
Received: 21 September 2018 Revised: 12 March 2019 Accepted: 6 April 2019

DOI: 10.1002/ett.3633

R E S E A R C H A R T I C L E

A twofold group key agreement protocol for NoC-based
MPSoCs

Gaurav Sharma1 Veronika Kuchta2 Rajeev Anand Sahu1 Soultana Ellinidou1

Suman Bala1 Olivier Markowitch1 Jean-Michel Dricot1

1Cybersecurity Research Center,
Université Libre de Bruxelles, Brussels,
Belgium
2Cyber Security & Systems, Monash
University, Melbourne, Australia

Correspondence
Gaurav Sharma, Cybersecurity Research
Center, Université Libre de Bruxelles,
1050 Brussels, Belgium.
Email: sharmagaurav@ieee.org

Funding information
Project ARC (Concerted Research Action)
of Federation Wallonie-Bruxelles

Abstract

A symmetric group key agreement protocol enables the group members to derive
a shared session key for secure communication among them, whereas an asym-
metric one facilitates security to any communication from outside, without
adding outsiders into the group. In order to combine both the functionalities, a
hybrid key agreement protocol is needed, which can output a shared symmetric
key for inside communication and an asymmetric key pair for any unrestricted
sender. The application mentioned in this paper pushes the need of secure
on-chip communication for intersecure and intrasecure zones simultaneously.
In particular, we look forward for a solution to ensure communication security
among multiple processing clusters actively running on an integrated circuit.
The proposed protocol offers a lightweight symmetric encryption for intra-
zone communication and a public key encryption for interzone communication
taking most advanced security issues into account.

1 INTRODUCTION

The emerging practical needs are constantly looking for a scalable solution to accommodate multiple processing units in
an electronic device, processing simultaneously to achieve a common goal. The common bus standards for on-chip com-
munication are advanced high-performance bus and advanced eXtensible interface. However, to make the design more
scalable, network-on-chip is more appropriate option. To execute a complex task, more than one processing units (clus-
ter of processors, processing clusters [PCs]) might be needed. These PCs will create a virtual zone to run the application
securely. In literature, these virtual zones are referred as secure zones. Figure 1 depicts three secure zones. Indeed, the
running programs need to exchange data and instruction sets quite frequently. Usually, this communication is in plaintext
and any malicious program can intentionally extract and modify the data. To make this communication secure, there is a
need of an encryption algorithm (symmetric or asymmetric). There may be some applications that do not need security
at all. However, sensitive applications need to share their data and operation codes, only in an encrypted manner. When-
ever PCs share data among themselves (within the same secure zone), symmetric encryption key can be a viable and cost
effective solution. Furthermore, the usage of same symmetric key on all the zones will undermine the overall security
standard. The compromise of this common symmetric key will expose the security of the whole system. Moreover, this
solution is only restricted to inside communication of a secure zone.

In several situations, in order to timely execute a particular application, an outside IP may be borrowed from another
cluster. The borrowed IP might be available at a distance from secure zone, and therefore, the computations performed

An extended abstract of this contribution has already been published1 at Privacy, Security & Trust (PST) 2018.

Trans Emerging Tel Tech. 2019;30:e3633. wileyonlinelibrary.com/journal/ett © 2019 John Wiley & Sons, Ltd. 1 of 18
https://doi.org/10.1002/ett.3633

https://doi.org/10.1002/ett.3633
https://orcid.org/0000-0003-2842-3788

2 of 18 SHARMA ET AL.

FIGURE 1 Three secure zones in an MPSoC platform

by this IP must be encrypted before forwarding to zone members. Following the above discussion, a suitable solution can
be achieved by deriving different session keys for all the zones for secure intrazone communication and an asymmetric
encryption key for interzone communication. In our paper, we propose a twofold group key agreement (GKA) protocol,
which outputs a shared symmetric key as well as a group encryption/decryption key pair. In our case, the asymmetric
GKA (ASGKA) will derive different decryption key for all the participants.

1.1 The need of group key agreement
A group key agreement (GKA) protocol ensures establishment of a common session key among the group members,
which remains unknown to outsiders. Practically, a GKA enables multiple remote users to communicate securely in an
open environment. This group session key is further used for encryption and decryption of shared data. There are various
GKA protocols which can provide a session key. However, this session key will be limited to group members only and no
outsider unit can communicate to these group members. For any outside communication, which is very relevant in the
real-world scenario, ASGKA protocol was first proposed by Wu et al.2 In the subsequent improvements, the privilege of
adding and removing group members was added. These protocols are known as dynamic ASGKA protocols.

The GKA protocol is applicable in various real-world communication networks such as ad hoc networks, wireless sensor
networks, and body area networks, where devices are involved in sharing common secret data over an open channel. There
are numerous real-life examples of GKA including distributed computations, video conferencing, multiuser games, etc.
The key establishment protocols can be categorized into two sets: key transport protocols and key agreement protocols.
In the former, the session key is derived by one of the powerful nodes, and then the key is transferred securely to all the
members of the group. In the latter, a common session key is derived by all the members by interactive participation in
an agreement protocol. Moreover, GKA protocols can be further categorized into balanced and imbalanced protocols.
All the participants in balanced GKA share same computing burden, whereas in imbalanced protocols, a powerful node
verifies all the received signatures. As established by Bellare and Rogaway (Crypto'93),3 authentication is an essential
security requirement for key exchange protocols, otherwise the man in the middle attack yields the protocol vulnerable
to impersonation attacks.

The issuing and storage of digital certificates in tiny devices are complex tasks. In order to support multiple applications
simultaneously, more PCs are required to be employed. However, as the multiprocessor system-on-chip (MPSoC) scales
up, the public key storage of all the PCs on board is a challenging task itself. Motivated by Shamir's idea of identity-based

SHARMA ET AL. 3 of 18

(ID-based) cryptosystem,4 we deploy our scheme on the ID-based setting to avoid overhead of certificate management
due to classical PKI setup. In ID-based system, the trusted private key generator (PKG) generates private keys for all the
participating members and public keys are directly derivable from the user's identity.

1.2 Related work
We extensively review the related literature and present state of the art in three major sets, namely, symmetric GKA (SGKA),
ASGKA, and secure communication in system-on-chip (SoC).

1.2.1 Symmetric GKA (SGKA)
After the seminal work of Diffie and Hellman,5 there have been extensive efforts to convert their two-party key exchange
protocol to multiparty key exchange protocol.6-8 Among the most notable works, Joux's one-round three-party key agree-
ment protocol9 is considered as a significant contribution for practical GKA protocol due to the functionality of pairing.
Based on Joux's work,9 Barua et al10 have presented protocols of multiparty key agreement in two flavors: unauthenticated
(based on ternary trees) and authenticated (from bilinear maps). Unfortunately, their protocols are secure against pas-
sive adversaries only. The first provable security model for authenticated key exchange (AKE) security was introduced by
Bresson et al,11-13 but their protocol accounts O(n) rounds, which is very expensive. Furthermore, the model was improved
in the work of Katz and Yung.14 They proposed a scalable compiler, which transforms any unauthenticated GKA into the
authenticated one. Later, Katz and Shin15 modeled the insider security in GKA protocols. In 2009, Gorantla et al16 pro-
posed a security model, we call it the GBG model, which addresses the forward secrecy and key compromise impersonation
resilience (KCIR) for GKA protocols to take into account AKE security and mutual authentication (MA) security. Their
model was revisited and enhanced by Zhao et al17 in 2011. They improved the GBG model to a stronger extended GBG
model, we call it the EGBG model, where they addressed the ephemeral secret key leakage (ESL) attack. The EGBG model
is the strongest model, as it takes into account both the leakage of secret key and the leakage of ephemeral key indepen-
dently. Later, Tseng et al18 argued that unforgeable adaptive chosen message attack (UF-ACMA) security is not sufficient
and proposed a UF-ACM-ESL secure signature based on the work of Schnorr.19

In the ID-based setting, the first authenticated GKA (AGKA) protocol was formalized by Choi et al20 in 2004, but
their scheme was found vulnerable to insider colluding attack.21 In 2007, Shim22 claimed that scheme in the work of
Choi et al20 is vulnerable to another insider colluding attack and improved the protocol. Unfortunately, none of these
AGKA protocols could achieve the perfect forward secrecy. Perfect forward secrecy allows the compromise of long-term
secret keys of all participants maintaining all earlier shared secrets unrevealed. In 2011, Wu et al23 presented a prov-
ably secure ID-authenticated group key exchange (AGKE) protocol from pairings, providing forward secrecy and security
against the insider attacks. Later, Wu et al24 presented their first revocable ID-based AGKE protocol, which is provably
secure and can resist malicious participants as well. The main attraction of this protocol was efficient revocation of group
members. The protocol takes three rounds and cannot identify malicious participants.

In a subsequent improvement, Wu and Tseng25 proposed an ID-based AGKE protocol, which can passively detect mali-
cious participants and also proved its security against insider attacks; although the protocol was later found insecure
against an insider colluding attack by Wei et al.26 Afterwards, a two-round revocable ID-AGKE protocol was presented
by Wu et al,27 which can identify malicious participants. The major limitation of existing literature is not to consider the
ephemeral key leakage.17 In 2015, Teng et al28 presented first ID-based AGKA protocol secure in EGBG model. Their pro-
tocol satisfies MA security with KCIR, achieving full forward secrecy. This protocol includes extensive number of pairing
operation (2n2 − 2n), which is inefficient for practical implementations specially for low power devices.

1.2.2 Asymmetric GKA (ASGKA)
The trivial solution for outsider communication in a group may include assigning of individual (public, private) key pairs
and the sender needs to have all the public keys. In this case, the ciphertext size grows linearly. The notion of asymmetric
GKA (ASGKA) was introduced by Wu et al2 and they presented a generic protocol with its instantiation. The objective
was to derive a group encryption key and a separate decryption keys for all the group members. This publicly accessible
group encryption key enables any outsider sender to broadcast messages securely to the group members, and an individual
decryption key is used to decrypt any ciphertext, encrypted under the group encryption key. In contrast to conventional
GKA protocols, ASGKA can provide key confirmation without extra communication. Any participant can locally encrypt

4 of 18 SHARMA ET AL.

a message under the group public key and the decryption can be performed by using individual decryption keys. This first
construction2 was secure only against passive attackers. Moreover, the protocol is vulnerable to collusion attack.29 Any
subset of group members may collude to derive a new decryption key, which is different from those of colluders. Some
other improvements based on PKI were also presented in the works of Wu et al.30,31

In ID-based setting, first authenticated ASGKA protocol was presented by Zhang et al.32 The preliminary
version of this paper proposed ID-based authenticated ASGKA protocol, secure against indistinguishable cho-
sen plaintext attack (IND-CPA). Extended version of this paper33 provided detailed proof and achieved stronger
security against indistinguishable chosen ciphertext attack (IND-CCA). These authenticated ASGKA protocols
do not achieve perfect forward secrecy. Perfect forward secrecy allows the compromise of long-term secret
keys of all participating members and, still, no earlier shared secrets are reveled. Moreover, it is noted that
ID-based cryptosystem suffers from key escrow problem. The Key Generation Center (KGC) has all the pri-
vate keys and hence can always read the secrets. Zhao et al34 presented a dynamic ASGKA protocol for ad
hoc networks. They offered a common encryption and decryption key to all the group members. Furthermore,
Zhang et al35 proposed an authenticated escrow-free ASGKA protocol. The additional key escrow feature disables the KGC
to corrupt the ASGKA protocol. The perfect forward secrecy is directly implied by escrow freeness. Most of the ASGKA
protocols except the work of Zhao et al34 support static group. Later, Li et al36 presented a dynamic one-round authenti-
cated ASGKA protocol, which is secure against active adversary. The security attributes claimed by Li et al36 are known
key security, unknown key share, key compromise impersonation (KCI), perfect forward secrecy, key control security, and
backward secrecy. This protocol provides an additional feature, which supports joining and leaving together.

1.2.3 Secure communication in SoC
The best strategy to optimize the performance of MPSoC architecture is to split the application in appropriate number of
tasks and spread it over multiple IP cores. Throughout this paper, we refer IP core and PC interchangeably. In order to
execute a sensitive application, one of the common approach is to embed firewalls on the boundary IPs of the zone37,38

and this zone is referred as secure zone. The major limitation of this approach is that, it can protect physically close IPs
(related work follows the term “continuous security zones”). However, it is a weak assumption that the task scheduler
always allocates a continuous security zone to a secure application.

Another grouping of IP cores could be through scattering of application on distant IPs and this zone is called as dis-
rupted security zone. A secure application forces them to exchange sensitive data, and therefore a temporary session key
is required to encrypt the communication. The initial solutions achieve pairwise key among IP cores.39,40 Sepúlveda et al37

addressed this issue and presented elastic security zones for 3D-MPSoC with groupwise shared secret. A hybrid group
key solution was also presented in the work of Sepúlveda et al,38 which employs asymmetric (to derive shared key) and
symmetric (to encrypt exchanged communication) together. The major limitation of these approaches is lack of scalabil-
ity and efficiency. Some other GKA solutions based on Diffie-Hellman–based key exchange38,41-43 were introduced later.
Another improved variant of the same approach presented three hierarchical groupwise key agreement protocols.44 This
work suggests to store a permanent secret during fabrication and a global manager becomes the single point compromise
as it stores all the credentials to securely communicate with IPs.

1.3 Motivation and our contribution
In order to support a complex application or running multiple applications in parallel, more processing units are required,
and therefore multiple clusters need to be employed. To restrict the communication among the PCs in a cluster, a GKA
protocol is implemented. The creation and destruction of these clusters are expected to be quite frequent. All the exist-
ing GKA protocols are either completely symmetric or asymmetric but not both. The derivation of only symmetric or
asymmetric key does not assist in the discussed application. If only asymmetric key is established, the cost of encryp-
tion/decryption will be extremely high. In addition, only the symmetric key will not allow any outside communication
without adding them to the group. Even if the symmetric key is transported by one of the participating members after the
establishment of asymmetric key agreement, the key will not be contributive at all.

From the application perspective, the missing link in MPSoC security is zone to zone communication. All the existing
GKA protocols enable secure communication within the zone only. To protect the interzone communication, an asym-
metric protocol needs to be taken into account. This will greatly enhance the complexity. Our proposal presents a hybrid
approach to fulfill the need of two separate protocols into one. This hybrid approach can especially be time saver for set-
ting up the parameters for two different protocols. Moreover, the key generation and secure delivery of private key are also

SHARMA ET AL. 5 of 18

FIGURE 2 Twofold group key agreement protocol

performed once in our protocol. It is always better to provide security in a composable manner. Figure 2 below depicts
the twofold GKA (TGKA) protocol.

In this paper, we present the first GKA protocol, which contributes a dual keying solution for secure communication
among zone participants as well outside contributors. Furthermore, in the existing literature, there is no security model
that enables the leakage of ephemeral key for ASGKA protocols. The major contributions in this paper are listed as follows:

• The enhanced security standard for existing ASGKA protocols considering the leakage of ephemeral key.
• A hybrid solution providing a shared symmetric key to all the participating members and an individual group decryption

key against a common group public key, enabling secure communication from an unrestricted sender.

1.4 Road map
The rest of this paper is organized as follows. In Section 2, we introduce related definitions and hardness assumption for
the security. In Section 3, we define the TGKA protocol and its security model. The proposed GKA protocol is described
in Section 4. The performance and security analyses of the proposed protocol are presented in Sections 5 and 6, followed
by the conclusion in Section 7.

2 PRELIMINARIES

In this section, we introduce computational problems and hardness assumptions. If X is a set, then 𝑦
$
←− X denotes the

operation of choosing an element y of X according to the uniform random distribution on X.

2.1 Definitions and assumptions
Definition 1 (Bilinear map).
Let there be two cyclic groups G, an additive cyclic group, and GT, a multiplicative cyclic group, of prime order q.
Let P be a generator of G. We define a map e:G×G→GT to be a cryptographic bilinear map if it fulfills the following
properties.

Bilinearity: e(xP,yP)= e(P,P)xy, for all x, 𝑦 ∈ ℤ∗
q. In other words, e(R + S,T)= e(R,T)e(S,T) and e(R,S + T)=

e(R,S)e(R,T), for all R,S,T∈G.

6 of 18 SHARMA ET AL.

Nondegeneracy: There exists R,S∈G such that e(R,S)≠ 1. In other words, e(P,P)≠ 1, ie, there is a generator e(P,P)
of GT, which is not unity.
Computability: There exists algorithm to efficiently compute e(R,S)∈GT, for all R,S∈G.

Definition 2 (Computational Diffie-Hellman problem [CDHP]).
Let G be an additive cyclic group (we consider an elliptic curve group) of order q with generator P. Then, for given
P,aP,bP∈G, the CDHP is used to efficiently compute abP∈G without the knowledge of a, b ∈ ℤ∗

q. (Note that gaining
the value of a ∈ ℤ∗

q, given P,aP∈G is solving the elliptic curve discrete logarithm problem).

Definition 3 (Computational Diffie-Hellman assumption).
This assumption says that, for a security parameter 𝜆, the probability, of solving the above defined CDHP in group
G, is negligible in 𝜆. In other words, the (t,𝜖)-CDH assumption holds in group G if there is no algorithm that takes at
most t running time and can solve CDHP with at least a nonnegligible probability 𝜖.

3 TGKA PROTOCOL

Suppose n participant PCs U1,U2,… ,Un attempt to create a cluster by running a protocol (𝜋). Each PC is provided with
a (public, private) key pair. In our protocol, we refer by session a running instance. Each participant is allowed to run
multiple sessions concurrently. An ith instance of the protocol is represented as Πi

U , where U is the corresponding user
or participant. We define two identities, the session identity sidi

U , which is the session dependent information computed
by user U at its ith instance using the shared information in that session, and the partner identity pidi

U , which is a set of
identities of the participants who are involved in generation of the session key with Πi

U . We say an instance Πi
U accepts

when it computes a valid session key sk. We say instances Πi
U and Π𝑗

U′(for Πi
U ≠ Π𝑗

U′) are partnered iff (i) they have both
accepted (ii) sidi

U = sid𝑗

U′ and (iii) pidi
U = pid𝑗

U′ . We further define the term freshness.

Definition 4 (Freshness).
An instance Πi

U is referred to be fresh if it satisfies the following conditions:

1. If the instance Πi
U is accepted, neither Ui nor any of its partnered instances can query Reveal key oracle.

2. No participant is allowed to query Corrupt and Reveal Ephemeral Key simultaneously.
3. In a partnered instance between Ui and Uj, if an adversary  corrupts Uj, any message sent from Uj to Ui must

actually come from Uj.
4. The instance Πi

U or any of its partner has not been asked a Decryption Key Reveal query after their acceptance.

We precisely present here two-round interactive authenticated twofold key agreement protocol divided into Setup, Key-
Gen, Key Agreement, and Key Computation phases. The Key Computation phase consists of subphases to derive
shared secret key as well as asymmetric key pair. We assume the existence of a PKG who generates long-term private keys
for the users. The PKG can be a tamper-proof secure IP core and the private keys are delivered to users via a secure chan-
nel. The users interact among them using their private keys to share session dependent information sid, which leads to
compute the session key.

3.1 Security model of TGKA protocol
Similar to the existing security models, we model the secrecy in terms of indistinguishability of encrypted ciphertext (for
a chosen message, against derived group public key) from a random string in the ciphertext space. Here, we extend the
existing asymmetric security model with the privilege of revealing the ephemeral key. To realize this standard security
frame, the following game between the challenger  and the adversary  is defined as follows:

Setup: On input security parameter 1𝜆, the challenger  runs KeyGen(1𝜆) to generate the public parameter Params
and the system key pair (pk,msk) and gives the adversary  the public key pk. msk is the master secret of the system and
kept secret with challenger .

SHARMA ET AL. 7 of 18

Queries:  can adaptively make the following queries:

• Execute(Πi
U): This query models the honest execution of the protocol 𝜋. In other words, this query returns all the

transcripts/messages exchanged among participants. Moreover, the participants are selected by the adversary itself.
This models passive attacks.

• Send(Πi
U ,m): This query sends a message m to instance Πi

U and outputs the reply generated by instance Πi
U . For the

initiation of the protocol, the message may be (sid,pid), where sid is the session identity and pid is the partner identity.
If the message is not of intended format, this query returns null. Moreover, Execute query can be substituted by making
Send query repeatedly.

• Corrupt(Ui): This query models the reveal of long-term secret key. The participant is honest iff adversary  has not
made any Corrupt query. Recall that the reveal of long-term secret key will model forward secrecy.

• Reveal Key (Πi
U): When the oracle is accepted, this query outputs the group session key.

• Ephemeral Key Reveal(Πi
U): This query models the reveal of ephemeral key of participant Ui for instance Πi

U .
• Encryption Key Reveal (Πi

U): When this oracle is accepted, it outputs group encryption key.
• Decryption Key Reveal (Πi

U): To model known key security, this oracle allows the group decryption key as output.
• Test(Πi

U): This query models secrecy and can be made only once during the execution of protocol 𝜋. The adversary
 selects two messages (m0,m1) and a fresh instance. During the Test query, the challenger  randomly selects a bit

b
$
←− {0, 1} and returns a ciphertext Cb corresponding to the selected message mb.

Guess:  outputs its guess b′ for b.
The adversary succeeds in breaking the security if b′ = b. We denote this event by Succ and define 's advantage as

Adv(1𝜆)
def
= |2Pr[Succ] − 1|.

Definition 5 (AKE security).
Let ake be an adversary against AKE security. It is allowed to make queries to the Execute, Send, RevealKey,
Ephemeral Key Reveal, and Corrupt oracles. It is allowed to make a single Test query to the instance Πi

U at the
end of the phase and given the challenge session key skch,b (depending on bit b). Finally, ake outputs a bit b′

and wins the game if (1) b= b′ and (2) the instance Πi
U is fresh till the end of the game. The advantage of ake is

Advake = |2Pr[Succake] − 1|. The protocol is called AKE secure if the adversary's advantage Advake is negligible.

In the following, we recall the MA-security considering both types of adversaries, outsiders and insiders. An outsider
adversary may compromise the long-term private key of all parties except one. An outsider adversary is successful in
KCI attack if it can impersonate an uncorrupted instance (in our case, the ephemeral key) of an uncorrupted party to an
uncorrupted instance of any of the corrupted parties. The adversary's goal is to break the confidentiality of the session
private key and to break the MA-security. An adversary is called insider adversary if it succeeds in corrupting a party and
participating in a protocol session representing the corrupted party. An insider adversary is successful in breaking KCI
security if it succeeds to impersonate an uncorrupted instance of an uncorrupted party A to another uncorrupted instance
of another party B. The only goal of an insider adversary is to break the MA-security.

Definition 6 (MA-security [with outsider KCIR]).
Let ma,out be an outsider adversary against MA-security. Let pidi

U be a set of identities of participant in the group with
whom Πi

U wishes to establish a session key and sidi
U denotes a session id of an instance Πi

U . ma,out is allowed to make
queries to the Execute, Send, RevealKey, EphemeralKey Reveal, and Corrupt oracles. ma,out breaks the MA-security
with outsider KCIR notion if at some point there is an uncorrupted instance Πi

U with the key ski
U and another party U′

that is uncorrupted when Πi
U accepts such that there are no other insiders in pidi

U and the following conditions hold:

• there is no instance Πi′
U′ with (pidi′

U′ , sidi′
U′) = (pidi

U , sidi
U) or,

• there is an instance Πi′
U′ with (pidi′

U′ , sidi′
U′) = (pidi

U , sidi
U), which has accepted with ski′

U′ ≠ ski
U .

Definition 7 (MA-security [with insider KCIR]).
Let ma,in be an insider adversary against MA-security. It is allowed to query Execute, Send, RevealKey, Emphemeral
Key Reveal, and Corrupt oracles. It breaks the MA-security with insider KCIR if at some point there is an uncorrupted
instance Πi

U that has accepted with the secret key ski
U and another party U ′ that is uncorrupted when Πi

U accepts and

• there is no instance Πi′
U′ with (pidi′

U′ , sidi′
U′) = (pidi

U , sidi
U) or,

8 of 18 SHARMA ET AL.

• there is an instance Πi′
U′ with (pidi′

U′ , sidi′
U′) = (pidi

U , sidi
U) that has accepted with ski′

U′ ≠ ski
U .

Furthermore, consider a public key encryption scheme E= (Setup, KeyGen, Encryption, Decryption), where
param←Setup(1𝜆), (pk,sk)←KeyGen (param), c←Encryption(param,pk,m), and m←Decryption(sk,c).

Definition 8 (IND-CCA security).
Let ind be a PPT adversary. For a bit b∈ {0,1}, the IND-CCA security experiment ExpIND-CCA

ind,E
is as follows:

(1) param←Setup(1𝜆); (2) pk′←KeyGen(param); (3) ind is given access to the left-right oracle L−Rpk′ (·, ·) on input
two messages of equal length, m0,m1. The oracle returns the encryption of mb under the key pk′; (4) ind has access
to the decryption oracle Decryption on a ciphertext by its choice except the ciphertext output by L−Rpk′ oracle; (5)
Finally, ind outputs a bit b′.

We say, an encryption scheme is secure if the following advantage of the adversary in negligible:

Adv𝐼𝑁𝐷-𝐶𝐶𝐴
ind,E

=
||||Pr

[
Exp𝐼𝑁𝐷-𝐶𝐶𝐴−0

ind,E
= 1

]
− Pr

[
Exp𝐼𝑁𝐷-𝐶𝐶𝐴−1

ind,E
= 1

]|||| .
The IND-CPA security is defined in a similar way as IND-CCA, except for the access to decryption oracle, which is not

given to an IND-CPA adversary.
Our construction also involves a digital signature scheme, which is required to be Unforgeable under Chosen

Message Attacks (UNF-CMA) secure. A digital scheme consists of three algorithms, (KeyGen, Sign, SVrfy), where
(pk,sk)←KeyGen(1𝜆), 𝜎←Sign(sk,m), 1/0←SVrfy(pk,𝜎,m). This security notion is defined as follows.

Definition 9 (UNF-CMA security).
Let un𝑓 be a PPT adversary. The security experiment Exp𝑈𝑁𝐹 -𝐶𝑀𝐴

un𝑓
is defined as follows. (1) The challenger sam-

ples (pk,sk)←KeyGen(1𝜆). It initializes a set S of queried messages. (2) un𝑓 has access to the signing oracle Sign
on a message m of her choice. (3) un𝑓 picks a message m∗ and outputs a forgery 𝜎∗(m∗,pk). (4) un𝑓 wins if
SVrfy(𝜎∗,m∗,pk)= 1 and m∗∉S, ie, that message was not queried to the signing oracle before. We say, a signature
scheme is unforgeable if the following advantage of un𝑓 is negligible in security parameter.

Adv𝑈𝑁𝐹 -𝐶𝑀𝐴
un𝑓

=
||||Pr

[
ExpUNF-𝐶𝑀𝐴

un𝑓
= 1

]|||| ≤ 𝜖(𝜆).

4 IDENTITY-BASED TWOFOLD GROUP KEY AGREEMENT PROTOCOL

The presented key agreement protocol is suitable to run by PCs in order to derive a shared session key, to securely commu-
nicate inside the zones, whereas a common group encryption key and an individual decryption key for the communication
are suitable with other zones. We assume the presence of a PKG, or the long-term secrets have already been stored in a
secure memory. The PCs have been referred as users in our scheme. A TGKA protocol consists of the following algorithms.

Setup(1𝜆): On input security parameter 1𝜆, the PKG generates the system parameters Params in the following steps:

• Chooses an elliptic curve group G of prime order q. Let P be a generator of group G.
• Let e:G×G→GT be an admissible bilinear map, where GT is a cyclic multiplicative group of order q.

• Computes system's public key as Ppub = sP by choosing a master secret s
$
←− ℤ∗

q.
• Chooses cryptographic hash functions H1 ∶ {0, 1}∗ × G → ℤ∗

q, H2 ∶ {0, 1}∗ × G × G → ℤ∗
q, H3 ∶ {0, 1}∗ → ℤ∗

q,
H4 ∶ GT → {0, 1}c, and H: {0,1}∗→{0,1}k.

• Finally, publishes the system parameters Params= {G,q,H1,H2,H3,H4,H, e,Ppub} and keeps the master key secret.

KeyGen(s): The PKG performs the following for all the group members:

• Chooses ri
$
←− ℤ∗

q and computes Ri = riP.
• Computes the private key for user Ui as xi = ri + sH1(IDi,Ri).
• The user Ui can verify the private key as xiP=Ri + H1(IDi,Ri)Ppub.

Key Agreement(xi,pid): This protocol runs in the following two rounds.
Round 1: Each user Ui(1≤ i≤n) does the following:

SHARMA ET AL. 9 of 18

• Chooses bi
$
←− ℤ∗

q and computes li =H3(bi,xi) and Li = liP.
• Chooses a random string ki ∈ {0, 1}𝜆 of length 𝜆. Each user, except Un, computes H(ki). The user Un masks the

randomness as k̃n = H(kn, xn), where xn is long-term secret of Un. Now, he computes H(k̃n).
• Broadcasts the tuple < Li,H(ki),H(k̃n),Ri >.

Round 2: On receiving the message < L𝑗 ,H(k𝑗),H(k̃n),R𝑗 >, each user Ui performs the following:

• Computes Uij = liLj.
• Each user, except Un, computes Kij =H(Uij) ⊕ ki. The user Un computes mask = H(Ui𝑗)⊕ k̃n.
• Each participant computes L=L1||L2||… ||Ln.
• Each participant computes Mi = e(lixiPpub,P) and 𝛿i,j = lixiPpub + liRj for 1≤ j≤n.
• Choose another random number ti ∈ ℤ∗

q and compute Ti = tiliP. Moreover, compute the signature on <L,Mi,Ti> as
𝜎i = tili + xiH2(IDi,Mi,L,Ti,pid).

• Broadcast <Kij,mask,𝛿i,j(1≤ j≤n,j≠ i),𝜎i,Ti,Mi>.

Key Computation: The key computation derives two different keys, one for symmetric encryption among group par-
ticipants, and other for any unrestricted sender intended to share something among group participants without joining
the group.

Shared Secret Key. Upon receiving <Kji,mask,𝛿j,i,𝜎j,Tj,Mj>, each user verifies the received signatures as

𝜎iP = Ti +
(

Ri + H1(IDi,Ri)Ppub
)

H2(IDi,Mi,L,Ti, pid).

Each user Ui then computes k̃𝑗 = H(U𝑗i)⊕ K𝑗i and k̃n = mask ⊕ H(Ui𝑗). Here, Uij = liLj = liljP= ljliP= ljLi =Uji.
Each user Ui checks correctness of ki as H(k𝑗) = H(k̃𝑗) for (1≤ j≤n,j≠ i) and computes session identity sid =

H(k1)||H(k2)||… ||H(k̃n).
Finally, the shared session key is computed as sk = H(k1||k2||… ||k̃n||sid||pid).
Asymmetric Key Pair. The common group encryption key (accessible to anyone) can be computed as K1 = Σn

i=1Li,
K2 = Πn

i=1Mi.
The encryption key is EK= (K1,K2). The decryption key, individual for each participant, can be computed as 𝛿i = 𝛿i,i +

Σn,𝑗≠i
𝑗=1 𝛿𝑗,i.
Encryption(Params, EK, message): Any unrestricted sender can encrypt a message m of length c by randomly selecting

𝜂 ∈ Z
∗
q and computing the ciphertext as c1 = 𝜂P, c2 = 𝜂K1 and c3 = m ⊕ H3(K𝜂

2).
Decryption(Params, 𝛿i, ciphertext): Any group participant possessing the group decryption key 𝛿i can decrypt the

ciphertext (c1,c2,c3) as m = c3 ⊕ H4(K𝜂

2) ⇔ m = c3 ⊕ H4(e(𝛿i, c1).e(R−1
i , c2)).

Correctness:

e(𝛿i, c1).e
(

R−1
i , c2

)
= e(𝛿i, 𝜂P).e

(
R−1

i , 𝜂K1
)

= e(𝛿i,P)𝜂.e(Ri,K1)−𝜂

= e
(
Σn

i=1(lixiPpub + liRi),P
)𝜂
.e
(

Ri,Σn
i=1liP

)−𝜂
= e

(
Σn

i=1(lixiPpub + liRi),P
)𝜂

= Πn
i=1M𝜂

i .

The message is m = c3 ⊕ H4(K𝜂

2).

Remark 1. The resulting encryption scheme is indistinguishable under chosen identity and plaintext attack
(IND-ID-CPA).45 A generic conversion by Fujisaki and Okamoto46 can be used to transform it into IND-ID-CCA secure
encryption scheme.

For the verification of all the received messages in one step, batch verification can be used as follows.
Batch verification: All the participants can verify the received signatures 𝜎i in one step as follows (details in the

following section): (n∑
i=1

vi𝜎i

)
P =

n∑
i=1

viTi +

(n∑
i=1

(vixihi2)

)
P.

10 of 18 SHARMA ET AL.

4.1 Batch verification of signature
An independently existential UF-ACMA secure signature scheme does not guarantee its security in batch signature. Recall
that the signature algorithms proposed by Schnorr19 and Hess47 are not secure when used as batch signature. Recently, in
a noted contribution by Horng et al,48 an efficient method was introduced to derive batch signature.

Adopting the concept of small exponent test,48 each member chooses a random vector v= (v1,v2,… ,vn), where vi ranges
between 1 and 2t, each vi is random, to make sure the property of nonrepudiation. To avoid any computational overhead,
t is a very small value with error probability at most 2−t. Any forged signature can be easily detected with a glitch of
probability 2−t.

Correctness: (n∑
i=1

vi𝜎i

)
P =

(n∑
i=1

vi(li + xihi2)

)
P

=
n∑

i=1
vi
(

Ti + (Ri + hi1Ppub)hi2
)
,

where hi1 =H1(IDi,Ri) and hi2 =H2(IDi,Mi,L,Ti,pid).

4.2 Realization of the proposed protocol
To realize the proposed TGKA protocol in MPSoC architecture, all the PCs (in any zone) will run the GKA protocol and
derive a shared session key sk. This shared session key is used to encrypt the communication inside the zone. For real-time
implementation, any lightweight symmetric encryption such as AES or PRESENT cipher can be used. Moreover, the
proposed GKA protocol is an AGKA, therefore malicious PC can be identified and discarded. Furthermore, all the secure
zones derive a group encryption key EK= (K1,K2) and a unique decryption key 𝛿i for each PC. The group encryption key
can be derived by any outside entity to send encrypted message to secure zone. This feature enables secure communication
from any PC on the integrated circuit (IC) to any other PC.

The three varieties of solutions discussed in Section 1.2.3 are vulnerable to various security threats. The first solution
comprising pairwise session keys can never be efficiently scalable on a large MPSoC platform. Another solution where
a key pool is distributed to all the IPs at design time will have the storage overhead proportional to the MPSoC size.
Otherwise, it would be difficult to find a common key among IPs. The solution based on Diffie-Hellman key exchange is
vulnerable to man-in-the-middle attack. To overcome these drawbacks, we present an AGKA protocol. In contrast to the
existing GKA solutions, our solution provides authentication of the IP cores as well as secure communication inside and
outside security zones. Moreover, the IPs involved in the security zones are still accessible by other IPs on the chip.

5 PERFORMANCE ANALYSIS

The proposed construction is a fusion of symmetric as well as ASGKA protocols. Therefore, the performance of our pro-
tocol should be compared with a combination of symmetric and ASGKA protocols (SGKA+ASGKA) as if they were
implemented separately. Since there is no such existing hybrid GKA protocol, therefore we will take two best ID-based
GKA protocols (one SGKA and other ASGKA) into consideration. In contrast to run two separate protocols, our hybrid
approach can especially be time saver for parameters setup, key generation, and secure delivery of private keys.

Although, there are one-round authenticated ASGKA protocols available, whereas designing one-round authenticated
SGKA protocol is still an open problem. Therefore, our twofold protocol can save at least one round because any combi-
nation of SGKA and AGKA will take minimum three rounds. Moreover, when we compare the efficiency of our proposed
TGKA protocol with any combination of recent ID-based SGKA+AGKA protocols, our protocol is far more efficient.
Table 1 presents the comparative computational analysis of both the variants of GKA protocols and the twofold protocol.
The computation cost indicated in table covers the key agreement and key computation phase, determining the cost of
each participant.

From Table 1, it is clear that Sharma et al.49 GKA protocol is the best choice for symmetric, whereas the most suitable
asymmetric GKA might depend upon the choice of signature algorithm. However, in any case, our twofold protocol seems
the best efficient option to replace two separate protocols.

SHARMA ET AL. 11 of 18

TABLE 1 Performance comparison of TGKA with SGKA+ASGKA
protocol

Scheme GKA Rounds Computation Cost
Zhang et al32 Asymmetric 1 (n + 1)E + 3e + 1S∗ + nV
Zhao et al34 Asymmetric 3 4E + 3S∗ + 2nV
Li et al36 Asymmetric 1 (2n + 5)E + 7e
Teng et al28 Symmetric 2 (n + 9)E + (2n− 2)e
Wu et al27 Symmetric 2 (n + 9)E + (3n + 2)e
Sharma et al49 Symmetric 2 (3n + 2)E
TGKA Twofold 2 (4n + 3)E + 1e

E: Exponentiation in G (or scalar multiplication in a cyclic additive group).
e: Bilinear map.

S: Signature generation.
V: Signature verification.
∗: In the ASGKA protocols,32,34 it is recommended to use any ID-based signature.
Abbreviations: ASGKA, asymmetric group key agreement; SGKA, symmetric
group key agreement; TGKA, twofold group key agreement.

6 SECURITY ANALYSIS

In this section, we consider various aspects of security for the introduced protocol. We analyze the security of the proposed
protocol by considering different security properties one-by-one, by the means of following theorems. As discussed in the
recent literatures11,13,15,16,50 that for a GKA protocol, the security of session key, ie, AKE security, and the MA are of prime
concern. Furthermore, it is crucial for a secure protocol to achieve the KCI resilience in this connection.

In the theorem below, we present the detailed proof for the AKE security of our protocol (assuming existence of an
insider adversary).

Theorem 1. The proposed TGKA protocol is AKE secure with insider KCIR adversary following Definition 5 assuming
existence of random oracle, unforgeability of the underlying signature scheme, the hardness of CDHP ,and IND-ID-CCA
security of the underlying encryption scheme. The success probability of adversary ake is the following advantage(

n2Advcma +
(qe + 3qs + qh)2

2𝜆
+

q2
s

2𝜆
+ nqH3 AdvCDH +

(qd + qh)
2𝜆

)
considering n parties in the network, Advcma as the advantage of the adversary cma against the unforgeable signature
scheme, 𝜆 the security parameter, qe the maximum number of Execute queries, qs the maximum number of Send queries,
qh = qH + qH2 + qH3 , where qHi the maximum number of hash Hi (random oracle) queries, qd the maximum number of
Decryption queries that the adversary ake can ask.

Proof. For the proof of claimed security, we follow the security model formalized in Section 3.1 and the game hopping
technique from the work of Dent51 in the way as adopted in the work of Gorantla et al.16 The technique considers a
sequence of games between the challenger and the adversary. The advantage of the adversary in winning the game
is then shown to be bounded in terms of its advantage in distinguishing between a real and random values. This
essentially shows the probability of ability of the adversary, which we define to be the advantage of the adversary,
in distinguishing an encrypted ciphertext from a random string in the ciphertext space, as discussed in Section 3.1.
To achieve the required security, we prove the probability to be negligible.

Let ake be the adversary against the AKE security of our scheme. As discussed in Section 3.1, ake is allowed to
make Execute, Send, RevealKey, Ephemeral Key Reveal, and Corrupt queries. We construct two algorithms cdh and
ind simulating adversaries of CDH problem and IND-CCA security of the underlying encryption scheme. The AKE
security ensures the session key security. In particular, we consider KCI resilience against an insider adversary as
discussed in the work of Gorantla et al.16

For the purpose, let Ei be an event that ake wins the ith AKE security game. Furthermore, let 𝜌i be the correspond-
ing advantage (probability of success) ofake in wining the ith AKE security game. We set 𝜌i = |2Pr[Ei]− 1|. If an event
E′, which occurs during ake's execution, is detectable by simulator, then E′ is independent of Ei. We say that two

12 of 18 SHARMA ET AL.

successive games Game-gi and Game-gi + 1 are identical unless event E′ occurs and the probability Pr[Ei + 1|E′]= 1/2.
In this case, we have

Pr[Ei+1] =
1
2
+ Pr[¬E′]

(
Pr[Ei] −

1
2

)
and

𝜌i+1 = Pr[¬E′]𝜌i.

The sequence of games are described as follows:

Game-g0:
This game is the actual AKE security game as introduced in Definition 5. The advantage of the adversary ake is given by

Advake = |2Pr[E0] − 1| = 𝜌0.

Game-g1:
The game is same as Game-g0 except that the simulation fails if an event Forge occurs, ie, when|Pr[E1] − Pr[E0]| ≤ Pr[Forge],

and hence, by the above relation and the definition of 𝜌i,

𝜌0 = |2Pr[E0] − 1|
≤ |2Pr[E0] − 2Pr[E1]| + |2Pr[E1] − 1|
≤ 2Pr[Forge] + 𝜌1,

which means that ake issues a Send query with (mi,𝜎i), assuming that user Ui is not corrupted and mi was not output
in the previous instance of Ui. According to the AKE security for KCI attack definition, ake can corrupt maximum n− 1
parties, being remained passive on behalf of those corrupted users. If the event Forge occurs, then it shows the successful
output of fake signature on behalf of the noncorrupted party as follows: the public key is assigned to one party where the
other n− 1 parties are assumed to be normal according to the protocol. Since n− 1 parties are corrupt, the secret keys
of those n− 1 parties are known. The only secret key that corresponds to the public key of the UNF-CMA game can be
simulated by the signing oracle available from the underlying signature scheme. Hence, the probability that cma does
not corrupt a party is ≥1/n, also the probability that cma forge the signature on behalf of the party is ≥1/n. Hence,

Advake ≥
1

n2 Pr[Forge]

⇔ Pr[Forge] ≤ n2Advcma .

Game-g2:
This game is the same as the previous except that the simulation fails if an event Collision appears. Similarly, as above,
the least probability of Collision can be counted as|Pr[E2] − Pr[E1]| ≤ Pr[Collision],

and hence, by the above relation and the definition of 𝜌i,

𝜌1 = |2Pr[E1] − 1|
≤ |2Pr[E1] − 2Pr[E2]| + |2Pr[E2] − 1|
≤ 2Pr[Collision] + 𝜌2,

this is the case when at least one of the random oracles, considered to respond the Send query, produces a collision. As
the value of 3 hash functions, namely, H, H2, and H3, would require to be picked as random oracle to respond each Send
query, the maximum number of random oracle queries is (qe + 3qs + qh). Where qe, qs, and qh are as defined above. Hence,
the probability of Collision is at most (qe+3qs+qh)2

2𝜆
. Thus,

Pr[Collision] ≤
(qe + 3qs + qh)2

2𝜆
.

SHARMA ET AL. 13 of 18

Game-g3:
The game is the same as the previous one, except that the simulation fails when an event Repeat occurs. In this case,

|Pr[E3] − Pr[E2]| ≤ Pr[Repeat],

and hence
𝜌2 = |2Pr[E2] − 1|

≤ |2Pr[E2] − 2Pr[E3]| + |2Pr[E3] − 1|
≤ 2Pr[Repeat] + 𝜌3.

A Repeat event happens when an instance of user Ui chooses a nonce 𝜅 i that was also used by another instance of the
user Ui. The maximum of instances that can choose a nonce 𝜅 i is qe + qs, therefore

Pr[Repeat] ≤
(qs + qe)2

2𝜆
.

Game-g4:
This game differs from the previous game by ake's randomly chosen value 𝜈, as a guess of the session in which the
adversary would have requested the Test query, from the set of values, which is bounded by Execute and Send queries, ie,
𝜈 ∈ {1,… ,qs + qe}.

However, the simulation aborts if the adversary ake chooses a session that is different than 𝜈 to issue a Test query.
Otherwise, the event that the adversary picks the right session for being tested happens with the probability of 1/(qe + qs).
It follows immediately that the simulation aborts with probability 1 − 1

(qe+qs)
. We have

𝜌i+1 = Pr[¬E′]𝜌i,

hence
𝜌4 = 1

(qe + qs)
𝜌3 ⇐⇒ 𝜌3 = (qe + qs)𝜌4.

Game-g5:
This game differs from previous game depending upon the answers to the Send queries during the Test session.

We assume that, in round 1, the values Li are randomly chosen from group G. All other calculations are the same as
in the previous game. Since in the previous game, the values Li were computed as Li = liP, where li were outputs from a
random oracle for H3 queries, as li =H3(bi,xi).

Hence, an adversary ake can distinguish between Game-g4 and Game-g5 only if it queries xi + 1Li(= xiLi + 1), for at least
one value of i, to the random oracle. Let Dis be an event where the adversary succeeds to distinguish the values of a hash
functions. Then, |Pr[E5] − Pr[E4]| ≤ Pr[Dis]

and
𝜌4 = |2Pr[E4] − 1|

≤ |2Pr[E4] − 2Pr[E5]| + |2Pr[E5] − 1|
≤ 2Pr[Dis] + 𝜌5.

When ake can distinguish between the random and real values, then we can also solve the CDH problem as follows.
Let Ui be a random party involved in the Test session, then we set R= aP and S= bP and assign Li =R and Li + 1 = S. The
CDH instance is (P,R= aP,S= bP). Let C be a randomly chosen value, and if Dis occurs, then the probability that C is a
solution of CDH problem is at least 1∕(qH3).

Furthermore, the minimum probability of C being correct solution to the instance (P,aP,bP) is 1
n

. It follows that
AdvCDH ≥

1
nqH3

Pr[Dis]. Hence,

Pr[Dis] ≤ nqH3 AdvCDH .

14 of 18 SHARMA ET AL.

Game-g6:
This game differs from previous game by the simulation of encryption secret key. Here, the algorithm  is simulated
by ake. Whenever ake issues queries to the decryption key reveal oracle, ind simulates the answers by invoking its
own decryption oracle. Since the security of the encryption scheme is provided under the hardness of CDH problem,
the decryption query ind invokes the action of cdh algorithm, who answers with a random value 𝛿i, which ind on his
side provides to ake adversary. The hardness of CDH problem assures that ind cannot distinguish which message was
used in the encryption process of the IND-CPA game. This means that ake cannot distinguish the response of ′

ind from
random. Thus, ake is not able to get any information about the real decryption key, ie, it cannot distinguish 𝛿i from 𝛿i,
meaning that in best case, the adversary can guess the key with a probability of 1/2𝜆. That means that ake advantage in
Game-g6 differs from the previous advantage by a negligible value only, ie,

|Pr[E6] − Pr[E5]| ≤ qd

2𝜆
,

and hence
𝜌5 = |2Pr[E5] − 1|

≤ |2Pr[E5] − 2Pr[E6]| + |2Pr[E6] − 1|
≤ 2

qd

2𝜆
+ 𝜌6.

Game-g7:
The difference of this game to the previous one is that the Test session aborts if ake issues a query (k1||… ||kn||pidi||sidi).
Since the adversary does not get any information about kn, it can only guess the value (of kn), with a probability 1/2𝜆.
Thus, ake can request at most qh

2𝜆
correct random oracle queries for the Test session. Hence,

|Pr[E7] − Pr[E6]| ≤ qh

2𝜆
,

and hence
𝜌6 = |2Pr[E6] − 1|

≤ |2Pr[E6] − 2Pr[E7]| + |2Pr[E7] − 1|
≤ 2

qh

2𝜆
+ 𝜌7.

The advantage 𝜌7 is 0, if ake does not issue a random oracle query on the correct value (k1||… ||kn||pidi||sidi).
Combining all the probabilities from the above games, the advantage of ake(

n2Advcma +
(qe + 3qs + qh)2

2𝜆
+

q2
s

2𝜆
+ nqH3 AdvCDH +

(qd + qh)
2𝜆

)
is negligible.

Remark 2. The AKE security of our protocol assuming existence of an outsider adversary can be proved following
the same technique as deployed above with a condition that the adversary ake must be passive for any party that it
corrupts. In other words, in contrast to the AKE security game with insider KCI adversary, in the outsider KCI attack
case, the goal of ake is to mount KCI attack by impersonating any uncorrupted party to an uncorrupted instance at
any of the corrupted party (instead of any outsider party, as considered in the insider KCI attack).

The another important notion of security for GKA protocol is MA. In the following, we prove this security for our
protocol.

Theorem 2. The proposed TGKA protocol is MA secure with KCIR adversary following Definitions 6 and 7 of Section 3.1
assuming the existence of random oracle and unforgeability of the underlying signature scheme. The probability of success
of the adversary ma (adversary against the MA security of our TGKA protocol) is the following advantage

n2Advcma +
(qe + 3qs + qh)2

2𝜆
+

q2
s

2𝜆

SHARMA ET AL. 15 of 18

considering n parties in the network, Advcma as the advantage of the adversary cma against the unforgeable signa-
ture scheme, 𝜆 the security parameter, qe the maximum number of Execute queries, qs the maximum number of Send
queries, qh = qH + qH2 + qH3 , where qHi is maximum number of hash Hi (random oracle) queries that the adversary ma
can ask.

Proof. To show the MA in our protocol, we follow the game hopping technique exactly as considered in the above
Theorem 1. For this, let Ei be the event that ma violates the definition of MA in Game-gi.

The sequence of games are as follows.

Game-g0:
This is the original MA game as constructed in Definitions 6 and 7.The advantage of the adversary ma is

Advma = Pr[E0].

Game-g1:
This game is the same as Game-g0 other than a case that the simulation fails if an event Forge happens. It is the same
event as considered in Game-g1 of the above Theorem 1. Hence, similarly, like the previous proof

|Pr[E1] − Pr[E0]| ≤ Pr[Forge] ≤ n2Advcma .

Game-g2:
This is the same as the previous game except that the simulation fails if an event Collision appears, with the same
meaning of Collision as considered in above Theorem 1. Hence,

|Pr[E2] − Pr[E1]| ≤ Pr[Collision] ≤
(qe + 3qs + qh)2

2𝜆
.

Game-g3:
This game is the same as Game-g2 other than a case that the simulation fails if an event Repeat appears, with the same
meaning of Repeat as considered in above Theorem 1. Hence,

|Pr[E3] − Pr[E2]| ≤ Pr[Repeat] ≤
(qs + qe)2

2𝜆
.

If Game-g3 does not abort, all the honest partnered parties compute the same key, so Pr[E3]= 0.
Combining all the above probabilities, the advantage of ma is n2Advcma +

(qe+3qs+qh)2

2𝜆
+ q2

s
2𝜆

, which is negligible in 𝜆.

7 CONCLUSION

This paper introduces a novel TGKA protocol to be suitable for the discussed electronic communication. We have consid-
ered real-time issues such as the leakage of long-term secret key or faulty random number generation to leak ephemeral
secrets. We hope the proposed GKA protocol will provide a basis and ready reference for future work and motivate
researchers to achieve a protocol in one round, which is still a problem of interest in this domain. The expansion and

16 of 18 SHARMA ET AL.

shrinking of existing security zones will be considered as a future work. Furthermore, in order to evaluate the expected
benefits of the proposed solution, there is a need to implement this solution on real-time MPSoC platform.

ACKNOWLEDGMENT

This research has been performed in the context of Self-Organising circuits For Interconnected, Secure and Template
computing (SOFIST) project, supported by Project ARC (Concerted Research Action) of Federation Wallonie-Bruxelles.

ORCID

Gaurav Sharma https://orcid.org/0000-0003-2842-3788

REFERENCES
1. Sharma G, Kuchta V, Sahu RA, Ellinidou S, Markowitch O, Dricot JM. A twofold group key agreement protocol for NoC based MPSoCs.

In: Proceedings of the 16th Annual Conference on Privacy, Security and Trust (PST); 2018; Belfast, UK.
2. Wu Q, Mu Y, Susilo W, Qin B, Domingo-Ferrer J. Asymmetric group key agreement. In: Advances in Cryptology - EUROCRYPT 2009:

28th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2009.

3. Bellare M, Rogaway P. Entity authentication and key distribution. In: Advances in Cryptology - CRYPTO' 93: 13th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA August 22-26, 1993 Proceedings. Berlin, Germany: Springer-Verlag Berlin
Heidelberg; 1993.

4. Shamir A. Identity-based cryptosystems and signature schemes. In: Advances in Cryptology: Proceedings of CRYPTO 84. Berlin, Germany:
Springer-Verlag Berlin Heidelberg; 1984.

5. Diffie W, Hellman ME. New directions in cryptography. IEEE Trans Inf Theory. 1976;22(6):644-654.
6. Burmester M, Desmedt Y. A secure and efficient conference key distribution system. In: Advances in Cryptology - EUROCRYPT'94:

Workshop on the Theory and Application of Cryptographic Techniques Perugia, Italy, May 9-12, 1994 Proceedings. Berlin, Germany:
Springer-Verlag Berlin Heidelberg; 1994.

7. Ingemarsson I, Tang D, Wong C. A conference key distribution system. IEEE Trans Inf Theory. 1982;28(5):714-720.
8. Steiner M, Tsudik G, Waidner M. Key agreement in dynamic peer groups. IEEE Trans Parallel Distrib Syst. 2000;11(8):769-780.
9. Joux A. A one round protocol for tripartite Diffie–Hellman. In: Algorithmic Number Theory: 4th International Symposium, ANTS-IV Leiden,

The Netherlands, July 2-7, 2000. Proceedings. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2000.
10. Barua R, Dutta R, Sarkar P. Extending Joux's protocol to multi party key agreement. In: Progress in Cryptology - INDOCRYPT 2003: 4th

International Conference on Cryptology in India, New Delhi, India, December 8-10, 2003. Proceedings. Berlin, Germany: Springer-Verlag
Berlin Heidelberg; 2003.

11. Bresson E, Chevassut O, Pointcheval D. Provably authenticated group Diffie-Hellman key exchange-the dynamic case. In: Advances in
Cryptology - ASIACRYPT 2001: 7th International Conference on the Theory and Application of Cryptology and Information Security Gold
Coast, Australia, December 9-13, 2001 Proceedings. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2001.

12. Bresson E, Chevassut O, Pointcheval D. Dynamic group Diffie-Hellman key exchange under standard assumptions. In: Advances in
Cryptology - EUROCRYPT 2002: International Conference on the Theory and Applications of Cryptographic Techniques Amsterdam, The
Netherlands, April 28 - May 2, 2002 Proceedings. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2002.

13. Bresson E, Chevassut O, Pointcheval D, Quisquater J-J. Provably authenticated group Diffie-Hellman key exchange. In: Proceedings of
the 8th ACM Conference on Computer and Communications Security; 2001; Philadelphia, PA.

14. Katz J, Yung M. Scalable protocols for authenticated group key exchange. In: Advances in Cryptology - CRYPTO 2003: 23rd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003. Proceedings. Berlin, Germany: Springer-Verlag Berlin
Heidelberg; 2003.

15. Katz J, Shin JS. Modeling insider attacks on group key-exchange protocols. In: Proceedings of the 12th ACM Conference on Computer
and Communications Security; 2005; Alexandria, VA.

16. Gorantla MC, Boyd C, Nieto JMG. Modeling key compromise impersonation attacks on group key exchange protocols. In: Public Key
Cryptography - PKC 2009: 12th International Conference on Practice and Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20,
2009. Proceedings. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2009.

17. Zhao J, Gu D, Gorantla MC. Stronger security model of group key agreement. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security; 2011; Hong Kong.

18. Tseng Y-M, Tsai T-T, Huang S-S. Enhancement on strongly secure group key agreement. Security Commun Netw. 2015;8(2):126-135.
19. Schnorr CP. Efficient identification and signatures for smart cards. In: Advances in Cryptology - CRYPTO' 89 Proceedings. Berlin, Germany:

Springer-Verlag Berlin Heidelberg; 1989.
20. Choi KY, Hwang JY, Lee DH. Efficient ID-based group key agreement with bilinear maps. In: Public Key Cryptography - PKC 2004: 7th

International Workshop on Theory and Practice in Public Key Cryptography, Singapore, March 1-4, 2004. Proceedings. Berlin, Germany:
Springer-Verlag Berlin Heidelberg; 2004.

21. Zhang F, Chen X. Attack on an ID-based authenticated group key agreement scheme from PKC 2004. Inf Process Lett. 2004;91(4):191-193.

https://orcid.org/0000-0003-2842-3788
https://orcid.org/0000-0003-2842-3788

SHARMA ET AL. 17 of 18

22. Shim K-A. Further analysis of ID-based authenticated group key agreement protocol from bilinear maps. IEICE Trans Fundam Electron
Commun Comput Sci. 2007;90(1):295-298.

23. Wu T-Y, Tseng Y-M, Yu C-W. A secure ID-based authenticated group key exchange protocol resistant to insider attacks. J Inf Sci Eng.
2011;27(3):915-932.

24. Wu T-Y, Tseng Y-M, Tsai T-T. A revocable ID-based authenticated group key exchange protocol with resistant to malicious participants.
Computer Networks. 2012;56(12):2994-3006.

25. Wu T-Y, Tseng Y-M. Towards ID-based authenticated group key exchange protocol with identifying malicious participants. Informatica.
2012;23(2):315-334.

26. Wei F, Wei Y, Ma C. Attack on an ID-based authenticated group key exchange protocol with identifying malicious participants. Int J Netw
Secur. 2016;18(2):393-396.

27. Wu T-Y, Tsai T-T, Tseng Y-M. A provably secure revocable ID-based authenticated group key exchange protocol with identifying malicious
participants. Sci World J. 2014;2014. Article ID 367264.

28. Teng J, Wu C, Tang C, Tian Y. A strongly secure identity-based authenticated group key exchange protocol. Sci China Inf Sci.
2015;58(9):1-12.

29. Teng J, Wu C. A collusion attack on asymmetric group key exchange. Security Commun Netw. 2015;8(13):2189-2193.
30. Wu Q, Qin B, Zhang L, Domingo-Ferrer J, Farràs O. Bridging broadcast encryption and group key agreement. In: Advances in Cryptology -

ASIACRYPT 2011: 17th International Conference on the Theory and Application of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2011.

31. Wu Q, Qin B, Zhang L, Domingo-Ferrer J, Manjón JA. Fast transmission to remote cooperative groups: a new key management paradigm.
IEEE/ACM Trans Netw. 2013;21(2):621-633.

32. Zhang L, Wu Q, Qin B, Domingo-Ferrer J. Identity-based authenticated asymmetric group key agreement protocol. In: Computing and
Combinatorics: 16th Annual International Conference, COCOON 2010, Nha Trang, Vietnam, July 19-21, 2010. Proceedings. Berlin, Germany:
Springer-Verlag Berlin Heidelberg; 2010.

33. Zhang L, Wu Q, Qin B, Domingo-Ferrer J. Provably secure one-round identity-based authenticated asymmetric group key agreement
protocol. Information Sciences. 2011;181(19):4318-4329.

34. Zhao X, Zhang F, Tian H. Dynamic asymmetric group key agreement for ad hoc networks. Ad Hoc Netw. 2011;9(5):928-939.
35. Zhang L, Wu Q, Domingo-Ferrer J, Qin B, Chow SS, Shi W. Secure one-to-group communications escrow-free ID-based asymmetric group

key agreement. In: Information Security and Cryptology: 9th International Conference, Inscrypt 2013, Guangzhou, China, November 27-30,
2013, Revised Selected Papers. Cham, Switzerland: Springer International Publishing; 2013.

36. Li M, Xu X, Guo C, Tan X. AD-ASGKA–authenticated dynamic protocols for asymmetric group key agreement. Secur Commun Netw.
2016;9(11):1340-1352.

37. Sepúlveda J, Gogniat G, Flórez D, Diguet J-P, Zeferino C, Strum M. Elastic security zones for NoC-based 3D-MPSoCS. In: Proceedings of
the 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS); 2014; Marseille, France.

38. Sepúlveda J, Flórez D, Gogniat G. Reconfigurable group-wise security architecture for NoC-based MPSoCs protection. In: Proceedings of
the 28th Symposium on Integrated Circuits and Systems Design; 2015; Salvador, Brazil.

39. Young CP, Chia CC, Chen LB, Huang J. On-chip-network cryptosystem: a high throughput and high security architecture. In: Proceedings
of the 2008 IEEE Asia Pacific Conference on Circuits and Systems; 2008; Macao, China.

40. English T, Popovici E, Keller M, Marnane WP. Network-on-chip interconnect for pairing-based cryptographic IP cores. J Syst Archit.
2011;57(1):95-108.

41. Sepúlveda J, Flórez D, Gogniat G. Reconfigurable security architecture for disrupted protection zones in NoC-based MPSoCs.
In: Proceedings of the 10th International Symposium on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC); 2015;
Bremen, Germany.

42. Sepúlveda J, Flórez D, Gogniat G. Efficient and flexible NoC-based group communication for secure MPSoCs. In: Proceedings of the
International Conference on ReConFigurable Computing and FPGAs (ReConFig); 2015; Mexico City, Mexico.

43. Sepulveda J, Flórez D, Immler V, Gogniat G, Sigl G. Hierarchical group-key management for NoC-based MPSoCs protection. J Integr
Circuits Syst. 2016;11(1):38-48.

44. Sepulveda J, Flórez D, Immler V, Gogniat G, Sigl G. Efficient security zones implementation through hierarchical group key management
at NoC-based MPSoCs. Microprocess Microsyst. 2017;50:164-174.

45. Zhang L, Wu Q, Domingo-Ferrer J, Qin B, Dong Z. Round-efficient and sender-unrestricted dynamic group key agreement protocol for
secure group communications. IEEE Trans Inf Forensics Secur. 2015;10(11):2352-2364.

46. Fujisaki E, Okamoto T. Secure integration of asymmetric and symmetric encryption schemes. In: Advances in Cryptology - CRYPTO'
99: 19th Annual International Cryptology Conference Santa Barbara, California, USA, August 15-19, 1999 Proceedings. Berlin, Germany:
Springer-Verlag Berlin Heidelberg; 1999.

47. Hess F. Efficient identity based signature schemes based on pairings. In: Selected Areas in Cryptography: 9th Annual International Work-
shop, SAC 2002 St. John's, Newfoundland, Canada, August 15-16, 2002 Revised Papers. Berlin, Germany: Springer-Verlag Berlin Heidelberg;
2002.

48. Horng S-J, Tzeng S-F, Pan Y, et al. B-SPECS+: batch verification for secure pseudonymous authentication in VANET. IEEE Trans
Information Forensics Security. 2013;8(11):1860-1875.

49. Sharma G, Sahu RA, Kuchta V, Markowitch O, Bala S. Authenticated group key agreement protocol without pairing. In: Information and
Communications Security: 19th International Conference, ICICS 2017, Beijing, China, December 6-8, 2017, Proceedings. Cham, Switzerland:
Springer International Publishing; 2017.

18 of 18 SHARMA ET AL.

50. Bresson E, Manulis M. Securing group key exchange against strong corruptions. In: Proceedings of the 2008 ACM Symposium on
Information, Computer and Communications Security; 2008; Incheon, South Korea.

51. Dent AW. A note on game-hopping proofs. IACR Cryptol ePrint Arch. 2006;2006:260.

How to cite this article: Sharma G, Kuchta V, Anand Sahu R, et al. A twofold group key agreement protocol
for NoC-based MPSoCs. Trans Emerging Tel Tech. 2019;30:e3633. https://doi.org/10.1002/ett.3633

https://doi.org/10.1002/ett.3633

	A twofold group key agreement protocol for NoC-based MPSoCs
	Abstract
	INTRODUCTION
	The need of group key agreement
	Related work
	Symmetric GKA (SGKA)
	Asymmetric GKA (ASGKA)
	Secure communication in SoC

	Motivation and our contribution
	Road map

	PRELIMINARIES
	Definitions and assumptions

	TGKA PROTOCOL
	Security model of TGKA protocol

	IDENTITY-BASED TWOFOLD GROUP KEY AGREEMENT PROTOCOL
	Batch verification of signature
	Realization of the proposed protocol

	PERFORMANCE ANALYSIS
	SECURITY ANALYSIS
	CONCLUSION
	REFERENCES

