

algorithm with violent search, which guarantees best service

function chain with the highest QoE, and random search, which

gives a functionally feasible chain with minimal response time.

The experiment topology contains 10 VNF types where each

type contains 10 VNF instances whose QoS status are gener-

ated randomly when the network topology is initialized. The

purpose is to compare their performance in QoE provisioning,

QoS constraining, response time, etc. 250 episodes are con-

ducted in the comparison, where one episode includes 100 SFC

requests. The experiment results are shown in Figure 5 , 6

and Table 3 .

FIGURE 5 QoE Comparison between Random, Violent and

DQN-based

We can see from Figure 5 that our DQN-based algorithm

orchestrates service function chains with QoE between that of

random search and violent search. Violent search ensures best

QoE which DQN gradually approaches. This indicates that

DQN exhibits a strong learning ability to approximate the best

QoE after training. Random search gives only functionally fea-

sible chains without QoE provisioning, thus it is often penal-

ized in terms of QoE, shown in Figure 5 . Meanwhile, with

regard to QoS constraining, the DQN-based algorithm respect

QoS constraints with overwhelming probability. The reason

why there are still cases where the DQN-based algorithm

violates QoS constraints is that the QoS constraints vector

is modeled as penalty (i.e., a scalar) against reward, leading
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TABLE 2 QoS over LLDP v.s. LLDP in different scenarios, duration about 15 min.

Scenario Scheme Total Packets LLDP Packets Total Bytes LLDP Bytes

No Video Streaming
Pure LLDP 20173 2567 (12.72%) 6526386 344222 (5.27%)

QoS over LLDP 21889 2563 (11.71%) 6738255 441760 (6.56%)

Video Streaming
Pure LLDP 440348 2550 (0.58%) 2208747286 339866 (0.015%)

QoS over LLDP 437795 2580 (0.59%) 2086069045 443204 (0.021%)

FIGURE 6 QoS Comparison between Random, Violent and

DQN-based

TABLE 3 Response Time Comparison between Random,

Violent and DQN-based.

Algorithms Response Time
Random 0.00019
Violent > 15𝑚𝑖𝑛
DQN 0.004

to precision and dimension losses that eventually cause vio-

lations. Therefore, our algorithm can be somehow seen as

heuristics to violent search, in exchange for agile orchestration

that still possesses a high QoE. Note that, however, the prob-

ability that DQN-based algorithm violates QoS constraints

gradually lowers down, which again exhibits its strong learn-

ing ability. In this regard, DQN-based algorithm balances QoE

provisioning and QoS constraining. With regard to response

time (Table 3 ), violent search delivers response time orders of

magnitude slower than that of DQN, which is not acceptable in

practical applications, especially for time-critical applications.

DQN is quick to response in that it gives almost constant time

complexity after agent training.

7 CONCLUSIONS

In this paper, we propose a reinforcement learning (DQN, to

be exact) based QoS/QoE service function chaining framework

for SDN/NFV-enabled 5G slices. It features two aspects, i.e.,

1) the lightweight QoS over LLDP scheme to bring QoS aware-

ness and 2) the DQN-based SFC algorithm that synthetically

takes into account QoS and QoE as key ingredients to for-

mulate rewards. The experiments show that it is applicable in

service function chaining in 5G core network slices in dynamic

QoS environments.

In our current work, we focus on the QoS/QoE-aware SFC

in single 5G slices. In a service outsourcing scenario, a service

function chain might involve trans-slice network functions,

which are likely to introduce hierarchical orchestration design.

We consider this as a future work direction. Meanwhile, our

current work focuses on service function chaining in 5G core

network slices. Our next step will also address to coordinate

MEC in 5G edge networks with SFC in 5G core networks

to bring end-to-end QoE-satisfactory services is also our next

step work.
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