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Abstract

This article presents an algorithm to estimate the defocus blur from a single image.
Most of the existing methods estimate the defocus blur at edge locations which
further involves the reblurring process. For this purpose existing methods use the tra-
ditional Gaussian function in the phase of reblurring but it is found that the traditional

Gaussian kernel is sensitive to the edges and can cause loss of edges information.
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Hence there are more chances of missing spatially varying blur at edge locations.
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We offered the repeated averaging filters as an alternative to the traditional Gaussian
function which is more effective and estimate the spatially varying defocus blur at
edge locations. By using repeated averaging filters, a blur sparse map is computed.
The obtained sparse map is propagated by integration of superpixels segmentation
and transductive inference to estimate full defocus blur map. Our adopted method of
repeated averaging filters affects both the computational time of defocus blur map

estimation and visual results of the final defocus recovered map.
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1 | INTRODUCTION

Defocus blur estimation is an important task in computer vision and computer graphics applications "2 and provides important
clues for relative depth estimation. The defocus blur estimation and depth information recovery from two-dimensional images
plays an important role which can offer aid for applications such as recognizing and detecting an object, understanding of a
scene, obstacle avoidance inspection, refocusing, segmenting, matting, object tracking, depolarization of background, salient
region detection and assembly 7, Similarly its usefulness is also ideal for IOT based applications, such as use in wearable
devices, video doorbells, and in surveillance products. Estimating the defocus blur and relative depth one needs to estimate blur
in a defocus image.

Blur is a sort of noise and mostly images polluted by the blur or noise which can be referred to disturbances in data. These
disturbances are of no interest and can limit the processing of images. Blur in image can be caused by camera shake ®; motion
of the object and phenomena of defocus 42713, Many pictures are captured with a sharp foreground and defocus background™.
The reason for this is the focus and out of focus planes of the camera sensor. The object which lies on the focus plane results in
a sharper image but if the object distance deviates from the focal plane causes a blurred image. This sort of blur can be referred
to defocus blur. The human eye has the best structure which automatically percepts the focus and defocus objects in scene or
image but for a sensor, it is difficult to percept the clarity of the objects in scenes.

Defocus blur estimation process contains two phases one to estimate the sparse map and the second one is the sparse map
propagation into the whole image. In this article, we are focusing on a challenging problem of defocus blur map estimation from
a single image. The defocus blur estimation methods fall into two main categories: multiple images based methods 1417 and
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single image based methods 8%, Multiple image based methods use more than one image captured by multiple camera focus
settings, while the single image based methods use edges locations to estimate the defocus blur. Multiple images based methods
suffered from some serious problems like occlusions and the scene should be static which practically limits their applications.
On the other hand, recovering defocus from a single image is more practical.

Single image defocus blur estimation techniques mainly categorized into two classes i.e. gradient based methods
and frequency based methods 11822°23 The stated classes is further narrowed into two sub-classes; the first one is edge based
DR6A29 methods and the second one is region based method U, In edge based methods blur estimation is performed at edge
locations. Edges based methods have proven to be fast as compared to region based methods. In region based methods, the
defocus blur is recovered directly from the local patches of the input image. Region based methods showed much accurate blur
maps =Y as compare to edge based methods.

Our method is edge based and inspired by Zhuo et al “* proposed technique, which applied normal Gaussian blur kernel for
re-blurring the input blur image. Then the ratio of gradients of input blur image and the reblurred image is computed. The offered
approach was computationally expensive and resulted in loss of some edges after applying the normal Gaussian distribution. We
planned a fast defocus map estimation system to encounter aforementioned drawbacks. Our proposed scheme adopts a modified
Gaussian function on the basis of repeated averaging filters which result in a better sparse map at low computational cost and
keeps much of edge information alive.

The repeated averaging filters which is the approximation of traditional Gaussian function can be used as a modified blur
function instead of traditional Gaussian distribution. Our scheme uses the integral image theory, a proved concept for fast
processing. In the subsequent step, computed the gradient ratio of the input blurred image and integral reblurred image. Attaining
the gradient magnitude ratio we acquired the sparse map easily with ample edges preserving characteristics. To propagate the
sparse map for getting the full defocus map we adopted the method of Chen et al?Z which further contains two phases of over-
segmentation and transductive inference. Integrating the repeated averaging filters with Zhuo et al'® and Chen et al*” into one
pipeline achieved a full defocus blur map recovery. The proposed method surpasses many states of the art techniques previously.
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2 | RELATED WORK

Broad work has been done previously related to defocus estimation. Jiang et al # proposed a gradient related scheme, based on
saliency detection, which aims to detect better regions for complex structures and integrated three visual clues such as focusness,
uniqueness, and objectness. Focusness refers to, in pictures some region photographed are focused, and while uniqueness refers
to-Visual contrast of the appearance of the objects and the third one was objectness which is-Complete boundaries of objects.
Elder and Zucker Y detected, localized and characterized the edges in the presence of blur by use of first and second order
derivatives of the input image, which naturally leads to estimate the edge blur locally. Bae and Durand "1 defocus magnifying
approach was based on blur kernel estimation at edge locations and gave a new direction to the sparse defocus map by making
it full defocus map through interpolation method.

Namboodiri and Chaudhuri 12 estimated the blur by formulating the reverse heat equation. On the other hand, the reverse heat
equation had the parabolic nature which is divergent. To balance the reverse heat equation they considered gradient degeneration
and obtained the depth estimate. However, this method was not applicable to those regions which have less texture so further he
refined the obtained depth map by Markov random field by using the MAP-MRF framework. Peng et al ¥ estimated the scene
depth for underwater images which observed that more blurriness is a result of the larger scene and therefore measured the
scene depth. Integrating the image formation model (IFM) with blur, the depth estimate is attained by computing the distance
between scene points and the camera. Tai and Brown 2V used the local contrast prior to estimate defocus map by considering
image gradients locally. Their observations were based on the fact that images with defocus blur regions have smaller gradient
magnitudes than the local contrast as a result of the blurring process. For propagating the defocus blur their proposed method
described the Markov Random Field formulation.

Tang et al ! advocated a procedure related to frequency based methods which targeted the spectrum amplitude of edges.
For assessing defocus blur amount a full defocus map is projected. Liu et al 18 offered an analysis framework for partial blur
detection and detected images having blurred regions. Their proposed system also added some extra features such as recognizing
different types of blur without the use of the blur kernel. The suggested procedure was based on modeling the image color,
spectral information, and gradient. Wang et al “? proposed a region based algorithm. They used segmentation for classifying each
block of the observed blurred image into background and foreground via average intensity and variance wavelets coefficients.
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The average intensity was deliberated for similarity with corresponding image blocks. The variance of wavelets coefficients
performed the background and foreground differentiation which is considered the main feature of the deliberated method. Kim
et al 23 transformed the low depth of field (DOF) image into higher order statistics (HOS) space first. Secondly, they computed
the HOS map and aloof the dark dumps by a morphological filter. Lastly, the object of interest was achieved through region
merging and thresholding. Kovacs et al “* suggested a classification methodology built on blind deconvolution to approximate
the focused regions in common images. Saxena and Chung > computed a depth map on the basis of discriminatively-trained
Markov Random Field (MRF) which was a supervised learning approach.

Recently many researches concentrated on the edge based methods which further consider reblurring the gradient magnitude
ratios. Zhuo et al 12 anticipated technique first reblurred the input image by using Gaussian kernel. After that the gradient
magnitude ratio of input image and reblurred image is computed to obtain raw sparse map. The raw sparse map is refined further
by a joint bilateral filtering method. For sparse map propagation, they applied the matting Laplacian formulation. In the method
of Pi and Zhang % a very simple approach is adopted and defocus blur is directly computed from the local gradients. The blur
is computed at edge location using the gradient ratio on different scales. Furthermore the defocus blur is re-computed and for
this purpose variance of the Gaussian gradient profiles is used. Chen et al %’ followed the same method of ! for estimating the
blur spare map and introduced the over-segmentation and transductive inference to propagate the sparse map robustly. Cao and
Fang 28 designed scheme first a point to point defocus model is presented. Further a sparse map is estimated and propagated
in two steps. For sparse map estimation a sharp edge prior is used and computed the blur at edge locations. A guided image is
applied for propagation of the sparse map. Recently Zhang et al 2 proposed a method, they estimated the blur map by using
edge information and K nearest neighbors (KNN) matting interpolation. Then the blur map is segmented for derivation of local
kernels. Finally, they restored the latent image by adopting the BM3D-based non-blind deconvolution process.

Most of the above edge based techniques used the traditional Gaussian function which previously considered better accounts
for its various anomalies in practical imaging systems, and had been used widely in depth from defocus, but applying the
traditional Gaussians cause some loss of image information such as vanishing of weak edges in sparse to defocus as well as final
defocus map. This intuition leads us to replace the traditional Gaussian by repeated averaging filters to recover defocus map by
estimating the blur amount from a blurred image.

The rest of this paper is organized as follows. Defocus model is introduced in subsection 2.1.We discussed our approach in
Section 3. The evaluations and results are discussed in Section 4. Section 5 concludes the overall approach used for defocus blur
estimation.

2.1 | Defocus Model

In many cases, we need smaller defocus that can be regarded as useful for image manipulations. Focus and defocus is asso-
ciated with the camera lens diameter which suggests that having smaller lenses produce less defocus and causing less blurry
backgrounds. Contrary larger aperture lenses produce larger defocus. Detecting an edge is part of segmentation and goal is to
produce a line like drawing from an image of a scene. We consider step edges for estimating the defocus blur at edge locations.
For step images, the intensity changes abruptly which is shown in the Figure[I] Defocus blur can be estimated at edge locations.
Natural images considers step edges as main edges, mathematically representation is given as

E(z) = AlphaU(z) + Beta (1

Where U(z) stands for the step function, Alpha is the amplitude and Beta is the offset of the edge. Note that, edge is positioned
at z=0. Focus and defocus comply with thin lens model that is assumed by “2. Placing an object at focus distance DF (distance
of focus), all emissions from the point of an object will congregate to a single sensor point and results in sharp image. When the
object is lying on out of focus distance D (out of focus), rays will project on multiple sensor points and fallouts in a blurred image
which depends on the shape of aperture and called circle of confusion (COC). The diameter of (COC) describes the amount of
defocus and written as

_|ID-DF|  Fo
B D  n(D- DF)

C

2
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Where Fo signifies focal length and n referred as the stop number of the camera. Thin lens model depicted in Figure 2] shows
focus and defocus for thin lens model and variation of diameter of circle of confusion which changes with respect to D and n,
for a certain fixed Fo and DF 32, The defocus image is convolution of sharp image and point spread function which is defined as

B(z) = Sharp(z) ® Psf(z;0) 3)
: | : ‘ Vi .
! ®a, \’ \vj [ Vi, I
> > . X |—>» | Blur Amount
l ) J : \ :
| I I I
Blurred Edge Re-blurred Edge Gradients Gradient Ratio

FIGURE 1 Overview of the gradient ratio estimation proposed by Zhuo et al ?, the dashed line represents the edge location.

The standard deviation o is proportional to COC(circle of confusion diameter C ) which define the blurness in image. The
point spread function can be assumed as a Gaussian amount in an image and we can model the defocus blur by convolving an
edge pixel z with a Gaussian kernel G(z; o).

B(z) = Sharp(z) ® G(z;0) (€]
Out of Focus Focal Plane Lens Sensor
a C
DF
D
FIGURE 2 Thin lens model.

3 | PROPOSED METHOD

We offered a novel system for modeling the defocus blur estimation. The defocus blur in an image is caused by the convolution
of a sharp image and PSF (point spread function), approached by using the traditional Gaussian function. For defocus blur
estimation most of the previous researches and even states of the art methodologies uses the Gaussian function for re-blurring
the reference image. Using Gaussian is sensitive towards sparse map and full defocused map in ratio based methods and further
causes some loss of information at weak edge locations. We are interested to estimate the blur around edges, and cannot afford
the loss of some important information which is local to edges. For addressing this issue fast repeated averaging filters function
is introduced and further incorporated it with the superpixels segmentation for attaining the full defocus blur map. Repeated
averaging filters function approximates a good estimate of the Gaussian using some amount of sigma which is computationally
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low cost and more than the traditional Gaussian function. Kovesi “ suggested a method which presented an alternative to the
traditional Gaussian function by applying the repeated averaging filters through integral image at very low computational cost.
The procedure in 33 advocates that repeated filtering with averaging filters can be used for fast Gaussian filtering approximations.
We adopted the advocated approach. First applied averaging filters repeatedly to the input image. In the process, the input image
converted into an integral image. Mathematically integral image is defined as follows

Z = S(xes Ye) = Sy, yp) = S(xg, yg) + S (X4, ¥,) ®)
abed

An ideal averaging filter width is defined by assuming Equation (8). For defocus blurs estimation the edges are boundaries which
are of interest for blur recovery. Applying the normal Gaussian for the blur process can harm some edge information in the re-blur
process. The supremacy of this filter is that it is a movable filter, unlike the Gaussian kernel which is symmetrical. We recovered
a sparse map with better edges from gradient ratios using the repeated averaging filters prior. Propagating the sparse map is a
time consuming task. For fast sparse map propagation, we implemented the method of Chen 22, Where a simple linear iterative
clustering (SLIC) superpixel procedure 54 is castoff for over-segmenting the image. For identical objects of interest in images
region based segmentation preferred and worked well relying on intensity thresholding. But for images having noise, texture
and clutter can limit the performance of region based segmentation. For instance, the segmentation approaches which purely
rely on intensity thresholding results in too fine or too rough segmentation for segmenting the non-identical objects of interests,
which is categorized as under-segmentation and over-segmentation 22, Over-segmentation is much faster than the traditional
approaches used formerly for propagating the sparse map with an additional feature of transductive inference. Therefore the
over-segmentation practice is introduced where the segmented objects from the background are being segmented from already
segmented objects, which is useful for selecting the boundaries of the importance of objects in images. Our proposed algorithm
is shown in Figure 3]

3.1 | Adopting the fast Gaussian approximation model

To achieve efficient Gaussian approximation via multiple averaging, specific averaging filters needed for the approximation of
Gaussian. The standard deviation of an averaging filter of width w is given as

w?2-1
Oy = T (6)

Performing n averaging’s with the same filter the variances produce overall filtering effects equivalent to the standard deviation

of
_ [(mW?2—n
Oay = T (7)

From this, one can compute the ideal width of the averaging filter that is equivalent to the normal Gaussian distribution given as

1262,
Wdear = +1 ®)

1

For further manipulations and parameters settings one can refer to 23, So it is assumed that this ideal averaging filter is equivalent
to the traditional Gaussian kernel. The mathematical representation of this assumption given as

2 2

120
I/I/ideal = 1200 + lzG(Z;O‘au) (9)

3.2 | Modelling defocus blur estimation with repeated averaging filters

Gradient based defocus estimation has two phases; one to estimate defocus blur at edge locations; in the second phase, the
computed sparse defocus blur propagation to the entire image. Our proposed method has outcomes in both phases. The first effect
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Inpute Image Repeated Averaging Filter with some amount of Sigma

Edge i Map Sparse Map

Gradient Magnitude Gradient Magnitude

Oversegmentation Transductive Inference Blur Propagation Final Defocus Map

FIGURE 3 Our proposed algorithm. Relating the averaging filters repetitively via integral images, which outcomes in a reblurred
integral averaged image. Taking the ratio of gradient magnitudes of input and reblurred image yields the sparse map with respect
to the edge map. The robust Over-segmentation process is applied to obtain the weighted matrix. A transductive inference is
used to calculate the affinity matrix. Considering the superpixels and affinity information the sparse is propagated into the whole
image and finally, estimated the final defocus map.

is, by repeated averaging filter method decreases the computation time of sparse defocus map and second is, it also produces
the better visualization of the final defocus map on the basis of obtained sparse map. We have an input defocus image; our
first task is to detect edges. We applied the state of the art canny edge detector 536 In the next step, we re-blurred the reference
image by proposed repeated averaging filters with some amount of sigma and replaced it as an alternative to the traditional
Gaussian function. Re-blurring the edge pixels using our repeated averaging filtering method, the gradient of the re-blurred edge
is represented as

V B(z) = V(E(2) ® G(z;0,,) (10)
From Equation (1)
V B(z) = V(AlphaU(z) + Beta) @ G(z;0) ® G(z;0,,) (11)

a 2

= exp —Z
\/27r(c72 +02) \/2(0’2 +02)

Equation (9) proposes that repeated averaging filter is approximately equivalent to the traditional Gaussian function so Equation
(11) can be modified by considering Equation (1) and Equation (9). In Equation (12), ¢, signifies the standard deviation of the
repeated averaging filter re-blur kernel. From the technique of Zhuo = gradient magnitude ratio of the actual blurred edge and
the reblurred edge is maximum by value at edge locations which can be modified as

(12)

_ IVb(z)l _ ]t
IV b(z) ® G(z:0,,)] o?

(13)
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This suggest that we can estimate the unknown blur o from the gradient magnitude ratio at the edge locations which can be

represented as

o2

c=—=— (14)
VR2-1
Where av is known quantity and R can be derived from gradient magnitudes.

3.3 | Sparse map propagation

3

For propagating the sparse map, the super pixels creation SLIC algorithm 5¢ and transductive inference 2 are followed. First a

weighted matrix W is constructed by over-segmenting an image and super pixel set is defined as
S ={51,5,...5y} (15)

Keeping the super pixel .S set in view a weighted connected graph is defined as G = (S, €, w). S is the vertex super pixel set
and ¢ is the edge set which contains adjacent superpixels where every vertex .S; represents a single superpixel in .S and edge ¢,
belongs to £ representing the adjacency relationship between S; and .S;. A weight function is defined as @ : € — [0, 1] which
further corresponds to w;; with respect to each edge ¢;; for similarities and a final weight matrix is obtained as W' = [@,, Iy n
The acquired matrix W which is similarity between two adjacent superpixels. By transductive inference a N-by-N an affinity
matrix is further defined as

A=D-yW) I (16)

Where [ is N-by-N identity matrix. D directs to a diagonal matrix, W is diagonal entry, y is a parameter in the range (0, 1).
The affinity matrix encrypts the transductive resemblance between superpixels and consequently high chances of adjusting the
defocus blur for superpixels pairs. An initial defocus blur f for every superpixel can be defined as

[y = median, g { f,} (17)

Where E; is set of interior edge pixels. Median is used to avoid the outliers. f, is computed by Equation (14) and finally
considering the defined affinity information the defocus blur propagation is defined as:

Ta=AlLy fig oo fiud” (18)

Ais modified affinity matrix. The Equation (18) defines defocus blur and shows that the defocus blur derived from all superpixels
except from those superpixels which have no edge pixels. As a result the sparse map is propagated into the whole image.

4 | RESULTS AND DISCUSSIONS

The defocus blur map estimation mainly focused on the sparse map generation and propagation of sparse map, to get full defocus
blur map. It is observed that blur in a defocus image usually occurs and estimated around the edge pixels. Adopting the proposed
modified Gaussian function, it is experimentally proved that a better sparse map is estimated so therefore gives good visual
estimates of the full defocus blur of the blurred image.

For our experimentation the system specification is ASUS machine with Intel Core i17-6700HQ 2.60 GHz CPU running with
Installed memory (RAM) 8.00 GB, with MATLAB 2016b under windows 10. We used the dataset for blurry images which are
collected from previous related literature *!°. Our scheme first transforms the input image into an integral image and further we
apply the repeated averaging filters method referred as box-like filtering. Box Filtering and summed area tables also known as
integral images. Summed area tables is the process of cumulating and summing the pixels values along the rows and columns of
the image. Therefore the sum of the rectangular region is computed using O(1) independent of its size. The summed area tables
or integral images useful to convolve an image very fast % and calculations can be decreased. Bay et al *% exploited that these
filters are also convenient for constructing filters like Haar and one can approximate first and second order derivative Gaussian
filters.
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Our recommended approach performs two operations first is to make use of integral image and then apply some blur, alter-
native to the traditional Gaussian filtering. Acquiring the repeated averaged reblurred integral image we evaluated the gradient
magnitudes of the input and re-blurred images. Taking the gradient magnitudes of both the input and blurred image, we calcu-
lated the gradients ratio which resulted in sparse defocus map. As the previous methods used the traditional Gaussian filter for
re-blurring the input image which causes loss of weak edges. Contrary, our adopted repeated averaging filter preserve more of
the weak edges information and eventually we get fast and visually good sparse map which is important for recovering the full
defocus map.

For sparse map propagation, we utilized the over-segmentation method to create the super-pixels by SLIC algorithm ** and
transductive inference 27 as in the method of Chen 2%, which surpasses many states of the art methods proposed previously.
We observed that repeated averaging filters produced better visual estimates of the blur even for high precision images and the
computational time is less than 0.90 seconds for 800x800 image. We set sigma as 1.8 and 2 and applied 3 to 4 repeated averaging
filters for performing our experiments. Applying at least three filters achieves the same approximation for the traditional Gaussian
distribution. Using four repeated averaging filters the approximation to Gaussian becomes very decent 23, To evaluate our
experimentation we kept sigma amount as 1.8 or above because our proposed method considers the sigma amount higher or
equal to 1.8. Results of the sparse map as shown in Figure 4]

FIGURE 4 Shows the sparse map comparison, where top row is input image, the second row is Zhuo ' method, and the third
row is the sparse map of our proposed method with much of edge information preserved as compared to others.

Previously most of the methods focused only on the second phase of propagating the sparse map. But in our method we
targeted the first phase of sparse map generation which can further causes better visual estimates of the defocus blur. The repeated
averaging produced fast and better sparse map compared to the previous techniques. Our experimental assessment provides
qualitative analysis, computational analysis, and quantitative analysis which is compared further with the methods of Chen 27,
Zhuo ", Jiang %, Shi” and Shi 2.

4.1 | Qualitative Analysis

To visualize the outputs better the defocus blur of all methods are normalized to the range of [0, 1] as in Chen %” scheme which
advises that higher intensity values are pointing towards stronger defocus blur. The qualitative results can be shown in Figure[5]
(a) is input image, (b) are our evaluated results on the basis of 4 repeated averaging filters with sigma amount of 1.8. (c), (d),
(e), (D, () are the qualitative analysis of Chen %, Zhuo 4 [19], Jiang %, Shi” and Shi “, respectively.
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FIGURE 5 Qualitative Evaluation.

4.2 | Quantitative Analysis

Pratt’s Figure of Merit (PFOM) measure [40] is used to provide further quantitative analysis for the edges in the sparse map.
Pratt’s introduced a method, figure of merit by analyzing and balancing errors in the process of edge detection, which is given as

1 1
R=— 19
I 21+ad2 (19
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TABLE 1 Summary of SSIM and MSE measures

Proposed Chen et al 27 Zhuo et al™® Shi-1 et al 7 Shi-2 et al Jiang et al 4
Image SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE
1 0.5336 6025 0.5134 8991 04712 8247 0.3204 11247 0.5274 4892  0.1909 14243
2 0.3384 4770 0.3038 8099 0.0886 5035  0.0923 15909 0.2463 5964  0.1468 10341
3 0.6513 3516 0.4613 5444  0.2617 6492  0.2239 13098 0.3436 7197  0.3419 5773
4 0.5099 4378 0.4816 9148 04770 4334 02160 10242 0.4619 5946  0.2868 3112
5 04711 4804 0.4455 4672 03065 5471  0.1671 20934 0.2816 8159  0.4562 3110
6 0.6105 4929 0.3953 13745 0.5464 5331 0.2310 15667 0.5226 4702  0.2667 3809
7 0.6931 3111 0.7122 3350 0.5892 3953  0.2645 15547 0.5981 3814  0.0553 15070
8 0.3103 4588 0.4443 3480 0.3721 12740 0.1203 6768  0.2995 7865  0.1483 6648
9 0.4891 6975 0.3338 18902 0.2905 21576 0.3938 16018 0.3491 11817 0.1164 28720
10 0.5594 1933 0.4373 15404 0.5663 2201 0.3586 7458 0.4665 6552  0.1157 15922
11 0.6068 9841 0.3867 16053 0.2971 15204 0.3199 12436 0.3404 11848 0.4604 4336

12 0.5009 5513 0.3264 3951  0.5328 1948  0.2131 11159 0.3138 6264  0.1364 6438
Average 0.5228 5031 0.4368 9269  0.3999 7711  0.2434 13040 0.3959 7085  0.2268 9793

Where Iy = maxI;,1,. I, is the ideal edge map and [, is an actual edge map, a is scaling constant, d represents separation
distance for actual edge points which is normal to a line of ideal edge points. For this tenacity first, we applied the Sobel operator
on edges and assumed it our reference or ideal edge map. Similarly, the sparse map edges are supplied as detected edges or
actual edges to the Pratt’s Figure of Merit (PFOM). Using the PFOM measure our method have much edge preserving efficiency
compared with the traditional Gaussian filter which is illustrated in the Figure[7]

PRATT'S FIGURE OF MERIT FOR SPARSE MAP
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FIGURE 6 The Pratt’s Figure of Merit (PFOM) measure for 12 images. The figure compares the sparse map edges obtained
from our method and Zhuo “# proposed method. They used the traditional Gaussian and affects the edges in the sparse map
while our method preserves much of edge information and hence proved by the Pratt’s Figure of Measure (PFOM).

Further, we evaluated the structural similarity (SSIM) index and mean squared error (MSE) measures, our method surpasses
all the comparative methods. The SSIM and MSE measures are summarized in Table 1. For SSIM and MSE evaluation, the
input RGB image is converted into a grayscale image and then passed the grayscale image as a reference image to SSIM and
MSE function. Likewise a Perception based Image Quality Evaluator (PIQE) no-reference image quality score is also derived
which documented in Table 2.
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TABLE 2 Perception Based Image Quality Evaluator (PIQE) evaluatiion

Perception Based Image Quality Evaluator (PIQE)- no refrence image quality score
Image  Proposed Chenetal?” Zhuoetal® Shi-1etal” Shi-2etal® Jiang etal*

1 87.7005 86.4132 46.2867 80.5136 79.9791 69.4261
2 90.7279 88.4004 27.8127 77.1165 89.3618 70.9878
3 93.8429 88.0999 45.0769 81.0404 91.2433 74.1297
4 87.4708 86.9204 54.9082 69.2991 81.4296 68.2903
5 88.0421 87.6264 37.5623 75.9532 90.2347 56.7498
6 91.7564 88.8902 47.4429 79.2945 93.7210 83.8199
7 94.2218 87.2215 43.0590 78.3703 84.6277 56.5710
8 70.7032 87.7970 29.5122 45.5111 54.5174 59.3121
9 88.5801 86.8828 29.9651 67.9904 89.2088 82.0605
10 94.5987 87.3023 51.7024 71.7990 91.1849 78.2735
11 93.9099 88.7243 48.3920 71.1264 92.5007 74.6482
12 90.7376 87.2059 37.8502 53.6065 90.8149 69.3145
Average 89.35 87.62 41.63 70.96 85.73 70.29

4.3 | Computational Analysis

3.5 —8— Chen —8— Proposed .

P
L%,

Time 1 Seconds
.

0 200 400 600 800 1000 1200

FIGURE 7 Proposed method computational comparision with Chen et al 2Z.

S | CONCLUSION AND FUTURE PERSPECTIVES

Our technique is based on repeated averaging filters via integral images to replicate traditional Gaussian function which is used
excessively in most of the preceding methods of defocus blur map recovery. The modified Gaussian function blurs the input
image very fast which generates a better sparse map at low computational cost as compared to the traditional Gaussian function
with much edge perseverance which affects the final estimates of the defocus map visually. The reason behind this is that it
converts the input image to integral image and the post processing can be done fast as compared to the previous traditional
methods. The repeated averaging filter provides faster aid to the state of the art techniques and made its computational time less
than 0.90 seconds for even high precision defocus blurry images. For our future work we will use the guided filter for sparse map
refinement and for faster propagation of the sparse map we will consider the over-segmentation method of ‘FLIC’ for superpixel
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FIGURE 8 Comparison with Zhuo 12, Jiang %, Shi-17 and Shi-22.

segmentation or alternatively the object level regions (ex, Mask-RCNN) instead of superpixels. Further the repeated averaging
filter can be used for underwater images de-hazing or outdoor image de-hazing.
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