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Abstract

In this paper, we analyze the performance of evolutionary heuristic-aided linear detectors de-

ployed in Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency-Division Multiplexing

(OFDM) systems, considering realistic operating scenarios. Hybrid linear-heuristic detectors under

different initial solutions provided by linear detectors are considered, namely differential evolution

(DE) and particle swarm optimization (PSO). Numerical results demonstrated the applicability of

hybrid detection approach, which can improve considerably the performance of minimum mean-

square error (MMSE) and matched filter (MF) detectors. Furthermore, we discuss how the complexity

of the presented algorithms scales with the number of antennas, besides of verifying the spatial

correlation effects on MIMO-OFDM performance assisted by linear, heuristic and hybrid detection

schemes. The influence of the initial point in the performance improvement and complexity reduction

is evaluated numerically.

Index Terms

MIMO-OFDM detector; spatial correlation; hybrid detector; heuristic detector; linear detector;

MIMO-OFDM performance.

I. INTRODUCTION

Contemporary wireless communications systems, such as IEEE 802.11 and 4G LTE, deploy multi-

carrier modulation with the aim of transmitting data over frequency-selective channels. In this sense,

OFDM is the most popular choice and a suitable number of subcarriers is used to make subchannels

frequency flat. Moreover, dispersion and other phenomena introduce undesirable effects that may

limit the overall performance of a wireless system. From this perspective, authors in [1] discuss how

the number of subcarriers affects the transmission of an OFDM signal with equipped with a single

antenna at both transmission sides transmitter-receiver (SISO).
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In the search of more efficient systems, Multiple-input multiple-output (MIMO) systems were

proposed and able to improve the spectral efficiency [2]. However, such benefits also require more

sophisticated electrical circuitry and signal processing, which are needed to decouple signals from

the different antennas [3]. The system may increase the throughput using multiplexing mode, where

each antenna transmit different signals. Conversely, increasing the performance/reliability requires the

transmission of the same information and exploiting diversity. Those characteristics are limited to the

Diversity-Multiplexing Tradeoff [4]. Herein, the multiplexing mode is considered, where the signal

of the other Nt − 1 transmit antennas interfere each other. Thus, detection algorithms are required to

reduce the effects of such interference [5], [6] and are studied throughout this work.

In order to attain high levels of efficiency, the MIMO system considers the assumption of rich

scattering (isotropic) scenario modeled as independent Rayleigh [7], which is not always entirely

valid in real applications. A rule of thumb is the approximation of half wavelength of separation

between antennas [3] to achieve independent fading channels, but this distance may not be always

respected, for example, due to space limitation of the receiver hardware, resulting in spatial correlation

of the channel coefficients. In realistic scenarios, correlated models are good representations of field

measurements [8], and thus considered in our numerical simulations.

Authors in [9] discuss how the performance of SISO-OFDM systems scale with the number

of subcarriers. In the MIMO-OFDM context, the performance of ZF and MMSE linear detectors

are analyzed under spatial correlation scenarios. This work extends the results reported in [9]. In

particular and differently of [9], herein, we propose a hybrid detection approach, where particle

swarm optimization (PSO) and differential evolution (DE) evolutionary heuristics are combined with

linear detectors (two detection steps), aiming to improve performance with reduced increment in

complexity.

In detection problem, the maximum likelihood (ML) is known to provide optimal performance,

however its high computational complexity is prohibitive in real applications, specially when the

problem dimension increases, e.g., number of antennas, constellation size and number of subcarriers.

Heuristic algorithms provide alternative good solutions with relatively low computational complexity.

In [10], PSO-aided detection is considered in MIMO and in [11] to MIMO-OFDM systems, providing

lower computational complexity compared to ML detector. In [12], heuristic approaches differential

evolution (DE), genetic algorithm (GA) and PSO are applied to detection in MIMO-OFDM and

performance in terms of bit error rate (BER) is evaluated. In [13], binary PSO (BPSO) is applied to

MIMO-OFDM and an algorithm considering the output of ZF-VBLAST is proposed and performance

evaluated numerically.

The contributions of this paper are as follows. We analyse the influence on BER performance and

computational complexity in terms of floating points operations (FLOPs) of different initial solution
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as input to the heuristic algorithms, i.e.,we have analyzed distinct initialization, including random

guess, linear detector outputs, such as MF and MMSE solutions as input, while perform a comparison

between those heuristic detectors in realistic scenario, i.e., under spatial correlation between antennas.

Moreover, aiming to attain a fair performance-complexity comparison, the input parameters of both

heuristic strategies have been systematically chosen, since they directly impact on the algorithm

performance and complexity, as studied in [14].

The remainder of this work is organized as follows. Section II revisits briefly the OFDM scheme.

Descriptions for the MIMO-OFDM system with spatial channel correlation are offered in section

III. Moreover, section IV also describes the classical MIMO detectors and formulates heuristic aided

detectors based on PSO and DE, including the hybrid linear-heuristic approaches. Extensive numerical

results are discussed in section V, where BER performance comparison considering spatial correlation

was systematically carried out. Besides, subsection V-C carefully analyzes the resulting complexity

of the MIMO-OFDM detectors. Final remarks and conclusions are offered in section VI.

Notation: Throughout the paper, lowercase and uppercase bold-faced letters represent vectors and

matrices, respectively. C and R the set of complex and real numbers; Re{.} and Im{.} represent

the real and imaginary parts of a complex number. Operators [.]H , ‖.‖, ◦ and ⊗ represent Hermitian,

Frobenius norm, Hadamard product and Kronecker product, respectively. E{.} denotes expectation

operator and and ∼ U ∈ [a, b] that a random variable follows an uniform distribution inside a specified

interval.

II. OFDM TRANSMISSION AND CHANNEL

A block diagram representing the MIMO-OFDM communication in multiplexing operation mode is

exposed in Fig. 1. At the transmitter side, the stream of bits are distributed throughout Nt transmitting

substreams. Here, classical OFDM modulation is considered and described as follows. The signal

passes through the OFDMtx block that represents the OFDM modulator, which includes the serial-

to-parallel conversion, digital M -ary modulation, inverse discrete Fourier transform (IDFT), cyclic

prefix (CP) addition, parallel-to-serial conversion and the transmission of the signal through the

wireless channel. At the receiver, the signals of the Nr receive antennas are shifted to baseband,

passed by the OFDM demodulator (OFDMrx), which includes a serial-to-parallel followed by a

discrete Fourier transform (DFT). Thus, CP is discarded, the signal is serialized, demodulated and

it finally feeds the detection block, which is the focus of this work. Note that linear, heuristic and

hybrid detectors are discussed in more details in section IV.

Among the different channel effects, the coherence time (∆t)c and the coherence band (∆B)C may

influence parameters of an OFDM system. The coherence time scales directly with the maximum

Doppler frequency while the mobility of a wireless terminal may cause problems such as the carrier
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Figure 1. MIMO-OFDM block diagram.

frequency offset [15], which is important for the performance of the system but not the focus of this

paper. The coherence bandwidth is dictated by power delay profile (PDP) of the channel, which is

measured empirically [3]. More specifically, the the coherence bandwidth is evaluated based on the

estimation of the delay spread of the PDP of a channel. This parameter influences directly on the

number of subcarriers of the system, because, to achieve the flat-fading on every subchannel, the

condition Bsc ≪ (∆B)C requires N to be sufficiently large [3]. In special, this work deploys the

IEEE 802.11b PDP model, which follows an exponential profile [15].

III. MIMO-OFDM MULTIPLEXING MODE AND SPATIAL CORRELATION

Considering Nt and Nr transmit and receive antennas, respectively, the signal received in a MIMO-

OFDM channel on each subcarrier can be expressed as [16]:

y[n] = H[n]x[n] + z[n], (1)

where y[n] ∈ CNr×1 is the vector of the received signal, H[n] ∈ CNr×Nt is the channel matrix,

x[n] ∈ CNt×1 the transmitted information, z[n] ∈ CNr×1 the Gaussian noise with zero mean and

variance σ2z through n = 0, · · · , N − 1 subcarriers.

In order to describe and evaluate spatial correlation between antennas, the Kronecker product is

used as follows:

H[n] =
√

RrG[n]
√

RH
t , (2)

where G is an uncorrelated channel matrix composed by independent and identically distributed

(i.i.d.) entries, Rr and Rt are the spatial correlation matrices seen by the receiver and transmitter,

respectively. The coefficients needed to construct the correlation matrix and the arrange of the antennas

(linear, rectangular) influence the entries of correlation matrices of the transmitter and receiver.

In [17], an antenna correlation model is proposed for uniform linear antenna (ULA) array configura-

tions. This model considers that the antennas are arranged equidistantly, where dt and dr represent the

May 26, 2022 DRAFT



5

spacing between the transmitting and receiving antennas, linearly arranged, respectively. To simplify

the analysis, we consider Nt = Nr, leading to Toeplitz symmetric correlation matriz:

Rt = Rr =























1 ρ ρ4 . . . ρ(Nt−1)2

ρ 1
...

ρ4 ρ 1 ρ4

...
...

...
. . . ρ

ρ(Nt−1)2 . . . ρ4 ρ 1























, (3)

where ρ ∈ [0, 1] denotes the correlation index between element antennas of a ULA array.

IV. MIMO-OFDM DETECTORS

In this section, linear and heuristic-based detectors are discussed in details. Heuristic procedure

involves the definition of a fitness function, deployed to evaluate the quality of the population/swarm

and to decide which ones are more suitable to solve a given problem (in this paper, MIMO-OFDM

detection). Furthermore, the model is rewritten in an equivalent real-valued representation and the

PSO and DE heuristic procedures are detailed, while the utilization of different initial solution (hybrid

approach) is briefly described.

A. Maximum likelihood (ML) Detector

Aiming to perform optimal symbol estimation, ML detection requires an exhaustive search over all

symbol vector combinations. However, optimal performance comes at high computational complexity,

which is not feasible for real world systems. In the search, the vector that offers the minimum

Euclidean distance between the actual received signal y[n] and the estimated reconstructed received

signal H[n]x[n], assuming the transmission of a given candidate-signal vector x[n]. Hence, ML

symbols estimation for MIMO-OFDM systems can be formulated as the following problem:

x̃[n] = min
x

‖y[n]−H[n]x[n]‖2. (4)

B. Linear Detectors

Since MIMO channels introduce linear superposition between the transmitted signals, detection

algorithms must be deployed at the receiver side to mitigate inter-antenna interference while allow

the symbol reconstruction [15]. In this sense, the ZF is one of the simplest MIMO-OFDM equalizers

which uses the Moore-Penrose pseudo-inverse matrix to decouple the transmitted symbol vector, i.e.:

H
†
zf [n] = (H[n]HH[n])−1H[n]H . (5)

Alternatively, the MMSE linear detector considers the statistical distribution of the noise. Therefore,

this detector aims to minimize the distance between the the actual transmitted signal and the estimated
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signal obtained through a linear equalization matrix [2]. Such optimization procedure can be defined

by

H†
mmse[n] = min

W

E
{

‖x[n]−Wy[n]‖2
}

. (6)

Thus, solving eq. (6) leads to the MMSE closed form solution

H†
mmse[n] =

(

HH [n]H[n] +
N0

ES

I

)−1

HH [n]. (7)

where N0

ES

is the inverse of the signal-to-noise ratio (SNR).

As another option, the matched filter (MF) is a classical method that provides optimum performance

in the AWGN scenario, and consists of the multiplication of the received signal by the transpose

conjugate of the channel.

Finally, linear estimation can be generically described by

x̃[n] = Wlin[n]y[n], (8)

where Wlin[n] = H
†
zf [n] for the ZF detection, Wlin[n] = H

†
mmse[n] for the MMSE detection and

Wlin = HH [n] for the matched filter.

C. Fitness Function

To facilitate the application of the heuristic methods, eq.(1) can be denoted as an equivalent real-

valued representation as follows:

y[n] =





Re{y[n]}

Im{y[n]}



 , H[n] =





Re{H[n]} −Im{H[n]}

Im{H[n]} Re{H[n]}



 , (9)

x[n] =





Re{x[n]}

Im{x[n]}



 , z[n] =





Re{z[n]}

Im{z[n]}



 , (10)

where matrix H ∈ R2Nr×2Nt and vectors y[n] ∈ R2Nr×1,x[n] and z[n] ∈ R2Nt×1 are the real-valued

representation of the channel, received signal, sent information and thermal noise, respectively.

For the detection problem, generally, the fitness function is defined based on the Euclidean distance

between the received signal and the estimated-reconstructed (candidate) symbol, and formulated as

[11]–[13]:

f(ζ) = ‖y[n]−H[n]ζ‖2. (11)

where ζ denotes the entity that we want to evaluate, an specific position of particle in PSO and an

individual in DE.
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D. Heuristic PSO-based Detector

PSO is an evolutionary heuristic algorithm with adjustable parameters, such as cognitive and social

factors (c1 and c2 respectively), related to the behavior of bird flocking and fish schooling. Associated

to each particle there is a velocity v ∈ RNdim×1, actual position p ∈ RNdim×1 and personal best

position pPB ∈ RNdim×1 associated, that are updated at each iteration of the algorithm as follows in

matrix representation [18]:

V = wV + c1U1 ◦ (MPB−P) + c2U2 ◦ (MGB−P), (12)

P = P+V, (13)

where Ndim denotes the dimensionality of the problem, w the inertia factor; U1 and U2 are matrices

compounded of elements ∼ U [0, 1], P ∈ RNdim×Npop and V ∈ RNdim×Npop matrices store the position

and velocity of Npop particles of the swarm in each column, i.e., P = [p1 . . .pNpop
] and V =

[v1 . . .vNpop
]. MPB is a matrix constructed with the personal best position of each particle and the

best position matrix is given by MGB = [pGB . . .pGB] ∈ RNdim×Npop , where vector pGB ∈ RNdim×1

denotes the best position in the swarm, the global best (in a minimization problem, the position that

provides the lowest value of the fitness function).

The w coefficient introduced in [19] can be a constant, linear or nonlinear function and it balances

the global and local exploitation depending on its value [20]. Here, a nonlinear decreasing strategy

of 0.99w is considered. Regarding the velocity, to avoid a possible increase to infinity, it was limited

to the interval [−VMAX, VMAX] [20], with VMAX representing the maximum possible velocity value.

After the execution of Niter times of the PSO algorithm, the output vector pGB corresponds to the

detected symbol using the PSO-aided detector x̃PSO[n] in the MIMO-OFDM problem.

Algorithm 1 PSO – Particle Swarm Optimization.
1: Input parameters: c1, c2, w,Npop, Niter,P

2: Initialization of MPB and MGB

3: for 1 → Niter do

4: Calculate velocity, eq. (12)

5: Calculate position, eq. (13)

6: Evaluate fitness function, eq. (11), for all particles

7: Update personal best matrix MPB

8: Update global best matrix MGB

9: end for

10: Output: pGB
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E. Heuristic DE-based Detector

DE is a population-based heuristic proposed in [21] that relies on operations mutation, crossover and

selection in order to avoid be trapped on local minima across the Ngen generations of the algorithm.

Consider ι,ν,ψ vectors with dimensions Ndim × 1 that represent the individuals, mutation and

crossover vectors, while Nind is the number of individuals. The operations of the DE algorithm

operating with the strategy rand/1/bin presented in [21] are synthesized in the following.

1) Mutation: At each iteration, the k−th mutation vector is constructed as:

νk = ιr1 + Fmut(ιr2 − ιr3), (14)

where variables r1 6= r2 6= r3 6= k, k = 1, . . . , Nind; r1, r2, r3 are integer random variables distributed

as ∼ U [1, Nind], and Fmut ∈ [0, 2] is the parameter representing the mutation scale factor.

2) Crossover: The crossover vector is created from individual and mutation vectors following the

rule:

ψik =











νik if rand ∈ [0, 1] ≤ Fcr or i = rk

ιik if rand ∈ [0, 1] > Fcr and i 6= rk

(15)

where rand ∼ U ∈ [0, 1]; rk is an integer ∼ U [1, Ndim] and Fcr ∈ [0, 1] is the crossover factor, one

of the input parameters of the algorithm.

3) Selection: The population of individuals of the next generation is selected by the following

rule:

ιG
k =











ψk if f(ψk) < f(ιk)

ιk otherwise
(16)

Notice that, in order to select the next generation, the fitness function must evaluate both the

individuals and the crossover vectors, which reflects in the computational complexity of the algorithm.

After the execution of DE procedure Ngen times, the best individual ι corresponds to the detected

(estimated) symbol x̃DE[n] using the DE-aided detector in the MIMO-OFDM problem.

Algorithm 2 DE – Differential Evolution.
1: Input parameters: Fcr, Fmut, Nind, Ngen, [ι1 . . . ιNind

]

2: for 1 → Ngen do

3: Mutation, eq. (14), k = 1, . . . , Nind

4: Crossover, eq. (15), i = 1, . . . , Nind; k = 1, . . . , Nind

5: Select new individuals, eq. (16), k = 1, . . . , Nind

6: end for

7: Output: best individual ι
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F. Hybrid Detectors

To improve performance with a marginal increment on the computational complexity of the sub-

optimal MIMO-OFDM detectors, two efficient hybrid linear-heuristic algorithms are proposed and

evaluated in the sequel. Starting from an initial solution provided by MMSE linear detector, a heuristic

approach is applied in the subsequent stage aiming to improve the BER performance. In such hybrid

configuration, the initial population/swarm in DE/PSO is generated adding random numbers with

Gaussian distribution N (0, 1) to the initial solution [21].

In this work, different initial guess-solution are considered and numerical simulation are discussed

under the perspective of the performance-complexity tradeoff. For that, numerical simulation results

relating performance improvements and complex reduction are pointed out. Three different initializa-

tions have been considered herein:

1) Random initialization: initial positions (in the PSO) and population (DE) are generated using

random variables uniformly distributed inside the search space.

2) Hybrid approach: two different initial points are performed, which are provided by linear

detectors MF and MMSE, while the respective symbol is considered as one variable input

to the heuristic algorithms.

3) Perturbation on the MF/MMSE solutions: the initial position of particles and initial population

of individuals are obtained adding random Gaussian variables N (0, 1) [21] to the initial solution

provided by MF/MMSE detector.

The influence of those points on the BER performance and complexity of the algorithm are explored

in section V.

V. NUMERICAL RESULTS

Throughout this section, MIMO-OFDM systems are simulated considering realistic scenarios and

different symbol detection. Specifically, linear, evolutionary heuristic and linear-heuristic detectors

performance subject to spatial antenna correlation effect has been compared using BER and rates of

convergence for heuristic and hybrid detector approaches. Moreover, for the heuristic-based MIMO-

OFDM detectors, the calibration of input parameters is conducted for each heuristic algorithm and

respective hybrid approaches and the convergence reduction is appointed. After finding the best

input parameter for each heuristic-based detector, the performance of the PSO and DE detectors are

compared with hybrid approaches, namely PSO-MF, PSO-MMSE, DE-MF and DE-MMSE consid-

ering correlation between antennas; the performance of hybrid approaches are evaluated considering

different number of iterations. Finally, the computational complexity of the algorithms are compared

in terms of number of operations.
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Table I summarizes the simulation setup adopted in this work. Moreover, for a fair comparison,

equal power allocation (EPA) was deployed throughout the transmitting antennas.

Table I

MIMO-OFDM SIMULATION PARAMETERS.

Parameter Value

OFDM

System Bandwidth, BW 20MHz

Constellation 4-QAM

Delay spread, τRMS 64ns

# Subcarriers, N 64

MIMO

# Antennas, Nt ×Nr 4× 4

Spatial correlation index ρ ∈ [0; 0.5; 0.9]

MIMO-OFDM detectors MF, ZF, MMSE, PSO, DE, PSO-MF,

PSO-MMSE, DE-MF, DE-MMSE

Power allocation strategy EPA

Channel

Type NLOS Rayleigh channel

CSI knowledge perfect

Heuristic Detectors Setup

Population size Npop = Nind 40

Search Space [-1; 1]

A. Input Parameter Calibration for Heuristic-aided MIMO-OFDM Detectors

As different parameters may influence in the convergence properties of the heuristic algorithms, they

were obtained numerically using the following procedure [14]. Considering a set of start parameters,

one by one is varied and the one that provides the lowest BER is considered in the variation of next

parameter. The illustration of the procedure executed for PSO algorithm is presented in Fig. 2 and for

DE algorithm in Fig. 3, considering different values of spatial correlation and different initial points

discussed in details in Subsection IV-F. Observe that different initializations result in different initial

parameters, which is more evident in the parameter Fmul for random and MF/MMSE initializations.

Looking at the convergence in Fig. 2d, one can notice that with MF and MMSE initialization, the

number of iterations until convergence is reduced in comparison with random initialization case and

consequently the complexity of the algorithm; as the Eb/N0 value increases, more iterations are

required. The start and final values after the calibration procedure for both PSO and DE heuristic-

based detectors are summarized in Table II and III.
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Table II

INPUT PARAMETERS OF PSO AFTER CALIBRATION, CONSIDERING Eb/N0 = 24dB , DIFFERENT INITIAL POINTS AND

SPATIAL CORRELATION.

Parameter Value

N start
iter [100; 20]

cstart1 2

cstart2 2

wstart 1

N rand
iter 100

crand1 4

crand2 (ρ) 1 (0) 0.5 (0.5) 1 (0.9)

wrand(ρ) 1.5 (0) 1.5 (0.5) 3.5 (0.9)

NMF
iter ∈ [5; 25]

cMF
1 4

cMF
2 (ρ) 0.5 (0) 0.5 (0.5) 1 (0.9)

wMF(ρ) 1.5 (0) 2 (0.5) 2.5 (0.9)

NMMSE
iter ∈ [5; 25]

cMMSE
1 (ρ) 3.5(0) 4(0.5) 4(0.9)

cMMSE
2 (ρ) 0.5 (0) 0.5 (0.5) 0.5 (0.9)

wMMSE(ρ) 2 (0) 3 (0.5) 3 (0.9)

Table III

INPUT PARAMETERS OF DE ALGORITHM AFTER CALIBRATION CONSIDERING Eb/N0 = 24dB , DIFFERENT INITIAL

POINTS AND SPATIAL CORRELATION.

Parameter Value

N start
gen [100; 20]

F start
mut 1

F start
cr 0.5

N rand
gen 100

F rand
cr (ρ) 0.6 (0) 0.6 (0.5) 0.8 (0.9)

F rand
mut (ρ) 0.6 (0) 0.8 (0.5) 1.8 (0.9)

NMF
gen ∈ [5; 25]

F MF
mut(ρ) 2 (0) 2 (0.5) 2 (0.9)

F MF
cr (ρ) 0.8 (0) 0.7 (0.5) 0.9 (0.9)

NMMSE
gen ∈ [5; 25]

F MMSE
mut (ρ) 1.7 (0) 2 (0.5) 2 (0.9)

F MMSE
cr (ρ) 0.6 (0) 0.7 (0.5) 0.8 (0.9)
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Figure 2. Calibration of input parameters values for 4-QAM 4×4 MIMO-OFDM PSO detection problem operating under

medium-high SNR and different spatial correlation indexes.

B. Performance Analysis

After input parameters calibration, the BER performance of the heuristic and hybrid MIMO-OFDM

detectors were numerically obtained. In Fig.4a and 4b, the initial solution provided by the MMSE

detector is considered. We observe that, as the number of iterations increase, the MMSE solution

is refined and after 15 iterations, the improvement in BER performance becomes marginal for both

algorithms DE-MMSE and PSO-MMSE. In 5a and 5b, a similar behavior is observed. We note that

the initial point influences the performance of PSO-based detectors: indeed, the PSO-MMSE provides

better results in terms of BER than PSO-MF, but this effect is marginal for DE-MF and DE-MMSE,

where similar performance is achieved after 15 iterations.

In Fig.6, the performances of linear, heuristic and hybrid MIMO-OFDM detection approaches are
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Figure 3. Calibration of input parameters of DE heuristic applied to MIMO-OFDM detection for different values of

correlation.

compared. We observe that PSO-MMSE provides the nearest ML performance, and that the hybrid

approaches provide similar or better approaches than conventional heuristics. For highly correlated

scenarios, the overall performance is worsened. For PSO-MMSE, the gain in performance is evident

in contrast to other linear and heuristic detectors.

In general, spatial correlation degrades considerably the performance of all the studied detectors.

However, hybrid heuristic-linear MIMO-OFDM detectors are suitable choices for MIMO systems

operating under low or even moderate antenna correlation.

C. Complexity Analysis

To analyze the complexity of the detection algorithms, the number of FLOPs among real numbers are

considered. The FLOPs are described as floating point addition, subtraction, multiplication or division
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Figure 4. Performance of the MMSE-hybrid algorithm considering ULA with different values of Eb/N0, spatial correlation

and increasing number of iterations.
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(a) Performance of hybrid algorithm PSO-MF.
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Figure 5. Performance of the MF-hybrid algorithm considering ULA with different values of Eb/N0, spatial correlation

and increasing number of iterations.

operations [22]. In this evaluation, Hermitian operator and if conditional step were disregarded. In

practice, some platforms use hardware random number generators, where an electric circuit provides

random numbers generation, and so the FLOPs cost to generate random numbers was also ignored.

Table IV describes the number of FLOPs needed for the main operations considered herein, while

in Table V, the full complexity expressions (Υ) for the analyzed MIMO-OFDM detectors are shown.

In Fig.7, the complexity is described considering typical values, i.e., Ndim = 2Nt;Nt = Nr;Nind =

Npop = 5 ·Ndim and admitting the number of iterations up to the convergence obtained previously

through simulations, as shown in Fig. 2d, 3d for the heuristic algorithms and for the hybrid algorithm

in Fig. 4 and 5.

May 26, 2022 DRAFT



15

0 10 20

E
b
/N

0
 [dB]

10-3

10-2

10-1

B
E

R

a) ρ = 0.0

0 10 20

E
b
/N

0
 [dB]

10-3

10-2

10-1

a) ρ = 0.5

0 10 20

E
b
/N

0
 [dB]

10-3

10-2

10-1

a) ρ = 0.9

MF
ZF
MMSE
ML
PSO
PSO-MF15
PSO-MMSE15
DE
DE-MF15
DE-MMSE15

Figure 6. BER performance for 4-QAM, 4 × 4 linear array (ULA) antennas MIMO-OFDM for different detectors under

different values of spatial correlation and SNR.

From Table V, it can be observed that DE algorithm requires more FLOPs than PSO since it

evaluates 2Npop times the fitness function per iteration in eq. (16) for individuals and crossover

vectors. The complexity between the linear detectors are almost the same, differing from each other

by an scalar-matrix multiplication and matrix-matrix sum in eq. (5) and eq. (7). Moreover, observing

the hybrid heuristic-linear MIMO-OFDM detector in Fig. 4 and 5, the improvement in performance

starts to stagnate around 15 iterations, and so Ihyb = 15 has been considered as the number of

iterations of the hybrid algorithm to attain the best performance-complexity tradeoff.

Table IV

NUMBER OF FLOPS, CONSIDERING VECTOR AND MATRICES w ∈ R
q×1,A ∈ R

m×q,B ∈ R
q×p,C ∈ R

m×p,D ∈ R
q×q .

Operation # FLOPs

Square root
√
. 8

Norm-2,
√
wTw 2n−1+8

Matrix-vector multiply Aw m(2q −

1)

Matrix-matrix multiply AB mp(2q −

1)

Matrix multiply-add AB+C 2mpq

Matrix inversion with LU factorization

of D [23]

2/3q3 +

2q2

Heuristic detection algorithms produce better BER performance at the cost of an incremental

computational complexity compared with linear detectors ZF and MMSE, mainly due to the popu-

lation/swarm size (around 5 to 10 ·Ndim) and number of iterations necessary to attain convergence.

May 26, 2022 DRAFT



16

In order to reduce the complexity, both hybrid linear-heuristic algorithms combing MF/MMSE and

evolutionary-heuristic techniques were analyzed. The PSO-MF provides computational complexity

near the linear approaches for Nt = 256 antennas. PSO-MMSE has similar computational complexity

than DE-MF.

Although linear MMSE and heuristic algorithms have slightly more computational complexity

than other linear approaches, there is also improvement in BER performance. Moreover, evolutionary

heuristics may be more flexible to be implemented in hardware. Parallelization, the possibility to deal

with non-differentiable and nonlinear functions [21] and the possibility to truncate the number of

iterations to achieve different performance-complexity trade-offs in scenarios that do not require very

low levels of BER, for example with MF hybrid, may be good choices for real applications.

Table V

NUMBER OF FLOPS PER SUBCARRIER FOR THE MIMO-OFDM DETECTORS, WITH H ∈ R
2Nr×2Nt , y ∈ R

2Nr×1,

Ndim = 2Nt .

Detector Number of Operations

ΥMF(Nt, Nr) 2Nt(4Nr − 1)

ΥZF(Nt, Nr)
16

3
N3

t
+4N2

t
+32N2

t
Nr+4NtNr−2Nt

ΥMMSE(Nt, Nr)
16

3
N3

t
+ 8N2

t
+ 32N2

t
Nr + 4NtNr

ΥPSO(Nt, Nr, Npop, I) NpopI(8NtNr + 20Nt + 4Nr + 7)

ΥDE(Nt, Nr, Nind, I) NindI(16NtNr + 12Nt + 8Nr + 14)

ΥPSO-MMSE(Nt, Nr , Npop ,Ihyb)ΥPSO(Nt, Nr , Npop ,Ihyb) +

ΥMMSE(Nt, Nr)

ΥDE-MMSE(Nt, Nr , Nind,Ihyb)ΥDE(Nt, Nr , Nind,Ihyb) +

ΥMMSE(Nt, Nr)

ΥPSO-MF(Nt, Nr, Npop, Ihyb)ΥPSO(Nt, Nr , Npop ,Ihyb) +

ΥMF(Nt, Nr)

ΥDE-MF(Nt, Nr, Nind, Ihyb) ΥDE(Nt, Nr , Nind,Ihyb) +

ΥMF(Nt, Nr)

ΥML(Nt, Nr,M) M
2Nt (8NtNr + 4Nr + 7)

I : # iterations for conventional algorithms

Ihyb : # iterations for the hybrid algorithm

VI. CONCLUSIONS

Extensive simulations were deployed and suitable evolutionary heuristic PSO and DE input param-

eters calibration were chosen numerically aiming to find suitably and of practical interest solutions

for the MIMO-OFDM detection problem. Hybrid approaches considering MF and MMSE as initial

solutions have been also considered, where the linear initial solution is improved while the number

of iterations of heuristic algorithms reduced.

Among the analyzed MIMO-OFDM detectors, the hybrid PSO-MMSE provided the near-ML

performance for the considered scenarios, i.e. ρ = 0 (uncorrelated), ρ = 5 and ρ = 0.9. However, the

BER performance has demonstrated be sensible to the initialization. For PSO-MF, the performance was
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Figure 7. MIMO-OFDM Complexity considering an increasing number of antennas for linear, heuristic and hybrid detectors

in a point-to-point scenario; Nt = Nr , Ndim = 2Nt, Npop = Nind = 5 ·Ndim, I = 50, Ihyb = 15.

similar to conventional PSO, with the advantage of reduced number of iterations until convergence.

For DE, almost the same BER performance was achieved using MF and MMSE.

In terms of complexity, ZF and MMSE require almost the same number of FLOPs, although MMSE

requires some statistical knowledge of the channel condition. Among the heuristic detectors, DE

requires more FLOPs in comparison with the PSO, mainly because the number of fitness function

evaluations is higher, since in DE it is calculated for the ιk and ψk, k = 1, . . . , Nind per iteration of

the algorithm, in comparison to Npop per iteration with PSO (in the simulations, Npop = Nind).

To improve the complexity-performance tradeoff, this work proposed and evaluated two linear-

heuristic hybrid algorithms suitable to solve the MIMO-OFDM detection problem. Starting from a

solution obtained from the MMSE and MF linear detectors, the DE and PSO heuristics were executed

in order to further improve the BER performance while they were able to improve substantially the

performance-complexity tradeoff even under low and medium spatial correlation scenarios. Numerical

simulations have demonstrated that with both hybrid algorithms, the number of iterations required to

the convergence is reduced, achieving similar and slightly better performance in the DE and PSO-

hybrid detectors when compared to the conventional DE and PSO.
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