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Summary

Modern energy detectors typically use adaptive threshold estimation algorithms to improve signal detection in cognitive
radio-based industrial wireless sensor networks (CR-IWSNs). However, a number of adaptive threshold estimation
algorithms often perform poorly under noise uncertainty conditions since they are typically unable to auto-adapt their
parameter values per changing spectra conditions. Consequently, in this paper, we have developed two new algorithms to
accurately and autonomously estimate threshold values in CR-IWSNs under dynamic spectra conditions. The first algorithm
is a parametric-based technique termed the histogram partitioning algorithm, whereas the second algorithm is a fully
autonomous variant termed the mean-based histogram partitioning algorithm. We have evaluated and compared both
algorithms with some well-known methods under different CR sensing conditions. Our findings indicate that both
algorithms maintained over 90% probability of detection in both narrow and wideband sensing conditions and less than 10%
probability of false alarm under noise-only conditions. Both algorithms are quick and highly scalable with a time complexity
of O(V), where V is the total number of input samples. The simplicity, effectiveness, and viability of both algorithms make
them typically suited for use in CR-IWSN applications.
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1. Introduction

Most industrial wireless sensor networks (IWSNs) are
designed to operate in the Industrial, Scientific, and Medical
(ISM) bands. However, because ISM bands are now becoming
highly congested, recent IWSN designs now adopt cognitive
radio (CR) technologies in order to improve communica-
tion and spectra efficiency over vacant licensed bands'?. For
example, authors in? have developed an interesting prototype
of a CR based industrial process field-bus to improve commu-
nication in automated factory processes. Successful designs

such as in? affirm the viability of CR for use within different
IWSN based applications, for example in cyber-physical sys-
tems (CPS)*>, low power wide area networks (LPWANs)®,
smart grids’-3, tele-intensive care units’, in smart metering,
and smart city applications %11,

However, in order to be effective, the challenge of spec-
trum sensing (SS) must be considered in the design of CR
based IWSN systems since these systems use SS to determine
whether a licensed band is free or not to communicate oppor-
tunistically. Consequently, a number of works typically employ
the Energy Detector (ED) for purpose of SS in CR-IWSN
systems because the ED is the fastest, simplest, cheapest,



and least energy-consuming detector, which makes it suited
for resource-constrained IWSNs?2. Other detectors such as the
Cyclostationary Detector, Eigenvalue, Covariance, Prediction,
and Evolutionary-based detectors '>!314 are not suited for CR-
IWSNss applications because they are complex, introduce long
sensing delays, are dependent on the knowledge of the Primary
User (PU) signal, and typically require higher energy rates to
operate 31617,

Nevertheless, EDs are generally susceptible to errors such
as false alarms and misdetections, which often arise under
noise uncertainty conditions in low signal-to-noise ratio (SNR)
regimes (< 3dB)'8. To minimize these errors, modern EDs
use adaptive threshold estimation algorithms (ATAs) to esti-
mate useful thresholds without prior knowledge of the noise
level in the spectra'®. Adapting threshold values under noise
uncertainty conditions describes the adaptation problem. Fur-
thermore, ATAs may need to adjust their parameter values
automatically to improve performance under dynamic spec-
tra conditions and we refer to this requirement for auto-
tuning as the autonomous problem. Methods that address the
autonomous problem are referred to as autonomous ATAs
(AATAs). Henceforth, we shall refer to non-autonomous ATAs
simply as adaptive-only methods while AATAs will be called
autonomous methods.

Concerning the autonomous problem, only very few notable
methods exist, which are typically non-parametric methods.
By being non-parametric, these AATAs are notably more
robust than their adaptive-only counterparts 2°. This is because
most adaptive-only methods typically assume that the sample
population being sensed is known, but when this assumption
is wrong, they would typically fail. Consequently, researchers
seek continually to develop better effective AATAs for use
in CR. Thus, the quest to develop simple, quick, and highly
scalable algorithms suited for resource-limited CR-IWSNs
motivated the new methods described in this paper.

Consequently, in this paper, we have proposed two thresh-
old estimation algorithms for signal detection in EDs suited
for CR-IWSNs. First, we have introduced an adaptive-only
method termed the Histogram Partitioning Algorithm (HPA)
and then an autonomous method termed the Mean HPA
(MHPA). A few realistic application scenarios where our algo-
rithms can be used include for opportunistic and reliable
communication in smart factories and industries (driven under
Industrie 4.0), and for reliable communication between cyber-
physical systems. Essentially, sensors that measure specific
physical parameters such as temperature, humidity, smoke,
e.t.cin an industrial environment can be equipped with our CR-
based algorithms. Then, these CR-based sensors will use our
algorithms to accurately and autonomously detect free bands
in order to communicate these measured parameters reliably
to a central processing unit. The central processing unit can

then activate some specific actuators in order to execute a cor-
responding action within the factory. We have developed and
extensively tested both algorithms under different spectra con-
ditions. Our findings suggest that the following contributions
are tenable:

1. Two new adaptive methods namely, the HPA and MHPA
have been developed to estimate useful thresholds in CR-
based applications without prior knowledge of the noise
level or the power or frequency of the PU signal in the
band.

2. Both algorithms are independent of the size of the band
being sensed making them effective methods for both
narrow and wideband sensing in CR.

3. The MHPA is an effective and fully autonomous method
that performs better than some existing autonomous and
state-of-the-art adaptive-only methods. Hence, we con-
sider the MHPA suited for fully blind spectrum sensing
in CR. Since IWSNs typically require spartially dis-
tributed energy-constrained, self-configuring and self-
aware sensor nodes, our MHPA being an autonomous
method will be highly suited for such IWSN applica-
tions.

4. Both algorithms maintain a low probability of false
alarm, Pp 4, particularly under low SNR regimes. They
conform effectively to the IEEE 802.22 standard, which
requires a detector to maintain a probability of detection,
Py, higher than 90 %, and a Pj, rate less than 10 %!

5. Both algorithms have a time complexity of O(V'), where
V is the total number of sensed samples, thus implying
that they are quick and highly scalable algorithms. They
are considered useful methods for resource constrained
CR-IWSNs.

2. Related work

We motivate two main issues in our discussion of the related
work: first, we identify some state-of-the-art adaptive-only
methods, which are closely related to the class of autonomous
methods suited for resource-limited IWSN applications. Sec-
ond, we provide motivation for the study of autonomous
methods, including the need to develop better autonomous
methods.



To identify related adaptive-only methods, we considered
only global-based methods because they are notably better
suited for CR applications (kindly see?? for details). Fur-
thermore, we have considered only methods with minimal
parameter sets (that is, two or fewer parameters) in order to be
viable for resource constrained CR-IWSN applications. This
is implied by selecting adaptive-only methods that are sim-
ple and considered relatively close to the class of autonomous
methods. Choosing such methods facilitates fairer compara-
tive analyses between adaptive-only and autonomous methods,
which we considered in this paper. In this regard and to the best
of our knowledge, the comparison of both adaptive-only and
autonomous methods forms a notable difference between our
study and other studies of threshold algorithms in the literature.

Consequently, some classic adaptive-only methods with
two or fewer parameters are noted in2>?*2326, These state-
of- the-art algorithms are simple, close to being autonomous,
and easy to develop. When deployed, they maintain the sim-
plicity and fast sensing capability of the ED making them
viable algorithms for CR based IWSNs. Examples of these
algorithms include the Recursive One-sided Hypothesis Test-
ing (ROHT) algorithm?324, the First Order Statistical Tech-
nique >, the Maximum Normal Fit?® (which is a modification
of the ROHT) and the Forward Consecutive Mean Exci-
sion (FCME) algorithm?’. Some other adaptive-only methods
found in28-29:30.31.3233 typically depend on larger parameter
sets. Though often effective, however, by being too highly
parameterized, these algorithms are considered unrelated to
our study.

Following the above, we motivate our concern for AATAsS.
Usually, most adaptive-only methods are characterized notably
by fixed sets of parameters, which are typically defined before
use. In contrast, autonomous methods (AATAs) differ because
their parameters are not fixed and can either increase or even
decrease automatically based on the input dataset collected
per time3*. In rare but well-known cases, existing AATAs are
even parameter-less (the algorithm automatically controls the
parameters), for example, the Otsu’s method used in?** and
the modified Otsu’s method in2°. Furthermore, AATAs do not
make assumptions about the sample distribution being sensed
as obtained in most adaptive-only methods. Thus, they are bet-
ter applied in unpredictable and dynamic sensing conditions
found in CR based applications. For this reason, autonomous
methods are favorably motivated for use in CR-IWSNs.

In this regard, we propose two new methods that differ from
existing approaches. In particular, our HPA differs from exist-
ing adaptive-only methods following the introduction of an
entirely new histogram bifurcation approach along with a new
model to control the algorithm’s P 4 rate. Also, our proposed
MHPA differs from existing AATAs based on the mean of the
histogram samples introduced in order to separate noise from

signal samples. Our proposed methods do not only differ from
previous approaches, but they are as well useful based on the
positive simulation and empirical results obtained in this paper.

3. Proposed Algorithms

In this section, we describe the detection system in which our
proposed algorithms are deployed. Next, we present our pro-
posed algorithms and then analyze their time complexity. A
summary of the symbols used in this paper and their meanings
are presented in Table 1.

Table 1. Symbols used and their meanings

Symbol Meaning
Py Probability of false alarm
P Probability of detection
y Threshold
n Time sample index
N Total number of time domain samples
T Sensing period
fs Sampling frequency
| 4 Number of frequency domain samples
k Frequency sample index
Y (k) Power Spectral Density
y(n) Time domain received signal
p Descent parameter
i bin index
C, Sample counts per bin
B, Bin center value
M Number of bins
Cif it Smoothened counts per bin
A Noise peak index
B, Mean noise value
0} Smoothing window size
p Counter

3.1. The Detection System

In our design, we have considered the ED as situated at the
frontend of a typical CR based industrial wireless sensor node
deployed to sense and communicate in an industrial wireless
network environment. Typical ED designs can be found in '°.
Thus, in order to initiate communication, the sensor node uses
the ED to sense free channels. Here, the ED uses an estimated
threshold value y to determine whether a specific channel is
vacant or occupied in order to communicate opportunistically.
The case H,, is declared if the channel energy is less than or



equal to y, which indicates that the spectra contains only noise
samples; while the case H, is declared if the channel energy is
greater than y, which indicates that the spectra contains signal-
plus-noise samples. These cases (hypotheses) are statistically
described in the time domain as:

H, : y(n) = w(n),
H, : y(n) = h(n)x(n) + w(n),

n=12,..,.N (1)
n=12,..,.N 2)

where 7 is the time sample index, N is the total number of time
domain input samples, A(n) is the channel impulse response
function, x(n) is the transmitted signal, w(n) is modeled as
Additive White Gaussian Noise (AWGN). The output y(n) is
the received sampled signal at the frontend of an ED and we
obtain N as N = T'X f, where T is the total sensing period and
f 1s the sampling frequency. Furthermore, we know that a new
input length V is required to compute the Fast Fourier Trans-
formation (FFT) of y(n), where V' is the next power of 2 from
the original signal length, N. This new length usually pads the
signal with trailing zeros to improve the FFT’s performance.
Thus, we compute V" as

V = 2lloea(Tfs=D] (3)

We have provided in the Appendix a short derivation of
equation (3). Consequently, the ED estimates the Power Spec-
tral Density (PSD) using

2

, k=12,..

V-1 2
T
_jz k)
;:1 y(n) eXP( iy

where k is the frequency sample index. Each PSD sample
k = 1,2...V is compared to y to determine whether the chan-
nels k are free H,, or not H,. Thus, the performance of the
ED depends typically on how accurately y can be estimated.
Consequently, estimating accurate y values becomes essential
to the overall success of CR-IWSNs. Thus, we shall describe
in the next subsection our proposed algorithms considered to
estimate accurate y values.

Y (k) = Vo @)

3.2. The Histogram Partitioning Algorithms

The Histogram Partitioning Algorithm (HPA) and the Mean
HPA (HPA) are simple and effective methods designed here
to adapt the threshold of an ED. To achieve this, a sam-
ple histogram is used as a viable tool to separate effectively
the multimodal distributions of an input signal. Consider the
sketch of a typical histogram in Figure 1 showing the noise
spread collocated between P, and P; (see red colour in Figure
1), and the signal spread at higher energy values (see green
colour in Figure 1). The HPA effectively locates P5, which cor-
responds to a useful threshold y required to separate the noise
from signal samples. In the low SNR case, where the signal

>

Noise Distribution
Py

v Signal Distribution

Energy Values (dBm/Hz)

Frequency
(Number of Counts)

P,

Figure 1. A typical Histogram demonstrating the HPA
principle

distribution merges with the noise spread, the point P; corre-
sponds to the minimum point along the negative slope of the
noise distribution, S;.

The HPA estimates the mean of the noise floor by locating
the peak P, in the distribution (Figure 1) following a search of
the histogram bin values. Any efficient peak-finding algorithm
can be used to search for P,. We note that P, corresponds
typically to the mean noise floor (or noise mode) since more
zero-crossing samples may exist in the noise than in the signal
set. This assumption is valid for highly occupied bands, as our
findings will demonstrate in Section 4. Furthermore, the HPA
estimates a threshold factor (termed the descent parameter) as
follows:

P=V XPry &)

where V' is the sample length computed in equation (3),
and Pp, is the target false alarm rate specified by the user.
Here, f corresponds to the frequency value (number of counts)
obtained along the ordinate of the histogram (see Figure 1). In
this case, f is found by searching through the values along S,
beginning from P, towards P;. Once obtained, § determines
the stopping point along S;, which corresponds to a useful
y obtained along the abscissa. Choosing small values leads
to higher y values and lower P, rates, and vice-versa. This
relationship is well known between threshold values and their
associated Py, and Py, rates®. Based on the above explana-
tion, we provide a detailed description of the HPA and the
MHPA below with a summary provided in Algorithm 1. The
HPA is distinguished from the MHPA in step 7 of Algorithm 1.
Detailed description and justifications are provided as follows:

Step 1: The input signal, y(n), n = 1,2,...V, is acquired
via the ED and the PSD of the input signal is computed as
Y(k), k = 1,2,...,V, using equation (4). The PSD set Y (k)
has dimension V', which corresponds to the number of samples
acquired over a single sweep of a specified band. Thus, each
sample in Y (k) corresponds to the energy of the signal in each
frequency bin (channel).



Algorithm 1 The HPA/MHPA Algorithm

1: Compute the PSD of the input signal as Y(k),k
1,2, ...,V , using equation (4)

2: Compute the number of bins, M, using equation (6)

3: Compute the histogram of Y (k)

4: Smooth the counts Cl.f"”, i=1,2,....M —w+ 1 obtained
from the histogram using a window size,w

5: Find the highest peak, A, in the set Cl.f il',

6: Find the bin centre value B, corresponding to the highest
peak, A

7. Compute the descent parameter f. This step differentiates
the HPA from the MHPA

8: Initialize counter p = A

9: if B, < max,c) {B,} then

10: while p = M do

11: p=p+1

12: if /™ < p then
13: 0=p

14: p=M+1
15: end if

16: end while

17: end if

18: y = By

Step 2: The number of bins, M, used to construct the his-
togram of the sample set is obtained using Doane’s formula

given as30:

M =1+1log,(V) + log, <1 + @> 6)
o

&1
where V is the total number of samples (obtained using
equation (3)), g; is the estimated 3rd-moment (skewness) of
the distribution and

| v -2
‘s T\ v+ DV +3) @

We considered Doane’s formula because it is simple and
requires fewer computations than other known methods. It is
also well suited for cases of non-normal distributions, which
are obtained readily in CR networks.

Step 3: The histogram of Y (k), k = 1,2,...,V is com-
puted using equation (8). The set of the sample counts per bin
C,i = 1,2,.., M and the set of the bin center values, B;,
i =1,2,..,V are obtained from the histogram of Y (k). This
histogram function is represented as

(Ci.,B)) = Fp (Y(k),M), forD=1 (8)

where D = 1 stands for the case of a one dimensional
(vector-based) dataset, and Fj(-) represents the normal his-
togram function. In this case, an effective method such as the

Greedy Batch Dynamic Programming (GDY-BDP) method*’
can be used to compute the histogram.

Step 4: The samples C;, i = 1,2,..., M are smoothened
using a moving average function with a window size, w.
This produces a smoother continuous histogram required to
improve the estimated threshold value. The smoothening pro-
cess is achieved using

i+w—1

C,-f”'=$ Y C. i=12,. M-0+l )
a=1

where C[fm, i=1,2,.., M —w+ 1 is the set of smoothened
sample counts per bin, which closely approximates a PDF.

Step 5: The HPA searches C,.f “'in order to find the largest
value denoted as Cf”, where A is the index of the largest
value (corresponding to the noise peak index). This operation
is obtained as C/{i”,A = max fCifm }, where CK’“ and A
are the outputs of the search algorithm.

Step 6: The set B;, i = 1,2,..., M is searched to obtain the
bin centre value, B, (that is, the mean noise value) based on
the peak index value obtained in Step 5. The HPA considers
B, as the mean noise value.

Step 7: We propose two different methods to compute the
descent parameter, f, which serves to differentiate the HPA
from the MHPA. The HPA computes f using equation (5),
which controls the Py, rate of the detector. In this case, the
performance of the HPA can be improved by manually tuning
f, however, manual control of § may be impracticable under
real-time CR operation in which spectra conditions change
per time. Consequently, we have introduced the Mean HPA
(MHPA) to compute g as follows:

M
1 filt

= — C!

b 2M ::21 !

The half mean is considered in equation (10) so that § may
assume low values required to maintain low Py, rates. The
MHPA is motivated knowing that most PDFs often contain
more counts in the tail region of the distribution than in other
regions. This compels f to assume lower values required to
guarantee an autonomous algorithm (such as the MHPA).

Step 8: Both algorithms proceed by initializing a counter,
p = A, where A corresponds to the noise peak index obtained
in Step 5. Both algorithms use p to search for the minimum
point that corresponds to a useful threshold, y. This process is
executed via Steps 9 - 17.

Step 9 - 17: These steps are used to find a useful thresh-
old within B;, i = 1,2, ..., M. Typically, both algorithms will
skip the ‘While’ loop in Step 10 if Step 9 returns as false.
In this case, it is straightforward to provide an error message
to the user. However, Step 10 prevents both algorithms from
searching for a useful threshold beyond the M " histogram bin.

10)



Step 12 checks for p in Cl.f I while Step 13 obtains the his-
togram bin 6, that corresponds to p. Step 14 then increments
M when p has been found in Step 13 so that the ‘While’ loop
is terminated.

Step 18: The threshold is thus obtained as

(1)

where By is the bin centre value obtained at the index point,
0.

The process ends here and both algorithms are reinitiated in
order to estimate new thresholds for a new set of Y (k) values.

Yy =B,y

3.3. Time Complexity of the HPA/MHPA

We analyze the time complexity (TC) of both algorithms in
this section. The TC is determined based on the number of
machine instructions required to execute both algorithms. We
have removed all constant factors in order to ensure that the
running time is estimated based only on V, particularly as V'
approaches infinity. Similarly, we have excluded lower order
terms to describe the TC asymptotically3®. Thus, we obtained
the asymptotic TC of the HPA and MHPA as follows: Steps
1,2,4,7, 8 and 18 are evaluated once in constant time reduc-
ing to steps of O(1). However, steps 5 and 6 are executed
in O(V') owing to the search process involved in both steps.
Step 3 is executed in O(M V'), where M is the number of his-
togram bins. An effective method, such as the Greedy Batch
Dynamic Programming (GDY-BDP) method can be used in
step 3 to construct the histogram3’. Steps 9 to 17 are evaluated
in O(M). Based on linearity, the overall TC of both algorithms
is obtained as O(1)+ O(V)+O(MV)+O(M) ~ O(M V') with
O(MYV) being the dominant factor. However, because V' >>
M and neglecting lower order terms, the overall asymptotic TC
reduces approximately to O(V'). Thus, since both algorithms
have an approximate asymptotic TC of O(V'), they are consid-
ered as fast and highly scalable algorithms much suited for use
in CR-IWSNS.

3.4. Empirical Method of Analysis

We analyzed and compared both algorithms and other well-
known methods using the empirically estimated probability of
detection and the probability of false alarm statistically defined
as:

(12)
13)

Py =Pr(Y(k)2y|H)), k=12,..V
Ppy =Pr(Y(k)<ylHy), k=12,..V
The P, and P, rates were empirically computed using
Fawcett’s approach . Following Fawcett’s method, the ground

truths of the different input signals were obtained and labeled.
The ground truths of the simulated signals were obtained by

labeling actual signal samples as ones (true signal samples),
and noise samples as zeros (true noise samples). The actual
thermal noise level of the simulated detector was used as the
true threshold to obtain the ground truths. Real-life signals
were also used in our experiments. In this case, the corre-
sponding ground truth of each real-life signal set was labeled
in similar binary fashion. Here, the maximum true noise value
of each dataset was used as the true threshold to classify the
ground truth. Thus, the ground truths were all obtained from
the true dynamic range of each dataset.

Consequently, the Pj, and Py, rates per dataset were com-
puted as®:

Py = % (14)

where ¢ is the number of true positives (truly detected signal
samples) given that Y (k) > y|H,, and P is the total number of
actual true signal samples, and

-2
AT N,

where ¢ is the number of false positives (falsely detected
signal samples) given that Y(k) < y|H,,, and N is the total
number of noise samples. The point performance values of
each threshold estimation algorithm were thus obtained from
the Receiver Operating Characteristic (ROC) curves plotted
per dataset based on the computed Pj, and Py, values. These
results are tabulated and presented in the result section.

Py (15)

4. Results and Discussion

We present results for the parameter adjustment and testing
phase of each algorithm. The adaptive-only algorithms con-
sidered in our work were fine-tuned using different simulated
noise datasets. We considered signal sets obtainable within
typical CR based IWSN applications, for example, IWSNs in
the proposed TV whitespace for CR*?. We have described the
experimental setup considered to test and analyze the perfor-
mance of our algorithms. We evaluated each algorithm using
both Orthogonal Frequency Division Multiplexing (OFDM)
and Frequency Modulated (FM) signals to determine their
minimum detectable SNR level. We compared our methods
with global-based methods, which are fined tuned by adjusting
only two or fewer parameters. We then kept the parameter val-
ues of each adaptive-only algorithm fixed in the testing phase
in order to investigate their respective performances under real-
life use-cases. All results obtained are discussed relative to
the specifications of the IEEE 802.22 standard for CR, which
states that P, > 90 % and P, < 10 %?'.



Table 2. False Alarm Rate under different Noise Uncertainty Levels.

False Alarm Rate, P, (%)

adaptive-only methods

Autonomous methods

Noise (dB) ROHT?* FOST?* HPA (Proposed) Otsu’®* MOA? MHPA (Proposed)

0 4.9 9.6 2.6 56.0 4.9 9.6

1 3.8 6.8 2.0 53.9 3.8 6.8

2 4.2 6.7 1.5 56.1 6.7 9.3

3 04 2.8 2.8 63.3 43.9 2.8

4 35 5.9 1.8 54.5 423 3.5

5 4.0 5.5 29 534 48.3 5.5
4.1. Parameter adjustment phase
The parameters of the HPA and other adaptive-only algorithms 0.035 P :_':f_;gggm
were adjusted following a Monte Carlo simulation (using 1000 E 003 il ——90dBm
trials) of AWGN samples. We considered Monte Carlo sim- g \ - o -114dBm
ulations in order to fine-tune accurately and configure each g 0.025 Upper Limit
algorithm’s parameters ahead of their use under real-time con- i 0.02 /
ditions. The average performance of the HPA is presented in ‘g 4
Figure 2 under different noise levels as a function of different = 0013 U
smoothing window sizes, w. Our findings indicate that irre- % 0.01
spective of the noise level in the band, a smoothing window o 0.005 =
size of @ = 11 may be sufficient to maintain a minimum 5 ‘ ‘ ]
steady Pp, rate (see Figure 2). Interestingly, a lower window 0 0 ) 30 30 50

size of @ > 5 for the HPA produced also no significant reduc-
tion in the algorithm’s Py, rate. Nevertheless, we have noted
that an exception existed at the —70d Bm noise level where the
Pr, increased for @ = 9 and 10, respectively. These outliers
occurred because during the simulation process a number of
spurious noise samples typically crossed the threshold value.
However, on the average, since @ = 5 produced similar results
11, we have noted that systems plagued by smaller
memory sizes may use @ = 5 to run the HPA, while systems
with larger memory sizes may use @ = 11. Nevertheless, irre-
spective of whether @ = 5 or 11 is used to run the HPA, our
findings have indicated that there may be no further improve-
ment in the P 4 rate of the HPA above @ = 11. Thus, the use of
larger window sizes (i.e. @ > 11) may simply be an inefficient
use of system memory, which may not be suited for memory-
constrained CR-sensor nodes. Thus, the use of @ = 5 to run
the HPA is a better configuration for memory-constrained sen-
sor nodes, which further highlights one of the advantages of
the HPA. Nevertheless, we note that the empirical values stated
here for w are valid for the HPA mainly under the assumption
of the AWGN model.

Furthermore, the descent parameter § of the HPA was com-
puted for Pr, = 10%, which conforms to the IEEE 802.22
standard. Thus, subsequent results of the HPA reported in this
paper were based on the following parameter configuration:
5 and Pr, = 10%. The parameter values used for

tow =

w =

Smoothing Window Size, w

Figure 2. Probability of false alarm for different smoothing
factors using the HPA under different noise levels

the ROHT algorithm?32# following similar Monte Carlo sim-
ulation (of 1000 trials) are as follows: the standard deviation
coefficient (SDC), z, was z = 2, while the error limit, €, was
e = 0.01 (we have used the same symbols as in?*?#). The
parameter values of the FOST algorithm were set as k = 1
(same symbol as used in?%). These values were subsequently
kept fixed for subsequent experiments in the testing phase as
typically expected in real-life scenarios.

4.2. Testing phase

The results of the testing phase are based on datasets unseen
beforehand to each algorithm. This phase models the condi-
tions that most algorithms may typically encounter in real oper-
ating CR-IWSN environments. The first subsection presents
results for the algorithms tested under different noise uncer-
tainty conditions (noise-only, H,, case). The subsequent sub-
sections then present results under different signal-plus-noise
conditions (H, case). Likewise, only Py, rates are presented
for the H|, condition (since PU signals do not exist under the



H, condition), while both Pj, and P, rates are reported for
the H, cases.

4.2.1. Performance under different noise
uncertainty levels (H case)

We have investigated the performance of our algorithms under
conditions of noise uncertainties. Since this condition may
typically confront most CR-based sensors deployed under real-
time conditions, thus, we have modeled the case for noise
uncertainty by gradually increasing the noise level in steps of
1dB based on a Uniform distribution designed with 1 dB vari-
ance on the random open interval (0,1). This uniform 1 dB
variance was incrementally added to a baseline thermal noise
floor of -106 dBm over a 6 MHz bandwidth, which conforms
to the Digital TV band. The Py, of each algorithm estimated
per noise uncertainty level is presented in Table 2.

The HPA produced the lowest Py, rate (Pr, < 3%) across
the entire noise uncertainty range considered in our experi-
ments (see Table 2). This performance was closely followed
by the ROHT algorithm?3?4, The Otsu algorithm produced
the highest Pp,, thus considered to be the least performer
(see Table 2). The Modified Otsu Algorithm (MOA) only
performed well at noise uncertainty levels below 3dB, above
which a 40 % increase in its Py, rate was recorded. The
Otsu and MOA may have performed poorly because they
both lacked an effective mechanism to detect accurately the
presence of noise-only conditions under unknown spectral
measurements. On the other hand, since the parameters of the
ROHT, FOST and the HPA were pre-adjusted based on simi-
lar AWGN samples (in Section 4.1), their better performance
over the autonomous methods (Otsu, MOA and MHPA) is
typically expected. However, by being without any form of pre-
adjustment, the performance of our proposed MHPA satisfies
the stringent requirements of the IEEE 802.22 standard. Since
CR-based sensors are typically self-configuring, this finding
suggests that our MHPA may be better suited for deploy-
ment in CR-IWSN sensors than the other autonomous methods
(i.e. Otsu and MOA) considered in our tests. Summarily, our
findings have suggested that under the noise uncertainty use-
case, our HPA provides the best performance (lowest Pr ),
while the MHPA performs best under the category of the
autonomous methods.

4.2.2. Minimum detectable SNR level (H, case)

This section presents our findings per algorithm concerning
the use of Orthogonal Frequency Division Multiplexing
(OFDM) and Frequency Modulated (FM) signals. The OFDM
use-case was considered to model the detection of Digital TV
(DTV) signals in CR-IWSNs, while the FM use-case was
considered for the case of detecting microphone signals, both

of which exist in the TV whitespace intended for CR-IWSN
applications. The SNR for both use-cases was varied in order
to determine the minimum detectable SNR level of each
algorithm. The results obtained are presented in Table 3 and
discussed in the next subsections.

Under OFDM signals

For results concerning OFDM signals (see the OFDM col-
umn in Table 3), our MHPA achieved a minimum detectable
SNR level of SNR = 4dB with (P, = 90%, Pp, =
3%), below which its performance failed to conform to the
IEEE 802.22 standard. Other autonomous methods such as
the Otsu and MOA provided P, = 91%, at SNR = 3dB,
albeit Pr, = 22%, which falls below the required standard.
Thus, the minimum detectable SNR of the Otsu and MOA
was noted at SNR = 4dB, although at a higher P, rate
than the MHPA. For the adaptive-only methods, our proposed
HPA met the IEEE 802.22 standard at a minimum detectable
level of SN R = 5dB. Both the ROHT and the FOST algo-
rithms failed in this regard even at SN R = 10d B, which is
undesirable since the minimum detectable level for DTV sig-
nals is considered at SNR = 15.2d B*'. The adaptive-only
methods performed generally poorer than their autonomous
counterparts because OFDM signals exhibit typical noise-like
characteristics at the crest of the signal (in the frequency
domain). This noise-like characteristics may often bias most
adaptive-only methods into estimating higher threshold val-
ues, which may lead to poorer performances (a problem of
concept drift*?). Thus, our findings indicate that autonomous
methods are better threshold estimators over OFDM signals
than their adaptive-only counterparts with our MHPA offering
a particularly balanced Pj,, P, performance.

Under FM signals

Table 3 presents results for the FM use-case (i.e. the case of
detecting microphone signals in TV whitespaces). The MHPA
achieved a minimum detectable SNR level of SNR = 5dB,
which was the best obtained performance under the category of
autonomous methods. Surprisingly, the MOA met the require-
ment only at SN R = 10d B, while the Otsu algorithm failed
even at high SNR levels of S N R = 10d B. The Otsu and MOA
performed poorly because the FM carrier signal occupied a
narrower band as compared to the entire sensed bandwidth.
This sparse occupancy characteristic caused more noise sam-
ples to be accommodated during the estimation process leading
to lower threshold estimates. Thus, though the Otsu algorithm
may have produced high Py, rates, nevertheless, it experienced
very high Py, rates, which is intolerable by the IEEE 802.22
standard.

Nevertheless, our findings indicate further that the class
of adaptive-only algorithms performed generally better under



Table 3. Probability of Detection and False Alarm (in %) considering OFDM and FM signals at different SNR Levels.

(Pp, Py, in %

adaptive-only Methods

Autonomous Methods

SNR ROHT 2* FOST?» HPA (Proposed) Otsu?* MOA %0 MHPA
(dB)
OFbM FM OFDM FM OFDM FM OFDM FM OFDM FM OFDM FM
0 (5.5) (5.5) (10,9) (10,9) (3.3) (3,3) (56,56) (56,56) (5.5) (65,5 (10,10) (3.3)
1 (17,3) (23,5) (22,9) (23,5) (11,1 (12,3)  (72,43) (87,56) (11,1) (23,5) (16,3) (12,3)
2 (22,0) (51,.4) (29,1) (58,7) (11,0) (43,2) (86,36) (87,48) (81,28) (51,4 (29,1) (43,2)
3 (29,0) (77,4)  (36,0) (80,7) (11,0) (73,2) (88,16) (91,48) (91,22) (69,2) (29,0) (73,2)
4 (36,0) (88,4) (43,0) 94,7) (11,0 (72,2)  (92,8) (100,49) (92,8) (56,0) (90,3) (72,2)
5 (36,0) 94,3) (51,0 97,6) (91,0 (92,2)  ((94,1) (100,45) (94,2) (78,0)  (95,5) 92,2)
10 (43,0 90,0) ((65,00 (91,1) (96,0) 90,0) (96,0) (80,0)  (96,0) 96,3) (96,2) (90,0)
FM conditions than under the OFDM use-cases. For example,
the ROHT, FOST and HPA algorithms achieved a minimum
detectable SNR level of 5, 4, and 5d B, respectively in the 100
. —_ — | EEEE Narrowband — —
FM use-case (see Table 3). This better performance of the S — wideband
adaptive-only methods under the FM use-case may be because s 80 1
the FM carrier signal exhibits a very narrow and spiky fre- 3 M N
quency response, which enables better detection performance % 60 1 M
even under predominant noise-only conditions. Nevertheless, £
again we note that our proposed MHPA performed best across ; 40
both the OFDM and FM use-cases making it best suited for use %
in critical CR-based IWSN applications. 2 20
a
0 |

4.2.3. Performance under Narrowband sensing
The narrowband spectra consisted of PU signals fixed at

SNR = 5dB and occupying 90 % of the entire band. In
this case, each algorithm achieved P, < 0.001%, which
we typically expected since very low noise samples exist in
the sensed band. Consequently, we have reported only the P,
results in Figure 3 . We observed that the ROHT and FOST
algorithms achieved very low P, rates, while our proposed
HPA and MPHA achieved P, > 90% conforming again to
the IEEE 802.22 standard. Similar to well-known observations
noted in?>24, we may as well suggest that the ROHT and FOST
algorithms performed poorly because both algorithms consid-
ered more signal samples while computing thresholds under
highly occupied bands (~ 90%). This may have led to the
estimation of larger threshold values as compared to the HPA
and MHPA. On the other hand, the HPA and MHPA outper-
formed the MOA and the original Otsu algorithm because we
have introduced the use of the descent parameter to bifurcate
effectively the histogram of the signal set.

ROHT FOST Otsu MOA HPA MHPA
Adaptive Threshold Techniques

FIGURE 3 Detection performance in both narrow and wide
band sensing conditions

4.2.4. Performance under sparse Wideband
sensing

A sparsely occupied 50 MHz wideband was sensed in order to
test our algorithms based on signals that occupied only 5 MHz
of the entire bandwidth (~ 8% occupancy rate). We tested
each algorithm considering the SN R = 5d B case and results
are presented in Figure 3 . In this case, the MOA performed
least, while the HPA, MHPA and the FOST algorithm achieved
Pp, > 90%. Since a larger portion of the sparse band contained
more noise samples, this may have reduced the threshold-bias
effect experienced by the FOST and ROHT algorithms leading
to their better performance under wideband conditions. Nev-
ertheless, again we have observed that our HPA and MHPA
performed best under wideband conditions since they depend
only on the histogram of the signal set rather than the signal



itself as other techniques may typically do. By processing the
histogram of the signal set instead of the signal itself, our HPA
and MHPA algorithms are made to be insensitive to the size of
bandwidth being sensed, thus making them highly suited for
use under both narrow and wideband conditions.

4.3. Performance Evaluation under a typical
CR-IWSN Experimental Testbed

We tested each algorithm using real-life signals acquired from
emissions in our local TV and FM bands. This use-cases
may occur typically under CR-IWSNs conditions particularly
in cases where sensor nodes are deployed to operate in the
lower VHF and UHF bands within industrial environments.
To achieve this, we acquired signals using a Rigol DSA1030

Ty

Vi 0 LOG-PERIODIC
\ <
= ANTENNA
VHF-UHF
AMPLIFER

SPECTRUM ANALYZER

POWER INVERTER

Figure 4. Schematic of the experimental setup used to test
and validate the proposed algorithms

spectrum analyzer with the true frequency locations of each
PU signal emitted in the local environment been identified via
the National frequency allocation table. The schematic of our
experimental setup is as shown in Figure 4. In our experimental
model, the spectrum analyzer and input antenna are consid-
ered to be the frontend of the CR-based sensor node, while our
algorithms running within the laptop constitute the process-
ing unit of the sensor node. Our testbed involved the use of a
Rigol DSA1030 spectrum analyzer having a frequency range
from 9 kHz to 3 GHz. The analyzer has a resolution bandwidth
(RBW) range of 100 Hz to 1 MHz, in 1-3-10 sequence, and
a video bandwidth (VBW) range of 1 Hz to 3 MHz. Using a
RBW of 100Hz, a VBW of 10 Hz, an average detector, and a
trace average > 50, we experimented with the Preamplifier of
the analyzer kept on along with an average RMS trace detector
and a dBm scale unit. The input of the analyzer was coupled
to a VHF/UHF broadband TV Log Periodic antenna as shown

in Figure 4 having an inbuilt low noise amplifier. Specifically,
we used an SAS-510-2 Log Periodic antenna by A.H. Systems
Incorporated in our testbed. The antenna provided an input fre-
quency range from 290 MHz to 2 GHz, covering the entire
VHF/UHF band being considered for TV whitespace as in
CR-IWSN environments. In addition, the antenna provided an
antenna factor of 14 - 32 dB and a Gain of 6.5 dBi (specified in
the manufacturer’s datasheet). This antenna was considered for
its excellent cross-polarization property, which greatly reduced
the level of measurement uncertainty. Because it is constructed
from lightweight aluminium and also directional, we found it
suitable for our experimental exercise to ensure that maximum
signal gain was achieved. Summarily, a resolution/video band-
width of 100 Hz was used with a sweep time ranging from 300
- 900 seconds per band. An average detector was used with an
attenuation of 0 dB over a single sweep mode. Our experimen-
tal setup was deployed in an industrial workshop mimicking
the presence of sensors deployed within the environment to
sense and communicate over the network. The signal values
acquired from our experimental testbed were Power spectra
Density (PSD) measurements expressed in dBm/Hz. These
acquired real-life PSD samples were saved in Comma Sepa-
rated Value (CSV) format. Then the CSV formatted datasets
were inputted to each algorithm in order to estimate effective
thresholds. The results obtained are discussed in the following
subsections:

4.3.1. Considering Real-life FM Radio signals
A sample of the acquired FM Radio spectra showing the esti-
mated thresholds by each algorithm is shown in Figure 5.
The noise floor slowly ramps upward from left to right of the
spectra, thus creating a worthwhile challenge to test our algo-
rithms. The signal (shown in Figure 5) contains 900 samples
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Figure 5. Real FM radio spectrum along with the different
thresholds estimated by the different algorithms



acquired between 90 to 94 MHz. Two local FM radio stations
were located at 91.2 and 92.3 MHz, respectively. The samples
were averaged based on a window size of 10 samples in order
to reduce the noise level to enhance each algorithm’s perfor-
mance. Following the noise peak of -81.5 dBm/Hz, station A
at 91.2 MHz provided a dynamic range of 7.91 dB, while sta-
tion B at 92.3 MHz provided a dynamic range of 27.92 dB.
Considering both signals being in the same spectra provided a
20 dB difference between the dynamic ranges of both stations,
thus further creating a worthwhile challenge for our thresh-
old estimators. Each algorithm was then tested and the results
obtained are presented in Table 4 under the FM column.

Since Pp, < 0.001% was obtained for each algorithm (see
all thresholds being above the noise floor at -81.5 dBm/Hz),
we report only the Pj, rates. Our MHPA again achieved the
highest P}, rate followed by the HPA algorithm. The FOST
algorithm performed least. Consequently, our findings sug-
gest that MHPA is considered highly viable in real cases of
unseen real-life datasets. The success of our MHPA further
strengthens the case to use autonomous threshold estimators in
CR-IWSN applications.

= ——MOA
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——HPA
Q ——ROHT
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FIGURE 6 Real TV spectrum showing the different thresholds
estimated by the different algorithms

4.3.2 Considering Real-life TV signals

Each algorithm was tested using signals measured from a local
TV band. The spectra was swept between 424 to 426 MHz
using the same Rigol spectrum analyzer described in Section
4.3. A local TV station was sensed with its pilot signal located
at 425 MHz (see Figure 6). The spectral samples (= 601 sam-
ples) were averaged using a window size of 10 samples in order
to reduce the noise level in the band. Each algorithm recorded
Pr, < 0.001%, which can be easily observed following the

1"

fact that each respective threshold value laid notably above the
noise level (see Figure 6). Consequently, only P, results are
reported in Table 4 under the TV column. From Table 4, the
MHPA again provides the best performance as compared to the
other methods. The HPA follows in performance terms accom-
panied by the MOA. The ROHT, FOST and the Otsu algorithm
provided similar results in this case. It is suggested that the
ROHT and FOST algorithms performed poorly because they
depend only on the mean and standard deviation of the dataset,
which may be often insufficient to describe fully the underly-
ing properties of the sample distribution. By tracing the entire
histogram as considered in our HPA and MHPA, our methods
are made more effective than the other methods under the TV
signal condition investigated in this section.

5. Conclusion

Two adaptive threshold estimation algorithms, namely the His-
togram Partitioning Algorithm (HPA), and the Mean based
HPA (MHPA) have been presented to improve threshold esti-
mation in energy detection based Cognitive Radio (CR) Indus-
trial Wireless Sensor Networks (IWSNs). We have compared
our new algorithms with some notable threshold estimators
under both simulated and real-life signal conditions. From
the results obtained, the MHPA (being a fully autonomous
algorithm) relatively outperformed other tested methods under
different spectra conditions. Our findings reveal that the
MHPA estimates effective threshold values automatically at
a minimum SNR level of SN R = 4d B. Furthermore, both
proposed algorithms are notably invariant to the size of the
sensed band, thus making them suited for both narrow and
wideband sensing in CR-IWSNs. Our algorithms have also a
time complexity of O(V'), where V is the total number of sam-
ples, hence they are considered as quick and highly scalable
algorithms suited for CR-based IWSN applications. Never-
theless, the performance of both algorithms can be improved
particularly under lower SN R regimes, a condition we shall
investigate further in future works.

Appendix
Equation (3) in the main text is derived in this section. Let the
FFT length, V', be denoted as

V=27 (1



Table 4. Estimated Threshold values and corresponding Probability of considering Real-life FM and TV signals .

Class Algorithms Threshold (dBm/Hz) P, (%)
FM TV FM TV
ROHT?* -80.70 -90.58 89.71 7241
adaptive-only Methods FOST? -75.26 -90.95 63.24 7241
HPA -80.98 -92.32 91.18 93.10
Otsu** -75.75 -90.84 67.65 7241
Autonomous Methods MOA 20 -79.30 -92.20 82.35 89.66
MHPA -81.50 -92.57 95.59 96.55
where x is the next power of 2 to be computed. Thus, it is 5. Jarvinen T, Lorite GS, Rautio AR, et al. Portable cyber-

required that

2*> N -1, 2)
where N is the original time domain signal length, which is
obtained as N = T * fg, where T is the sensing period, and
fs is the sampling frequency. Note that the number of FFT
points goes from 0, 1, ..., N — 1, thus accounting for the use of
N —1in equation (2). Thus, from equation (2), x is obtained as

x> log,(Tfg—1) 3

By putting equation (3) into (1), the new FFT length is obtained
as
V = 2MloeaT fs=DI 4)
The ceiling notation is introduced in equation (4) to guaran-
tee that x > log,(T' fg — 1).
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