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A Quality-of-Things Model
for Assessing the Internet-of-Thing’s

Non-Functional Properties
Ayesha Qamar, Muhammad Asim, Zakaria Maamar, Saad Saeed, and Thar Baker

Abstract—The Internet of Things (IoT) is in a “desperate” need
for a practical model that would help in differentiating things
according to their non-functional properties. Unfortunately, de-
spite IoT growth, such properties either lack or ill-defined
resulting into ad-hoc ways of selecting similar functional things.
This paper discusses how things’ non-functional properties are
combined into a Quality-of-Things (QoT) model. This model
includes properties that define the performance of things’ duties
related to sensing, actuating, and communicating. Since the values
of QoT properties might not always be available or confirmed,
providers of things can tentatively define these values and submit
them to an Independent Regulatory Authority (IRA) whose role
is to ensure fair competition among all providers. The IRA
assesses the values of non-functional properties of things prior to
recommending those that could satisfy users’ needs. To evaluate
the technical doability of the QoT model, a set of comprehensive
experiments are conducted using real datasets. The results depict
an acceptable level of the QoT estimation accuracy.

Index Terms—Competition, Internet-of-Things, Quality-of-
Things, Thing Selection.

I. INTRODUCTION

IN an open environment like the Internet, coming up
with the right price for a product or service is always

“tricky” [1], [2]. Indeed, many factors contribute to pricing
such as availability of alternative products/services, potential
customers’ profiles, and existing legislations. In the ICT field,
an example of online services are Web services (WS) that
usually come with specific functionalities (e.g., book train
ticket) and a set of non-functional properties (e.g., response
time and availability rate) defining what the R&D community
refers to as Quality-of-Service (QoS) [3], [4]. Upon a WS
selection among other similarly-functional peers, a Service
Level Agreement (SLA) is usually established between this
WS’s provider/owner and the user/requestor. A SLA is a
set of clauses that define the modalities of using a WS (or
any other service or product) along with the penalties that
this WS’s provider would be subject to, should the an-
nounced QoS values be not satisfied at run-time [5]. Over
time, a provider has the opportunity of adjusting the QoS of
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its WSs to minimize and/or avoid such penalties (e.g., financial
and reputation).

The Internet of Things (IoT) is another ICT discipline
that would highly benefit from criteria for differentiating
similarly-functional IoT-compliant things (things, for short).
According to Gartner1, 6.4 billion connected things were in
use in 2016, up 3% from 2015, and will reach 20.8 billion
by 2020. So, how to select the “right” and “best” things?
To the best of our knowledge, selection criteria with an
IoT flavor do not exist, yet, and, hence, developing a Quality-
of-Things’ (QoT) model (like QoS) would be necessary when
specialized marketplaces for things will become available soon
according to Perera et al. [6]. A QoT model would consist of
a set of non-functional properties that would be specifically
geared towards the peculiarities of things in terms of what
they do, with whom they interact, and how they interact. In
this paper, we refer to what-things-do as duties and specialize
them into sensing, actuating, and communicating [7].

Since the QoT model is something relatively new, coming-
up with values for things’ non-functional properties is not
straightforward (e.g., there is not any benchmark, yet). To
this end, we adopt a 2-step strategy in which the values of
QoT properties are tentatively assigned and then, adjusted
over time. The strategy also ensures fair competition among
all things’ providers. This happens through an Independent
Regulatory Authority (IRA) that checks if the tentative values
of the non-functional properties are neither under-estimated
nor over-estimated. Under-estimated could lead to monopoly.
And, over-estimated could lead to limited business. The IRA
benchmarks the different things’ non-functional properties so,
that, a scale of performance would be established over time.
IRA is analogous to a cloud/service broker who is an inter-
mediate entity between users and providers, and that helps the
users choose services tailored to their requirements [8].

In line with Issarny et al.’s statement that revisiting service-
oriented architecture for the IoT context is a must [9], we
embrace the same when it comes to adjusting existing selection
techniques like those used in the context of WSs, and/or devel-
oping new selection techniques2. According to Issarny et al.,
many features make IoT context unique including scalability,
deep heterogeneity, high dynamics, and uncertainty. On top of
these features we include diversity and multiplicity of things’
development and communication technologies [1], users’ re-

1www.gartner.com/newsroom/id/3165317.
2Thing discovery does not fall into this work’s scope.

www.gartner.com/newsroom/id/3165317
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luctance and sometimes rejection because of privacy invasion
caused by things [2], and, passive nature of things being
mainly data suppliers (with some actuating capabilities) [10].
In this paper, we present the design and development of an ap-
proach for defining and assessing the non-functional properties
of things. These properties contribute towards defining a QoT
model. The main contributions of our work are as follows:

- A QoT model that captures things’ non-functional prop-
erties. These properties refer to the performance of things’
duties in the form of sensing, actuating, and communi-
cating.

- Different from other existing QoS prediction approaches,
the proposed approach deals with a problem in which no
real usage experience is available for a thing-to-evaluate.

- A novel approach for thing selection and recommendation
which enhances Spearman’s rank correlation by consid-
ering information of resources (energy) linked to things’
duties during the correlation.

- Several experiments are performed to evaluate the esti-
mation accuracy of the proposed approach.

The rest of this paper is organized as follows. Section II
presents some related work and a case study. Section III
describes the QoT model for IoT. Section IV discusses the de-
tails of the thing selection and recommendation. Experiments
and evaluation details are given in Section V. Conclusions and
future directions are drawn and listed in Section VI, respec-
tively.

II. BACKGROUND

This section first, discusses related work, and, then presents
a case study of smart city where different things are in oper-
ation.

A. Related work

The plethora of techniques (e.g., selection and recommen-
dation) applied to WSs are deemed inappropriate for IoT [9].
Things operate in a cyber-physical surrounding, while WSs
operate in a cyber-surrounding, only. To address this inappro-
priateness and lack of IoT driven references, we discuss some
WS works that helped in defining our QoT model as well
as some works on QoS for IoT applications [11]. Today’s
IoT user-application stakeholders are expected to engage in
collaborative scenarios requiring the coordination of millions
of heterogeneous devices that have reduced size, restricted
connectivity, continuous mobility, limited energy, and con-
strained storage. Moreover, these applications are expected
to combine sensing, actuating, and communicating into
composite scenarios that would run over networks of different
sizes with unknown network topologies as well as uncertain
features of things [1].

The existing literature on QoS refers to traditional WSs
in a non-IoT context. Wang et al. [12] propose a Collabo-
rative Filtering (CF)-based approach for QoS prediction for
recommending services in mobile edge computing. They con-
sider mobility of users and volatility of historical QoS data.
Location-aware personalized CF approaches [13], [14] have

been proposed in which both locations of users and locations
of WSs are considered when selecting similar neighbors for
the target user or service. Yu et al. [15] propose a QoS predic-
tion approach by taking both time and location-aware CF into
account. But multiple time slots are used to predict missing
QoS values, which makes the approach slow. A time-aware
and data sparsity tolerant WSs recommendation approach [16]
integrates time information and transitive similarity. Time
information of temporally close QoS experience from 2 users
on a same service and more recent QoS experience from 2
users on a same service is integrated into the similarity mea-
surement. A trustworthy 2-phase WSs discovery mechanism
based on CF and QoS has been proposed by Lin et al. [17].
Observer agents collect records about users’ behaviors, in-
cluding querying and invoking WSs to monitor actual QoS.
Reputation-aware QoS value prediction approaches [18], [19]
for WSs have been presented to identify untrustworthy users.
However, the scope is limited in term of user-based similarity
and similar services are not identified.

White et al. [20] quantitatively evaluate already existing
different matrix factorization approaches (e.g., CloudPred,
Extended Matrix Factorization, and Latent Factor Models)
to make QoS predictions by investigating the past usage
of similar users and IoT services. In [21], White et al.
present a matrix factorization-based IoT Predict approach for
collaborative QoS predictions for IoT services. No additional
invocations of IoT services are required which lowers the load
on the network.

Unfortunately, the aforementioned works do not discuss a
comprehensive strategy of how things should be described, an-
nounced, selected, invoked, rewarded, etc. So, there is a press-
ing need for such a strategy that would sustain IoT growth.

B. Case study

We refer to a smart city in which multiple systems backed
by different things (e.g., humidity sensors, road cameras, and
traffic signs) are in operation. Examples of systems include
Transportation (Tsys) that controls road traffic and Environ-
ment (Esys) that monitors air pollution so, that, it advises Tsys
to divert traffic on some roads.

Following a car accident and, then, tunnel closure, the city’s
cameras and passing-by vehicles’ embedded cameras form an
ad-hoc collaborative environment in a way that permits to
provision live streaming of the accident scene to rescue teams.
However, including 3rd-party unknown cameras (or things,
in general) in this environment would require assessing these
cameras’ QoT properties with respect to the requirements of
the current situation that is rescuing passengers. Since the
values of these QoT properties might not always be available
or confirmed, we proceed by allowing providers/owners of
things to tentatively estimate the QoT properties of their
things. The providers “hope” that these properties’ values are
fair; neither under-estimated nor over-estimated. To achieve
this fairness, providers of things (e.g., cameras) resort to the
IRA that would use recommendation techniques to assess this
fairness.In the context of smart cities, city halls could act as
an IRA.
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III. QUALITY-OF-THINGS MODEL IN IOT

Defining a QoT model for things is in line with the trend of
defining similar models in other ICT fields for instance, cloud
services and WSs [22]. Eisa et al. define a quality model as
a degree to which a set of attributes/properties of a service
fulfils stated requirements [3].

To enable a competitive selection of similarly-functional
things with respect to situations’ non-functional require-
ments, we develop properties that would constitute a thing’s
QoT model [7]. This model would revolve around 3 duties
(Fig. 1): sensing (in the sense of collecting/capturing data),
actuating (in the sense of processing/acting upon data), and
communicating (in the sense of sharing/distributing data).
According to Fig. 1, a thing senses the cyber-physical sur-
rounding, so, that, it generates some outcomes; a thing actu-
ates outcomes with focus on the outcomes that result from
sensing; and a thing communicates with the cyber-physical
surrounding the outcomes that result from both sensing and
actuating.

Thing


sensing
 actuating
 communicating


is meant for


impacts
 impacts


impacts


Fig. 1: Duties upon which a thing’s QoT model is built

Below we propose some QoT properties (but not limited
to) per type of duty:

1) QoT properties for assessing sensing include:
• Frequency of sensing (e.g., continuous versus intermit-

tent).
• Quality of sensed outcome determines for instance, the

accuracy and validity of the outcome (e.g., high versus
low accuracy.

• Resource (e.g., energy, CPU, and storage) consumption
during sensing (e.g., high versus low energy).

2) QoT properties for assessing actuating include:
• Quality of actuated outcome determines for instance,

the accuracy and validity of the outcome.
• Resource (e.g., energy, CPU, and storage) consumption

during actuating (e.g., high versus low).
3) QoT properties for assessing communicating include:
• Reception rate of sensed and/or actuated outcome

(incoming flow) determines for instance, data loss, and
data volume with respect to a bandwidth.

– Acceptance rate of received outcome is about the
outcome that has been accepted for distribution;
some received outcome could be rejected.

• Delivery rate of sensed and/or actuated outcome (out-
going flow) determines data loss, and data volume with
respect to a bandwidth, etc.

– Acceptance rate of delivered outcome is about the
outcome that has been accepted after distribution
at the recipient end; some delivered outcome could
be rejected.

• Resource (e.g., energy and bandwidth) consumption
during communicating (e.g., high versus low band-
width).

IV. THING SELECTION AND RECOMMENDATION APPROACH

This section provides details about our thing selection and
recommendation approach backed up by its architecture. It
further explains this architecture’s 3 modules namely thing
clustering, thing similarity assessment, and thing QoT esti-
mation.

A. Architecture

Fig. 2 represents the modules and chronology of interactions
in our approach for defining and assessing the QoT proper-
ties of things. It all starts when providers assign tentative
values for their “new” things’ QoT properties and submit
these values to the IRA. We assume that details about other
things’ QoT properties (values and locations like IP addresses)
are available to the IRA by consulting the relevant repos-
itory (Fig. 2). The IRA clusters all things on the basis of
their locations through the thing clustering module (Subsec-
tion IV-C). Then, by identifying those existing things that fall
into the same cluster as the “new” thing, the IRA evaluates
their similarities using the thing similarity assessment module.
This consists of checking the things’ respective duties and
users’ past experiences with invoking these things (Subsec-
tions IV-D and IV-E). The thing similarity assessment module
helps the IRA evaluate if the tentative QoT values of the
“new” thing are fair (neither under- or over-estimated accord-
ing to specific thresholds) through the thing QoT estimation
module (Subsection IV-F). Finally, the evaluation’s feedback
is sent back to the “new” thing’s provider for further actions
like adjustment, if necessary.

B. Formal definitions

To support the definition and assessment of things’
QoT properties, we provide the following formal definitions:
• T = {t1, t2, ....., ts} is a set of all things that could be

running in an ecosystem of IoT (e.g., smart cameras,
ambient sensors, and vehicles) that users can invoke their
duties.

• Thing-to-Evaluate (e.g., a new smart camera) represented
as t?i ∈ T has its QoT properties’ values tentatively de-
fined and hence, these values need to be confirmed by the
IRA before t?i takes part in any situation (e.g., passenger
rescue).

• Existing-Thing (e.g., an existing smart camera) repre-
sented as texj ∈ T has its QoT properties’ values already
known and could constitute a competitor to the thing-to-
evaluate, should both have the same duty among other
details.
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Fig. 2: Architecture of the approach for defining and assessing
things’ QoT properties

• Cl = {cl1, cl2, ....., clk} is a set of all things’ location-
based clusters where cljt

?
i is the jth cluster to which t?i

belongs.
• Pr = {pr1, pr2, ....., prk} is a set of all providers of things

where pri
t?i is a provider of t?i and prj

texj is a provider of
texj ; it happens that pri and prj are same.

• D = {dt?1
, ....., dtexj } is a set of all things’ duties where dt?1

is any specific duty (sensing or actuating or communi-
cating) that t?1 performs and dtexj is any specific duty that
texj performs, too. dt?1

and dtexj could be either different
or same (i.e., competition).

• QP = {tex1 vd1, ....., texs vds} is a set of all values of
QoT properties for all existing things’ duties where texj vdj
is a value of a particular QoT property for a particular
duty d that texj offers to users.

• TV = {t?i tvd1, ....., t?i tvds} is a set of all tentative values
of QoT properties for all thing-to-evaluate duties where
t?i tvdi is a tentative value of a particular QoT property
for a particular duty d, declared by pri

t?i for t?i .

C. Clustering of things

Physical location of things play an important role in as-
sessing their similarity [23]. Those things which are geo-
graphically located close to each other are more likely to
exhibit similar QoT values e.g., response time [14]. Since the
IRA has access to the location details about t?i and {texj } in
the repository (Fig. 2), it proceeds with processing the QoT
records of existing things {texj } that are closely located to
t?i . Moreover, this location-based processing saves time and
computation as similarity targets those things that are in the
“close vicinity” of t?i , instead of considering all available
things (T). We use K-means to cluster things on the basis
of Latitude-Longitude information. We refer readers to [13]
about the benefits of using Latitude-Longitude when assessing
WSs (example of software things) similarity. The identifiers
of the geographically selected {texj }

′ ⊆ {texj } and t?i are

sent forward to the thing similarity assessment module for
processing.

D. Assessment of similarity of things

Based on the things’ identifiers that the thing clustering
module sends the similarity assessment module, this latter
begins by narrowing down the most similar existing things
{texj }

′
that have similar historical QoT records (in terms of

duties and QoT properties) as that of t?i . For this purpose, we
use Spearman’s rank correlation coefficient (ρ) [24], which
gives the similarity between things (not necessarily IoT-
compliant things) based on the ranked values of 2 variables.
This is done separately for each QoT property as there can
be multiple QoT properties for which we have to find the
similarity of t?i with {texj }

′
that fall into cljt

?
i (Equation 1):

ρ
(t?i ,t

ex
′

j )
= 1− 6

∑
(diff)2

m(m2 − 1)
(1)

where tex
′

j ∈ {texj }
′
, ρ

(t?i ,tex
′

j )
represents the similarity of t?i

with tex
′

j ∈ cljt
?
i , “diff ” is the difference of rankings of t?i tvdi

and tex
′

j vdj for a particular QoT property for a duty d, and
m=|QP| is the number of elements in the set QP. 6 comes
from the sum of squares of integers in the denominator3.
The similarity value computed from Equation (1) is in the
continuous range of [ -1, 1 ]. The greater the computed value,
the more similar things are. Since things offer duties that are
either atomic (e.g., sensing, only) or combined (e.g., sensing
and actuating), we revise Equation (1) to consider this differ-
ence in duties. In Section 3, our proposed QoT model shows
a hierarchical structure of duty specialization into sensing,
actuating, and communicating, and how each duty is further
linked to a set of QoT properties. IoT is a constrained entity
that depends on resources. This is depicted in our QoT model
through resource property that is common to all duties. There-
fore, we link resources to things’ duties for instance, energy, to
demonstrate the impact of resources on similarity assessment
of things’ duties. We consider intersection of duties performed
by things for this purpose.

- Atomic duties: When things perform single duties, i.e.,
either sensing or actuating or communicating, we
use the following enhanced Spearman’s rank correlation
coefficient (Equation 2) to add the effect of a thing’s
resource/energy on similarity assessment of things:

SIM(t?i , t
ex

′

j ) | QP =
1

| E(dt?1
)− E(d

tex
′

j

) |
∗ ρ

(t?i ,t
ex

′
j )

(2)
where SIM(t?i ,tex

′

j )|QP represents the similarity mea-
sure after adding the effect of resources linked to
things’ atomic duties on thing similarity assessment,
and E(dt?1

)/E(d
tex

′
j

) represents energy consumption during

any specific duty d that t?i /tex
′

j performs. When energy

3http://mathforum.org/library/drmath/view/52774.html.

http://mathforum.org/library/drmath/view/52774.html
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consumption for a duty d for both t?i and tex
′

j is same,
we take |E(dt?1

) – E(d
tex

′
j

)| = 1.

- Combined duties: When things perform multiple duties,
e.g., sensing and actuating, we revise Equation (2) as
follows (Equation 3):

SIM(t?i , t
ex

′

j ) | QP = 1∑N=(n?∩mex
′
)

x=y=1 |E(dt?1
(x))−E(d

tex
′

j

(y))|
∗ ρ

(t?i ,t
ex

′
j )

(3)
where SIM(t?i ,tex

′

j )|QP represents the similarity measure
after adding the corresponding collaborative effect of
things’ duties on similarity assessment of things. n?/mex

′

represents the total number of separate duties that t?i /tex
′

j

perform, and N represents the total number of common
combined duties that t?i and tex

′

j perform. We add the
difference of energy consumption among all the com-
mon combined duties of t?i and tex

′

j to see their overall
combined impact on thing similarity. If the energy con-
sumption among all the common combined duties of t?i
and tex

′

j is same, we take
∑N=(n?∩mex

′
)

x=y=1 | E(dt?1
(x))−

E(d
tex

′
j

(y)) | = 1.

E. Joint similarity computation

After assessing the similarity of things for each QoT
property included in the QoT model, we now need to combine
all the individual assessments of all these QoT properties
to evaluate against an output label (Lm), e.g., cost of thing,
where Lm∈L (L is a set of all output labels and L is a
subset of QoT properties). This step has to be done as Lm
can be dependent on multiple QoT properties, e.g., it is
common that pri

t?i announces the tentative values of multiple
QoT properties for t?i using one particular cost. To calculate
the joint similarity between t?i and tex

′

j , we use Equation (4):

JointSim(t?i , t
ex

′

j ) = SIM(t?i , t
ex

′

j ) | QP 1 ∗ SIM(t?i , t
ex

′

j ) | QP 2 ∗ ...SIM(t?i , t
ex

′

j ) | QP x

(4)

where JointSim(t?i , tex
′

j ) is a joint product of the similarities
based on all the QoT properties, i.e., QP1 , QP2 , QP3 ,......,QPx
computed by Equations (1), (2), and (3).

Next step is to reduce the search space on the basis of
similarity assessment of things’ duties. If Lm is to be estimated
against tentative values of dependable QoT properties then,
after performing the joint similarity computation of t?i with
each tex

′

j (Equation 4), we narrow down those Top-K tex
′

j

from {texj }
′

that have higher computed similarity value and
create a set of these Top-K most similar existing things, i.e.,
{texj }

′′ ⊆ {texj }
′
. Let us suppose that K is 5, i.e., top most 5

similar existing things, i.e., tex
′′

j ∈ {texj }
′′

are selected. If t?i tvdi
for an individual QoT property has to be estimated then, after
assessment of similarity of things (Equation 1, 2, and 3), we
directly do this step (no joint similarity computation is done
for this case). Information about {texj }

′′
and t?i is sent forward

to the thing QoT estimation module for processing.

F. Thing QoT estimation
To estimate the QoT properties, we apply Decision Tree

Regression (DTR) technique on data of Top-K most sim-
ilar selected things, i.e., {texj }

′′
. DTR is a promising and

efficient technique to address classification and regression
problems [25]. It has a hierarchical decision pattern which
assists interpret the decision at every level within the decision
tree building process. In our case, we deal with a regression
problem as our inputs and outputs both consist of continuous
values, so it is appropriate to apply DTR to estimate values
of QoT properties.

In a DTR-based model, our central choice is to select
which QoT property corresponding to tex

′′

j is most useful for
splitting the QoT data into multiple points. The QoT property
corresponding to tex

′′

j having the lowest Sum of Squared
Errors (SSE, Equation 5) among all QoT properties is selected
as the root node or split point. This process continues in a
recursive manner during the decision tree building.

SSE =

n∑
k=1

(tex
′′

j vdj − avg(QPi(tex
′′

j )))2 (5)

where n=|QPi(tex
′′

j )| is the total number of values of a

QoT property (QPi) for tex
′′

j . tex
′′

j vdj represents a particular

value of QPi for tex
′′

j , and avg(QPi(tex
′′

j )) represents the mean

value of QPi for tex
′′

j .
Fig. 3 shows the regression model that takes (QP{texj }

′′
)

and tex
′′

j vdj (Lm) as inputs. (QP{texj }
′′

) represents the

QoT properties’ values for {texj }
′′

and tex
′′

j vdj (Lm) represents

the QoT values of Lm for tex
′′

j . The regressor is trained

to build a model that estimates the output, i.e., Est?i (Lm)
based on the test data, i.e., ins(QP[t?i ]) that is an instance
of QoT properties’ values of t?i (“null” values for real usage
experience of t?i and t?i tvdi for tentative QoT value of t?i ).
DTR-based model is not trained on ins(QP[t?i ]). Est?i (Lm) is
the estimated QoT value of Lm for t?i .

Fig. 3: A DTR-based model for thing QoT estimation

After training the regressor with inputs (Equation 6), the
output, i.e., Est?i (Lm) w.r.t. ins(QP[t?i ]), is given by an esti-
mation model (Equation 7).

model← regressor.train((QP{texj }
′′
), tex

′′

j vdj (Lm)) (6)
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Est?i (Lm)← model.estimate(ins(QP[t?i ])) (7)

Algorithm 1: Tentative QoT values estimation

1 INPUT: T; Pr; D; QP; TV; L
2 OUTPUT: Estimated QoT value
3 BEGIN:
4 load QoT properties’ data provided by pri

t?i and
providers of {texj }

5 similar thingsset ← null;
6 Initialize centroids µ1, µ2, ...., µk for location-based k

clusters
7 Repeat until convergence of ‘k’ clusters: {
8 for all things ∈ T do
9 clj ← index (1 to k) of cluster centroid closest to

t?i and {texj }
10 end for
11 for cl ← 1 to k do
12 µcl ← average of points assigned to cluster cl
13 end for
14 }
15 return {texj }

′
from cljt

?
i ;

16 for t?i , each texj
′
, and each QoT property do

17 compute ρ
(t?i ,tex

′

j )
by Equation (1)

18 return ρ
(t?i ,tex

′

j )
;

19 Case1: if atomic duty is performed by things then
20 compute SIM(t?i , t

ex
′

j ) | QP for atomic duties
by Equation (2)

21 return SIM(t?i , t
ex

′

j ) | QP ;
22 end if
23 Case2: if common combined duties are performed

by things then
24 compute SIM(t?i , t

ex
′

j ) | QP for combined
duties by Equation (3)

25 return SIM(t?i , t
ex

′

j ) | QP ;
26 end if
27 if tentative values of dependable QoT properties

are announced then
28 compute JointSim(t?i , t

ex
′

j ) by Equation (4)

29 return JointSim(t?i , t
ex

′

j );
30 end if
31 for K← 1 to i do
32 similar thingsset.add(texj

′′
);

33 K++;
34 end for
35 return Top K(similar thingsset); // {texj }

′′

36 end for
37 train X ← (QP{texj }

′′
);

38 train Y ← tex
′′

j vdj (Lm);
39 model ← decision tree regressor(train X, train Y)
40 Est?i (Lm)← model.estimate(ins(QP[t?i ]));
41 return Est?i (Lm);
42 END

Algorithm 1 describes tentative QoT values estimation. For
thing selection and recommendation, the IRA runs Algorithm
1. It takes as input T, Pr, D, QP, TV, and L (line 1) and
produces an estimated QoT value (line 2). It groups all
the things on the basis of their locations by using K-means
Clustering (lines 6 to 15). It assesses the similarity of things
through lines 17 and 18. For atomic duties, it does assessment
of similarity of things through lines 19 to 22. For combined
duties, it does assessment of similarity of things through lines
23 to 26. It computes the joint similarity for dependable
QoT properties (lines 27 to 30). Top-K similar things set i.e.,
{texj }

′′
is returned by computation (lines 31 to 35). DTR is

trained with inputs (lines 37, 38, and 39). Finally, the DTR-
based model estimates Est?i (Lm) (lines 40 and 41).

V. EXPERIMENTS AND EVALUATION

For evaluation purposes, we carried out several experi-
ments after developing 4 in-house Python programs on a Dell
notebook with the following technical specification: Intel(R)
Core(TM) i5-2540M CPU @ 2.60GHz, 4GB RAM with
Windows 10 Enterprise. These programs test the thing selec-
tion and recommendation approach for evaluating thing QoT
estimation. Specifically, we raised the following questions: (i)
what is the impact of duties of things on similarity assessment
and QoT estimation, (ii) does different number of Top-K
similar things impact the accuracy of QoT estimation, and
(iii) what is the accuracy of our approach compared to existing
approaches.

A. Dataset

The experiments were carried out using 3 real datasets:
sensors dataset [26], COMBED energy dataset [27], and WS-
Dream dataset1 [28]. Specifically, we enriched the existing IoT
sensors dataset with details from WSDream and COMBED in
order to map things’ location and energy consumption during
things’ duties onto QoT data. Through this mapping, we made
a dataset suitable for thing selection and recommendation. The
enriched sensors dataset consists of QoT data (i.e., response-
time (RT) and throughput (TP) values) for low-power devices.
We also used location information (Latitude-Longitude) from
the WSDream and energy consumption information from
COMBED against the QoT values of sensors dataset. As a
result, we formed a new hybrid IoT dataset for RT Matrix and
TP Matrix.

B. Impact of duties with respect to top-K on thing QoT
estimation

We first choose ‘k’ for clustering of things. We plotted
Within-Cluster the Sum of Squares (WCSS)/Inertia as a func-
tion of k (number of clusters) to determine the elbow point
for the optimal k. Fig. 4 depicts the elbow point, that is k = 4.
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Fig. 4: Elbow plot for optimal k to be used

Mean Absolute Error (MAE), Root Mean Square Er-
ror (RMSE), and Normalized Mean Absolute Error (NMAE)
are widely used to determine how accurate a recommendation
is [13], [14], [15], [21]. A smaller value of MAE, RMSE, and
NMAE represents an excellent accuracy. We also used these
metrics for thing selection and recommendation approach
to calculate deviation through error measurement. Based on
these metrics, we can conclude the fairness of tentative QoT
values. Individual differences have equal weight in MAE while
extreme errors have large weight due to the squaring term in
RMSE. NMAE is used because various things’ QoT properties
have different ranges of values, so we need to normalize MAE.
MAE, RMSE, and NMAE are defined as follows (Equation 8,
9, and 10):

MAE =

∑
t?i∈T | t

?
i tv

d
i (Lm) − Est?i (Lm) |
N

(8)

RMSE =

√∑
t?i∈T ( t?i tv

d
i (Lm) − Est?i (Lm) )2

N
(9)

NMAE =
(N ∗MAE)∑
t?i∈T t?i tv

d
i (Lm)

(10)

where N is the total number of estimated values per
QoT property and

∑
t?i∈T denotes all t?i for which QoT

estimations are made.

To determine the impact of things’ duties on QoT esti-
mation, we conducted multiple experiments using different
configurations of Top-K i.e., K = 5, 10, 15, 20, and 25, respec-
tively. In an IoT context, the matrix density for QoS properties
is expected to be quite low [20], so it is important to iden-
tify how our thing selection and recommendation approach
performs with low matrix density. Initially, we selected a set
of 200 different texj (existing smart cameras as stated in case
study), i.e., {texj } ∈ T. Then, we selected one t?i (new smart
camera as stated in case study) with separate t?i tvdi for RT
and TP. We obtained clustered {texj }

′
on the basis of things’

locations. Then, we narrowed down {texj }
′′

corresponding to
the value of Top-K. The more lower the NMAE, the more
fair is t?i tvdi . The experiments targeted atomic and combined
duties:

- Atomic duties: We considered different cases for atomic
duties and evaluated them on different values of K. For

RT estimation, when both t?i and tex
′′

j perform sensing,
t?i tvdi evaluated to be fair for K = 15 and 20, but over-
estimated for K = 5 and 25, and under-estimated for
K = 10. That is why error on K = 5, 10, and 25 is high
for sensing. When both t?i and tex

′′

j perform actuating,
t?i tvdi evaluated to be fair for K = 10, but over-estimated
for K = 5, and under-estimated for K = 15, 20, and 25.
When both t?i and tex

′′

j perform communicating, t?i tvdi
evaluated to be fair for K = 10 and 20, but over-estimated
for K = 5, 15, and 25 (Fig. 5).
For TP estimation, when both t?i and tex

′′

j perform sens-
ing, t?i tvdi evaluated to be fair for K = 10 and 15, but
over-estimated for K = 20, and under-estimated for K = 5
and 25. When both t?i and tex

′′

j perform actuating, t?i tvdi
evaluated to be fair for K = 10, but over-estimated for
K = 5, 15, 20, and 25. When both t?i and tex

′′

j perform
communicating, t?i tvdi evaluated to be fair for K = 10 and
25, but under-estimated for K = 5, 15, and 20 (Fig. 6).

Fig. 5: Impact of atomic duties with respect to top-K on RT
estimation of t?i

Fig. 6: Impact of atomic duties with respect to top-K on TP
estimation of t?i

- Combined duties: We considered different cases for
combined duties and evaluated them on different values
of K. For RT estimation, when both t?i and tex

′′

j perform
sensing and actuating, t?i tvdi evaluated to be fair for
K = 10 and 15, but over-estimated for K = 5 and 20,
and under-estimated for K = 25. When both t?i and tex

′′

j

perform sensing and communicating, t?i tvdi evaluated
to be fair for K = 5, 10, and 15, but over-estimated for
K = 20, and under-estimated for K = 25. When both t?i
and tex

′′

j perform actuating and communicating, t?i tvdi
evaluated to be fair for K = 15 and 20, and over-estimated
for K = 5, 10, and 25. When both t?i and tex

′′

j perform
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sensing, actuating and communicating, t?i tvdi evaluated
to be fair for K = 15, and over-estimated for K = 5, 10,
20, and 25 (Fig. 7).
For TP estimation, when both t?i and tex

′′

j perform sens-
ing and actuating, t?i tvdi evaluated to be fair for K = 10,
15, 20, and 25 but under-estimated for K = 5. When
both t?i and tex

′′

j perform sensing and communicating,
t?i tvdi evaluated to be fair for K = 10 and 25, but
under-estimated for K = 5, 15, and 20. When both t?i
and tex

′′

j perform actuating and communicating, t?i tvdi
evaluated to be fair for K = 15, but over-estimated for
K = 20 and 25, and under-estimated for K = 5 and 10.
When both t?i and tex

′′

j perform sensing, actuating and
communicating, t?i tvdi evaluated to be fair for K = 5, 15,
20, and 25, but over-estimated for K = 10 (Fig. 8).

Fig. 7: Impact of combined duties with respect to top-K on
RT estimation of t?i

Fig. 8: Impact of combined duties with respect to top-K on
TP estimation of t?i

C. Cost estimation for QoT properties

In addition to estimating individual QoT properties, we
also estimate dependable QoT properties (dependable because
cost is tentatively set against tentative values for RT and
TP). For experimentation, we considered the case of pri

t?i

announcing a tentative cost value for tentative values of
multiple QoT properties of t?i . We took Lm as cost, t?i tvd1 as
tentative value for RT, t?i tvd2 as tentative value for TP, and
t?i tvd3 as tentative value for cost. We evaluated that t?i tvd3 is
fair or justified for t?i tvd1 and t?i tvd2 or not. The lowest NMAE
is, the more fair t?i tvd3 is for t?i tvd1 and t?i tvd2. We used K = 5,
10, 15, 20, 25, and 30 respectively, and conducted experiments
for atomic and combined duties:

- Atomic duties: We considered different cases for atomic
duties to estimate a thing’s cost for t?i tvd1 and t?i tvd2 and

evaluated them on different values of K. When both t?i
and tex

′′

j perform sensing, t?i tvd3 evaluated to be fair at
K = 25, and 30, but under-estimated at K = 5, 10, 15, and
20, for t?i tvd1 and t?i tvd2. When both t?i and tex

′′

j perform
actuating, t?i tvd3 evaluated to be fair at K = 20, 25, and
30, but under-estimated at K = 5, 10, and 15, for t?i tvd1 and
t?i tvd2. When both t?i and tex

′′

j perform communicating,
t?i tvd3 evaluated to be fair at K = 5, 10, 15, and 20,
but over-estimated at K = 25, and 30, for t?i tvd1 and
t?i tvd2 (Fig. 9).

Fig. 9: Impact of atomic duties with respect to top-K on cost
estimation of t?i

- Combined duties: We considered different cases for
combined duties to estimate a thing’s cost for t?i tvd1 and
t?i tvd2 and evaluated them on different values of K. When
both t?i and tex

′′

j perform sensing and actuating, t?i tvd3
evaluated to be fair at K = 10, 15, and 20, but over-
estimated at K = 25 and 30, and under-estimated at
K = 5, for t?i tvd1 and t?i tvd2. When both t?i and tex

′′

j perform
sensing and communicating, t?i tvd3 evaluated to be fair
at K = 5 and 10, but under-estimated at K = 15, 20,
25, and 30, for t?i tvd1 and t?i tvd2. When both t?i and tex

′′

j

perform actuating and communicating, t?i tvd3 evaluated
to be fair at K = 15, 20, and 25, but over-estimated at
K = 5, 10, and 30, for t?i tvd1 and t?i tvd2. When both t?i and
tex

′′

j perform sensing, actuating and communicating,
t?i tvd3 evaluated to be fair at K = 5, 10, and 15, but
under-estimated at K = 20, 25, and 30, for t?i tvd1 and
t?i tvd2 (Fig. 10).

Fig. 10: Impact of combined duties with respect to top-K on
cost estimation of t?i

Based on the above findings, we conclude that we need
to narrow down the optimal number of similar things
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to achieve accurate QoT estimations. On the one hand,
when K is very low, there are chances that more similar
things are not selected for QoT estimation. On the
other hand, when K is increased enormously, there are
chances that more dissimilar things are selected for QoT
estimation which affect the accuracy of their selection
and recommendation. Moreover, each set of duty has
different behavior for QoT estimation with respect to
K. We have considered K = 15 as optimal parameter
to further evaluate thing selection and recommendation
approach. Fig. 11 and Fig. 12 show the behavior of cost
estimation for t?i at K = 15 for atomic and combined
duties, respectively. In cost estimation for atomic duties,
the deviation of t?i tvd3 is lowest for communicating and
highest for sensing. In cost estimation for combined
duties, the deviation of t?i tvd3 is lowest for sensing and
actuating, actuating and communicating, and sensing,
actuating and communicating, but highest for sensing
and communicating. NMAE(cost) is zero for sensing
and actuating as well as actuating and communicating.
Table. I lists the estimations of RT, TP, and cost for t?i
at K = 15 for atomic and combined duties, respectively
where s, a, and c are for sensing, actuating, and
communicating, respectively.

Fig. 11: Behavior of cost estimation of t?i at K = 15 for atomic
duties

Fig. 12: Behavior of cost estimation of t?i at K = 15 for
combined duties

TABLE I
Estimations of RT, TP, and cost of t?i at K = 15 for atomic

and combined duties

Thing’s duties RT TP Cost
s Fair Fair Under-estimated
a Under-estimated Over-estimated Under-estimated
c Over-estimated Under-estimated Fair
s a Fair Fair Fair
s c Fair Under-estimated Under-estimated
a c Fair Fair Fair
s a c Fair Fair Fair

D. Performance evaluation of thing selection and recom-
mendation approach

To evaluate our approach, we further experimented on op-
timal cases and parameters of atomic and combined duties
extracted from the above experiment (Subsection V-B).
We considered RT, TP and cost estimation cases while
setting the threshold of NMAE ≤ 0.1 to declare t?i tvdi as
fair for RT estimation, NMAE ≤ 0.05 to declare t?i tvdi
as fair for TP estimation, and NMAE ≤ 0.1 to declare
t?i tvdi as fair for cost estimation. But, defining thresholds
is highly dependent upon the type of IoT application
i.e., best effort (no QoS), differentiated services (soft
QoS), and guaranteed services (hard QoS) [29]. We also
performed the experiments for RT and TP estimations on
existing approaches using the same IoT dataset and same
parameters for Top-K.
Benchmarks for performance comparison: We com-

pared the performance of thing selection and recom-
mendation approach on the basis of accuracy metrics
with other CF-based QoS prediction approaches. The
benchmarked approaches are as follows:
1) IPCC: It is an item-based CF approach in which

Pearson Correlation Coefficient (PCC) is used as
similarity measure to employ similar services for
the purpose of service recommendation [30];

2) IMEAN: Average QoS performance of a service
evaluated by other users is used for service recom-
mendation for an active user [31];

3) ILACF: It is an item-based and location-aware CF
approach for service recommendation proposed by
Liu et al. [13];

4) IoTPredict: It is an approach for collaborative QoS
prediction IoT which is user-based as well as item-
based, and proposed by White et al. [21]. It is based
on matrix factorization.

- Atomic duties: We picked the optimal case when both
t?i and tex

′′

j perform sensing and set K = 15. We
considered 5 different t?i i.e., t?1, t?2, t?3, t?4, t?5 with 5
different t?i tvdi for RT, TP, and cost separately. In each
iteration, we estimated Est?i (Lm) for RT, TP, and cost
for one t?i . In this way, we performed QoT estimations
for 5 different t?i . Table. II exhibits the deviations of
RT, TP, and cost estimations for each thing-to-evaluate
when they performed sensing. These results depict
that t?2tvdi is fair for RT, TP, and cost estimations.
So, t?2 is the “right” and “best” thing to select with
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respect to RT, TP, and cost estimations for dependable
QoT properties. For RT estimation, t?1tvdi , t?2tvdi , and
t?4tvdi are fair. So, t?1, t?2, and t?4 are the “right” and
“best” things to select with respect to RT estimation.
For TP estimation, t?1tvdi , t?2tvdi , t?4tvdi , and t?5tvdi are fair.
So, t?1, t?2, t?4, and t?5 are the “right” and “best” things
to select with respect to TP estimation. t?3tvdi is slightly
over-estimated for RT as well as TP estimation. t?4tvdi
is slightly over-estimated for TP estimation and t?5tvdi
is slightly under-estimated for RT estimation. Fig. 13
shows the behavior of RT estimation of each thing-to-
evaluate at K = 15 for sensing and Fig. 14 shows the
behavior of TP estimation of each thing-to-evaluate at
K = 15 for sensing. Fig. 15 shows the behavior of
cost estimation of each thing-to-evaluate at K = 15.

Fig. 13: Behavior of RT estimation of each thing-to-evaluate
at K = 15 for s

Fig. 14: Behavior of TP estimation of each thing-to-evaluate
at K = 15 for s

Fig. 15: Behavior of cost estimation of each thing-to-evaluate
at K = 15 for s

Moreover, we also experimented on our IoT dataset
for K = 15 by using existing benchmark approaches.
Table. III displays the results for MAE, RMSE, and

NMAE of RT and TP estimations for atomic duties. These
results depict that QoT estimation accuracy of thing
selection and recommendation approach with respect to
atomic duties is higher as compared to other benchmark
approaches. Fig. 16 shows the performance comparison
of RT estimation for atomic duties and Fig. 17 shows
the performance comparison of TP estimation for atomic
duties with different approaches.

Fig. 16: Performance comparison of RT estimation for atomic
duties

Fig. 17: Performance comparison of TP estimation for atomic
duties

- Combined duties: We picked the optimal case when
both t?i and tex

′′

j perform all the three duties i.e., sens-
ing, actuating and communicating combinely, and set
K = 15. We repeated the same process as we did for
atomic duties for 5 different t?i i.e., t?1, t?2, t?3, t?4, t?5 with 5
different t?i tvdi for RT, TP, and cost separately. Table IV
exhibits the deviations of RT, TP, and cost estimations
for each thing-to-evaluate when they performed sensing,
actuating, and communicating. These results depict that
t?1tvdi and t?5tvdi are fair for RT, TP, and cost estima-
tions. So, t?1 and t?5 are the “right” and “best” things
to select with respect to RT, TP, and cost estimations
for dependable QoT properties. For RT estimation, t?1tvdi ,
t?2tvdi , t?4tvdi , and t?5tvdi are fair. So, t?1, t?2, t?4, and t?5 are
the “right” and “best” things to select with respect to RT
estimation. For TP estimation, t?1tvdi , t?2tvdi , and t?5tvdi are
fair. So, t?1, t?2, and t?5 are the “right” and “best” things
to select with respect to TP estimation. t?3tvdi is slightly
over-estimated for RT as well as TP estimation. t?4tvdi is
slightly over-estimated for TP estimation. Fig. 18 shows
the behavior of RT estimation of each thing-to-evaluate
at K = 15 for combined duties and Fig. 19 shows the
behavior of TP estimation of each thing-to-evaluate at
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TABLE II
Individual performance of different things-to-evaluate for
RT, TP, and cost estimations at K = 15 for atomic duties

Sr. No. Things-to-Evaluate Duty RT TP Cost

1 t?1 provided by pr1
t?1 s Fair Fair Under-estimated

2 t?2 provided by pr2
t?2 s Fair Fair Fair

3 t?3 provided by pr3
t?3 s Over-estimated Over-estimated Under-estimated

4 t?4 provided by pr4
t?4 s Fair Fair Over-estimated

5 t?5 provided by pr5
t?5 s Under-estimated Fair Fair

TABLE III
Performance comparison of RT and TP estimations for atomic duties

Approaches MAE(RT) RMSE(RT) NMAE(RT) MAE(TP) RMSE(TP) NMAE(TP)
IMEAN 1.6791 1.9732 0.5645 12.5041 13.9752 0.1076
IPCC 1.1245 1.2851 0.3781 50.6448 51.0916 0.4358
ILACF 0.9942 1.1270 0.3343 29.8943 30.2893 0.2572
IoTPredict 0.3687 0.4232 0.6448 24.0191 24.0211 10.0389
Our Approach 0.2227 0.3187 0.0749 5.0569 6.1591 0.0435

K = 15 for combined duties. Fig. 20 shows the behavior
of cost estimation of each thing-to-evaluate at K = 15 for
combined duties.

Fig. 18: Behavior of RT estimation of each thing-to-evaluate
at K = 15 for s a c

Fig. 19: Behavior of TP estimation of each thing-to-evaluate
at K = 15 for s a c

Fig. 20: Behavior of cost estimation of each thing-to-evaluate
at K = 15 for s a c

We compared our results with existing approaches on the
same parameters. Table. V displays the results for MAE,
RMSE, and NMAE of RT and TP estimations for com-
bined duties. These results depict that QoT estimation
accuracy of thing selection and recommendation approach
with respect to combined duties is higher as compared to
other benchmark approaches. Fig. 21 shows the perfor-
mance comparison of RT estimation for combined duties
and Fig. 22 shows the performance comparison of TP
estimation for combined duties with different approaches.

Fig. 21: Performance comparison of RT estimation for com-
bined duties
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TABLE IV
Individual performance of different things-to-evaluate for

RT, TP, and cost estimations at K = 15 for combined duties

Sr. No. Things-to-Evaluate Duties RT TP Cost

1 t?1 provided by pr1
t?1 s a c Fair Fair Fair

2 t?2 provided by pr2
t?2 s a c Fair Fair Over-estimated

3 t?3 provided by pr3
t?3 s a c Over-estimated Over-estimated Over-estimated

4 t?4 provided by pr4
t?4 s a c Fair Over-estimated Fair

5 t?5 provided by pr5
t?5 s a c Fair Fair Fair

TABLE V
Performance comparison of RT and TP estimations for combined duties

Approaches MAE(RT) RMSE(RT) NMAE(RT) MAE(TP) RMSE(TP) NMAE(TP)
IMEAN 1.6791 1.9732 0.5645 12.5041 13.9752 0.1076
IPCC 1.1245 1.2851 0.3781 50.6448 51.0916 0.4358
ILACF 0.9942 1.1270 0.3343 29.8943 30.2893 0.2572
IoTPredict 0.3687 0.4232 0.6448 24.0191 24.0211 10.0389
Our Approach 0.2736 0.3244 0.0942 6.7289 8.2993 0.0606

Fig. 22: Performance comparison of TP estimation for com-
bined duties

VI. CONCLUSION

We presented a novel approach for thing selection and
recommendation in the context of IoT. It first discusses how
things’ non-functional properties are captured into a QoT
model based on the performance of things’ duties in the form
of sensing, actuating, and communicating. It, then, evaluates
how fair the QoT properties’ values of things are, so that
fair competition between things’ providers occurs. Different
from other existing QoS prediction approaches, we address the
problem of lack of data usage of things-to-evaluate. Our things
selection and recommendation approach starts with clustering
things on the basis of their locations. By identifying those
existing things that fall into the same cluster as the “new”
thing whose tentative QoT properties’ values are provided for
assessment, we do their similarity assessment. We enhanced
Spearman’s rank correlation coefficient (ρ) with things’ duties
information and energy as a resource. Top-K most similar
existing things are narrowed down to perform thing QoT
estimation using Decision Tree Regression technique. This
enables us to evaluate if the tentative QoT values of the
“new” thing are fair by setting acceptable ranges (neither
under- or over-estimated according to specific thresholds).
Deviation of QoT values is calculated through evaluation
metrics and finally, the evaluation’s feedback is sent back to
the “new” thing’s provider for further actions like adjustment,

if necessary. In addition, we also discussed a specific case
of cost estimation in which we evaluated that a tentative
cost value against tentative QoT values of dependable QoT
properties announced by a provider is justified fair or not.
Comprehensive experiments are conducted using real datasets
to evaluate the technical doability of the proposed approach.
Our future work will include estimating the initial reputation
and trust values of newcomer things and the impact they create
on the assessment of things’ similarity and QoT estimation.
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