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Abstract

In this paper, stochastic channel models for massive MIMO (M-MIMO) and extreme large MIMO (XL-

MIMO) system applications are described, evaluated and systematically compared. This work aims to cover

new aspects of massive MIMO stochastic channel models in a comprehensive and systematic way. For that,

we compare different models, presenting graphically and intuitively the behavior of each model. Each massive

MIMO channel model emulates the environment using different methodologies and properties. Using metrics

such as capacity, SINR, singular values decomposition (SVD), and condition number, one can understand the

influence of each characteristic on the modelling and how it differentiates from other models. Moreover, in new

XL-MIMO scenarios, where the near-field and visible region (VR) effects arise, our finding demonstrate that

for the two assumed schemes of clusters distribution, the clusters location influences the performance of the

conjugate beamforming and zero-forcing (ZF) precoding due to the correlation effect, which have been analysed

from the geometric massive MIMO channel models.

Index Terms

Stochastic channel models; Geometric models; Correlation models; Extreme large massive MIMO (XL-

MIMO); Spatial non-stationarity; Visibility region (VR); Near-field; Antenna selection; Energy efficiency; Spectral

efficiency.

I. INTRODUCTION

In the last decades, wireless communications have become increasingly indispensable, so numerous appli-

cations have been created, improving the demand of capacity and reliability of wireless system [1]. One way

to develop such requirements consists in applying the Massive Multiple-input-multiple output (M-MIMO),

considered a key technology, in which the Base Station (BS) is equipped with a large number of antennas [2].

In M-MIMO, the number of BS antennas M is typically of order of hundreds, being limited in [3] by M ≥ 64.

However, this technology presents many challenges as the propagation channel modeling. The channel represents

a fundamental part in wireless communications, responsible for causing strong degradation in the received signal,

and as consequence a remarkable variation in the decoded signal and the overall system performance. Thus, a

realistic propagation model is needed to understand how the environment can change the signal under large as

well extra-large BS antenna arrays and mobile configurations of the terminals. Although we have many channel
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models describing MIMO scenario, unfortunately, there is still no standard channel model available to completely

describe all the channel characteristics of the M-MIMO and extreme large massive MIMO (XL-MIMO) system

scenarios. The fact of M-MIMO has many tens of antennas, typically hundreds of antennas at BS, impacts

on the unique characteristics, of such MIMO systems, including favorable propagation and hardening channel

[4], elevation characteristics due to 2D or 3D antennas array, spherical wave-front assumption [5] and spatial

non-stationarity [6], the last two features are a consequence of the near-field propagation waveform, which

occurs typically in XL-MIMO configurations..

The favorable propagation offers a mutual orthogonality between channel vectors from different mobile

terminals (MTs); hence, the application of linear signal processing techniques at the receiver side can result

in optimal performance [4], [7]. The antenna elements may be arranged in different structures and generate a

radiation pattern according to its structure [8]. The majority of the works consider a uniform linear array (ULA)

structure; however, only 2D or 3D structures such as uniform planar array (UPA) and uniform cylindrical array

(UCA) offer control of angle of elevation, resulting in an increase of spatial resolution, i.e., an increasing on

the desired signal strength while simultaneously provide reduction in users’ interference [9].

In the literature, there are several channel models that strive to match the spatial correlation in M-MIMO

channels, the classical exponential correlation model being one of these. Authors of [10] analyze how the

channel estimation is affected by the correlated fading model; for that, they investigate an M-MIMO scenario

applying the standard MMSE channel estimation approach over uniform linear and planar arrays (ULAs and

UPAs, respectively) of antennas. The spatially correlated channels generated by this combined model results in

an improved channel estimation quality. The UPA acquired better results regarding pilot contamination since it

has been demonstrated that this type of array generates stronger levels of spatial correlation w.r.t. the ULA. In

contrast to the advantageous results in channel estimation, the channel hardening effect was impaired by the

spatially correlated channels, with higher system performance degradation equipped with UPA.

From the measurements, wave-fronts should be assumed to be spherical for typical XL-MIMO scenarios. The

spherical wave channel modeling based on electromagnetic field describes with more accuracy the near-field

propagation if compared to plane-wave propagation; hence the models present different results in capacity [5],

[11]. Moreover, the non-stationary properties of the channel clusters can be observed over the large antenna

arrays due to the possibility of different antenna elements observe different sets of clusters [12]. This property

is paramount in scenarios XL-MIMO and must be considered from a spatial perspective.

In the literature, there are two approaches for wireless massive MIMO channels modeling: deterministic and

statistical. The first approach is based on electromagnetism theory and is considered more accurate; generally the

deterministic channel models are described considering physical aspects and the geometry of the propagation

channel. However, the computational burden makes the model unworkable in practical terms. Although the

statistical channel models result less accurate, they present reduced computational complexity, making expedite

their implementation and analysis.

Among the statistical M-MIMO channel models, there are two kinds of channel models, namely, correlation-

based stochastic models (CBSM) and geometry-based stochastic models (GBSM). The GBSM is categorized in

2D and 3D according to the antennas array used. Such models are usually accurate and flexible for describing

different scenarios, because the model can consider the environmental characteristics as, for example, the type of
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distribution of the scatterers and the locations where the scatterers are distributed. In GBSM, such characteristics

result in a correlation degree between the antennas signals; however, in CBSM, this correlation degree is only

modeled by a correlation factor, making the CBSM model less complex than the geometric-based models.

Recently, a very new scenario has being studied to be implemented in 5G and beyond communication

systems, deploying an extremely large number of antennas at the BS in one, two or three-dimensions antenna

array arrangements, namely XL-MIMO systems. The main idea consists in distribute the antenna elements,

for instance, on the entire wall of buildings, creating antenna array placement in order of thousands antenna

elements. Therefore, unlike the previous models available in the literature, the wireless channel models should

cover new physical characteristics, including non-stationarities and near-field propagation, impacting on the

construction and usability of the wireless channel models [6].

Very recent researches on the non-stationarities channel modeling include [12]–[16]. In [13] a channel model

was proposed for vehicle-to-vehicle communication environments, in which the spherical wave-front is assumed.

Also, the non-stationarity property is evaluated, however, in a temporal sense. In [12], [14], the spherical wave-

front and the spatial non-stationarity property were evaluated, considering the non-stationarity properties on the

array for M-MIMO channel modeling. For XL-MIMO systems, in [15], linear receivers are evaluated, where

the non-stationarities are included in the correlation matrix from each user. In [16], the near-field propagation

considering the spherical wave-front was considered, including the spatial non-stationarity properties for XL-

MIMO systems. However, the methodology to channel modeling considered only LoS paths even with the

presence of scatterers.

The work contributions are fourfold. First, the paper covers new aspects of massive XL-MIMO stochastic

channel modeling in a comprehensive and systematic way, with focus on the comparison and performance

evaluation of various existing channel models, novel cluster distribution scheme and visibility regions (VRs)

generation for XL-MIMO systems. Second, using figure of merit such as capacity, singular values decomposition

(SVD) and condition number (CN), we discuss the influence of each characteristic on the stationary models

and how it differentiates from other models. Third, based on a physical perspective, we propose an algorithm to

generate the VRs in the new XL-MIMO scenarios, deploying the SINR metric for the analysis, considering two

classical linear precoders. The algorithm considers realistic massive MIMOchannel configurations, including

the presence of obstacles between the scatterers and the antennas array, being also considered the size of the

clusters which defines the VR length along the elements of antenna array. Finally, we provide and analyze

extensive numerical results to characterize the correlation-based and geometric-based stochastic channel models

for massive and XL-MIMO equipped with uniform linear and planar arrays subject to spatial correlation, and

also taking into account the large-scale fading component.

The rest of the paper is organized as follows. Section II describes the stochastic channel models for massive

and extreme large MIMO systems. The main figures of merit deployed in the caracterization of geometric and

correlation-based channels are described in section III, while section IV evaluates the stochastic channel models

in terms of achievable capacity, SINR, condition number and SVD analysis. The main conclusions are offered

in section V.
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II. CHANNEL MODELS FOR M-MIMO AND XL-MIMO

The stochastic channel models are defined in CBSM and GBSM as illustrate in Fig. 1. The CBSMs can be

categorized into two types known as classic i.i.d. Rayleigh fading channel model and correlated channel models

[17] that describe the characteristics by correlation matrices. To GBSM, works usually assume the one-ring,

two-ring and elliptical-ring scenarios [18]–[20]. These models are frequently implemented in scenarios where

the BS can employ hundreds of antennas in compact arrays. However, a recent scenario, called XL-MIMO,

was proposed to improve the area throughput in wireless networks. In this scenario, the antennas elements

are disposed in a large surface, where the number of antenna elements is of order of five hundreds or even

thousands [3] antenna elements. Next, we describe the propagation channel models considered.

CBSM
 GBSM


i.i.d. Rayleigh

Fading Channel


Model


Correlated

Model


Regular-shape
 Irregular-shape


2D Model
 3D Model


Stochastic

Channel Model


Fig. 1. Stochastic Channel Models.

In addition, channel models can be classified regarding the dimensions occupied by the antenna elements

arrangements, i.e., 1D, 2D or 3D antenna elements arrangements; such arrangements are associated typically

to uniform linear, planar and cylindrical antenna array structures (ULA, UPA and UCA, respectively). Such

classification is useful since the geometry of arrangement, as well as the number of antenna-elements can be

deployed to control the spatial diversity and the direction of signal propagation; hence, the linear arrangement

is able to control the signal propagation only changing the azimuth angles; while planar, spherical, cylindrical

array shapes explore the spatial diversity controlling simultaneously azimuth and elevation angles. 2D-GMSM

and 3D-GBSM are described in subsection II-B and II-C, respectively. For instance, the 3D-GBSM models

combine geometry-based stochastic channel models with 3D antenna array arrangements, being able to control

the radiation and reception of signals to any direction in 3D space, as defined by azimuth and elevation angles.

In practical communication systems, 2D and 3D antenna arrangement models are more likely to be more widely

used [9] due to the attainable higher spatial diversity.

A. CBSM

In certain situations, a low-complexity and mathematically tractable massive MIMO channel model is pre-

ferred when analysing and simulating system performance [17]. Thus, many researches work with MIMO

channel models based on spatial antenna correlation. The first model is the classical exponential model of
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channel correlation matrix described in the following. Next, we analyze the uncorrelated as well the exponential

with large-scale fading MIMO channel models.

1) Exponential Spatial Correlation: The first channel model is the classical exponential model [21], repre-

sented by a Toeplitz channel spatial antenna correlation matrix:

[R]m,n =






ρn−m, if m ≤ n

ρ∗nm, otherwise, n,m = 1, 2, . . .M

(1)

where M is the total number of antennas uniformly arranged in rows and columns planar or linear structure

(UPA or ULA); (mn, ) is the mn-th element of the correlation matrix that correspond to the position of antenna

element in the planar antenna array structure, while ρ ∈ [0; 1] is the correlation factor, which value depends

on how close the antenna-elements are each other.

2) Uncorrelated Fading with Large-Scale Fading: A consideration of a uncorrelated model is common in

the literature by setting the correlation matrix in (1) as R = βIM , where β is the path loss term defined as

squared amplitude. Adding the effects of the shadowing [22], the uncorrelated channel model is described as:

R = β diag(10
f1
10 , . . . , 10

fM
10 ) (2)

where f1, . . . , fM ∼ N (0, σshad) are the random fluctuation of the large-scale fading.

3) Exponential Spatial Correlation with Large-Scale Fading: A model discussed in [22] and based on [21]

combines (1) and (2), resulting in an exponential spatial correlation with the presence of shadowing effects:

[R]m,n = β · ρ|n−m| · ei(n−m)θ · 10 fm+fn
20 (3)

where θ is the Angle-of-Arrive (AoA). This latter model is more complete as it encompasses more features

than both (1) and (2) exponential-based channel models.

B. 2D GBSM

GBSM can be classified according to the distribution of the scatterers combined with the number of dimen-

sions of the antenna elements placement. When the propagation environment is analyzed, the GBSM can be

classified in regular-shape (RS-GBSM) and irregular-shape (IR-GBSM) geometry-based stochastic models. In

this case, the scatterers can be distributed on regular shapes (for example one-ring, two-ring and ellipse) or

irregularly (randomly distributed) [23].

The One-ring channel model is appropriate for describing environments, in which the base station is elevated

and unobstructed, whereas the user equipment (UE) is surrounded by a large number of local scatterers, while

the two-ring and elliptical model is appropriate for environments in which both base station and the users are

surrounded by local scatterers [24]. Although these models are well established in the literature, such models

do not accurately describe M-MIMO and XL-MIMO configurations and scenarios. Although currently there

is no model that describes all the characteristics present in the XL-MIMO environment, methodologies that

partially describe such scenario have been elaborated, including the effects of the non-stationary and spherical

wave-front characteristics.
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In this paper, we use the 2D and 3D RS-GBSMs classification, considering the One-ring and Gaussian Local

Scattering to define the distribution of the scatterers. In One-ring scenarios, the scatterers are uniformly spread

around the user while for a scenario called Gaussian Local Scattering, similar to One-ring, the location of the

scatterers present Gaussian distribution. For the 2D-GBSM, we consider that the antennas are linearly arranged,

also known as ULA, where the array response is given by [25]:

an = gn[1 e2πidHsin(ϕn) . . . e2πidH(M−1)sin(ϕn)]T (4)

where gn ∈ CM is the average gain of the n-th multipath component, the ϕ is the angle of an arbitrary multipath

component and dH is the antenna spacing in wavelength of the array . Thus, the channel response h is the

superposition of the array responses of the Npath components as show:

h =

Npath∑

n=1

an (5)

Hence, we have the correlation matrix of the channel presented in eq. (5) as:

R = E

{
Npath∑

n=1

anaH
n

}
(6)

where we can rewrite the equation above for the (m,n)th element of R as:

[R]m,n =

Npath∑

n=1

E{|gn|2}E{e2πidH(m−1)sin(ϕn)e−2πidH(n−1)sin(ϕn)} (7)

Considering the total average gain of the multipath components E{|gn|2} as β and applying the expectation

operator, we have:

[R]m,n = β

∫ ∞

−∞

e2πidH(m−n)sin(ϕ)f(ϕ)dϕ (8)

where f(ϕ) is the PDF of ϕ.

The model in eq. (8) is a generic model to GBSM which f(ϕ) can assume uniform, gaussian and laplace

distribution. Illustratively, we describe geometrics models as in Fig. 2, where multiple signals arrives in all

antennas. In the figure, ϕ1 is the nominal angle and δ1 is the angular standard deviation derivated of mutipath

signals, being both originated from the scatterer S1.

1) One-ring Model: If we consider f(ϕ) as a uniform distribution, we have the one-ring model which will

be presented below. The one-ring model is defined as a local scattering, around to UE, distributed uniformly

as f(ϕ) ∼ U(ϕ −∆, ϕ+∆). Thus, the correlation matrix will result in:

[R]m,n =
β

2∆

∫ ϕ+∆

ϕ−∆

e2πidH (m−n)sin(ϕ)dϕ (9)

Considering that ϕ = ϕ+ δ the equation can be rewritten as:

[R]m,n =
β

2∆

∫ ∆

−∆

e2πidH(m−n)sin(ϕ+δ)dδ (10)

where ϕ is the nominal angle of arrival (AoA) and δ is the variation around to nominal angle, ∆ is the range

in which the multi components are disposed. Such variables, AoA and ∆, represent the degree of channel
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UE

BS
. . .

.  .  .

S2

S1

1

1 + 1

.  .  .

Fig. 2. Geometry-based Stochastic Model in Uplink mode where the BS is equipped with linear array. The BS and user are far, thus, the
wave-front can be approximated to a plane.

correlation. Thus, the correlation between the signals can be modeled by the angular interval at which the

signals arrive while the degree of correlation between the antennas can be modeled from AoA.

2) Gaussian Local Scattering Model: Another channel model based in geometry is the Gaussian local

scattering model described in [25], where the correlation matrix is described by:

[R]m,n = β

∫ ∞

−∞

e2πidH(m−n)sin(ϕ) 1√
2πσϕ

e
− (ϕ−ϕ)2

2σ2
ϕ dϕ (11)

Taking the same consideration as the one-ring model, ϕ = ϕ+ δ, the eq. in (11) can be rewritten as:

[R]m,n = β

∫ ∞

−∞

e2πidH(m−n)sin(ϕ+δ) 1√
2πσϕ

e
− δ2

2σ2
ϕ dδ (12)

where σϕ is the angular standard deviation (ASD) of the multiple signal components around the nominal angle.

An approximation can be done if σϕ has small values, below 15◦ resulting in a close-form expression:

[R]m,n = βe2πidH (m−n)sin(ϕ)e−
σ2
ϕ
2 (2πdH(m−n)cos(ϕ))2 (13)

Some channel measurements showed the presence of shadowing [26] and in [27] the correlation matrix for

the gaussian model was presented as:

[R]m,n = β10
fm+fn

10
1

S

S∑

s=1

e2πidH(m−n)sin(ϕs)e−
σ2
ϕ
2 (2πdH(m−n)cos(ϕs))

2

(14)
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where S is the number of scatterers and ϕs is the nominal angle of arrival of the s-th scatterer.

C. 3D GBSM

The 3D GBSMs are structure as planar, cylindrical and spherical capable of creating beams controled by

two angles, azimuth and elevation [9]. Most of the channel model described for the MIMO system considers

2D models, however, for applications on M-MIMO systems, the 3D models are better candidates due to the

large number of antennas that M-MIMO proposes [28]. Based on [25], a planar strutucture, known as Uniform

Planar Array (UPA), will be analyzed with the One-ring model and the Gaussian Local Scattering model.

When we consider that the user is far enough from the antennas array, the plane wave can be evaluated as:

k(ϕ, θ) =
2π

λ




cos(θ) cos(ϕ)

cos(θ) sin(ϕ)

sin(θ)


 (15)

where ϕ and θ are the azimuth and elevation angles of each received signal. The location of the m-th antenna

on the x, y, and z axis for the planar array can be described as:

um =




0

py(m)dHλ

pz(m)dV λ


 (16)

where py(m) = mod(m−1,MH) and pz(m) = ⌊(m−1)/MH⌋ are the horizontal and vertical index of antenna

m, respectively. Thus, we can write the correlation matrix as:

[R]m,n = β

∫ ∫
ej2πdV [pz(m)−pz(n)]sin(θ)ej2πdH [py(m)−py(n)]cos(θ)sin(ϕ)f(ϕ, θ)dϕdθ (17)

1) One-ring Model: From eq. (33), if we consider that elevation and azimuth angles with uniform distribution,

we have a 3D one-ring. Thus, the one-ring model for a UPA is decribed as:

[R]m,n =
β

4∆ϕ∆θ

∫ θ+∆θ

θ−∆θ

∫ ϕ+∆ϕ

ϕ−∆ϕ

ei2πdV [pz(m)−pz(n)]sin(θ)ei2πdH [py(m)−py(n)]cos(θ)sin(ϕ)dϕdθ (18)

where θ ∈ [−π/2, π/2) and ϕ ∈ [−π, π), ∆θ and ∆ϕ are the angular spread in elevation and azimuth domain,

pz(m) and py(m) refers to the index of the m-th antenna on the z and y axis, respectively, in the same sense,

pz(n) and py(n) refers to the index of the n-th antenna on the z and y axis. The horizontal and vertical distances

are defined by dH and dV with the antenna element placed by x (row index) and y (column index) and β

describes the macroscopic large-scale fading.

Considering ϕ = ϕ+ δϕ and θ = θ + δθ , the eq. (18) is rewritten as:

[R]m,n =
β

4∆ϕ∆θ

∫ ∆θ

−∆θ

∫ ∆ϕ

−∆ϕ

ei2πdV [pz(m)−pz(n)]sin(θ+δθ)ei2πdH [py(m)−py(n)]cos(θ+δθ)sin(ϕ+δϕ)dδϕdδθ (19)

In the same way of 2D models, in 3D models both azimuth and elevation angles play a fundamental role in

channel modeling, incorporating information that defines the degree of correlation of the antennas. In addition,

correlation can also be modeled by the angular interval, ∆ϕ and ∆θ , in which it defines the correlation between

the received signal replicas, imposed by the environment (via scatters).
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2) Gaussian Local Scattering Model: From eq. (33), we will analyze the scattering with Gaussian distribution

shown as:

[R]m,n =
β

2πσϕσθ

∫ ∞

−∞

∫ ∞

−∞

ei2πdV [pz(m)−pz(n)]sin(θ)ei2πdH [py(m)−py(n)]cos(θ)sin(ϕ)e
1

2σ2
ϕ
(ϕ−ϕ)2

e
1

2σ2
θ

(θ−θ)2)
dϕdθ

(20)

where σϕ and σθ describe the angular standard deviation of the azimuth and elevation angles. Considering

ϕ = ϕ+ δϕ and θ = θ + δθ , the eq. (20) is rewritten as:

[R]m,n =
β

2πσϕσθ

∫ ∞

−∞

∫ ∞

−∞

ei2πdV [pz(m)−pz(n)]sin(θ)ei2πdH [py(m)−py(n)]cos(θ)sin(ϕ)e

δ2ϕ

2σ2
ϕ
+

δ2
θ

2σ2
θ dδϕdδθ (21)

D. Extreme Large Massive MIMO Channels

Massive MIMO is a system in which the BS is equipped with hundreds of antennas. The large number

of antennas impacts in some unique characteristics, such as spherical wave-front (near-field) assumption and

spatial non-stationarity. In MIMO system, the assumption of the plane wave-front is reasonable since the size

of antennas array is smaller, i.e., the power variations between the antennas can be assumed approximately a

constant. However, in XL-MIMO the number of antennas and the array dimension can be considered extreme

large, while the users distance to the array is very short compared to the array size. Thus, the far-field assumption

does not hold, being necessary the spherical wave-front assumption. The far-field is often taken to exist for

distances greater than the Rayleigh distance, given as:

Z =
2D2

λ
(22)

where D is the maximum dimension of the antenna or antenna array, and λ represents the wavelength.

The non-stationary properties associated to the channel clusters can be observed on large antenna arrays

due to the possibility of different antenna elements observe different sets of clusters [12], where the set of

antenna elements observed is called visibility region (VR). In massive MIMO configurations, it is observed

significant non-stationaries across antennas elements when the mobile terminals are close to the antenna array,

as reported by measurements in [6], being necessary consider from a spatial perspective [29]. The XL-MIMO

principle consists in incorporating the elements of antennas in a building of large dimension, thus, the non-

stationarities and the spherical wave-front features become essential considerations. The physical XL-MIMO

channel scenarios with a linear array and Cj channel clusters can be represented as in Fig. 3. To build the

XL-MIMO channel model, one can follow the steps as determine the number of cluster and the geographical

position; generate the VR for each cluster; determine the pathloss for each antenna element; and generate the

channel coefficient from each user according to the antenna correlation model.

From the perspective of clustering position, in this work we analized two schemes scenarios, as depicted

in Fig. 4. In the first configuration, a distance d1 corresponding to an equal distance between the center of

the BS and any cluster positioning in the valid distribution cluster region. Thus, the d1 and azimuth angle

will determine the cluster localization, as well as the received power in each BS antenna array. In the second

scheme, the cluster distribution region is parallel to the BS and the distance between the region and the array

is determined by d2.
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UE 1

UE k

C1

C2

C j

C j+1

* � �

 Building the XL-MIMO channel model:

1. Define the number of clusters (Cj) per user and 

the geographic position from each one

2. Generate the visibility region (VRj)

3. Calculate the path loss for each antenna element

4. Generate the channel from each user according 

to the correlation model adopted

VR j
VR j+1VR2

1   2 …. ….. m  …. …. M antennas

L LL

r2

Fig. 3. Typical XL-MIMO scenario: each cluster defines the VR length (LVRj ) in the antennas array.

. . . . . .

d 1

d2

(a)  First scheme (b) Second scheme

Distribution region of the
clusters

Fig. 4. Adopted channel clustering distribution following two representative scenarios.

In step 2 of Fig. 3, we need to define the size of each cluster, because it will determine the VR size. Hence,

in Fig. 3 one can see that the cluster C2 is able to see a larger number of antennas compared to cluster C1

due to the cluster size. In this work, we define the cluster radius r and the VR size region LVR are related by

LVR = 2r. Moreover, in the VR it is possible the presence of obstacles, reducing the number of antennas that

receive the signal from the corresponding channel cluster. Hence, considering the number of antennas that the

cluster can observe, a simple way to simulate the obstacles consists in generate the VR in XL-MIMO scenarios

as presented in Algorithm 1, where λ is the carrier wavelength, p0 is the probability of the antenna not being

visible, p1 is the probability of the antenna being visible, c is a factor which defines how fast the regions

changes to visible and not visible (amount of obstacles), and rmin and rmax are the minimum and maximum

cluster radius, respectively.

In step 3, Fig. 3, the path loss in dB from the user to each antenna element n is calculated as:

L(n) = L0 − 10 · α · log10
[
d(n)

d0

]
(23)

where L0 is the channel average gain at the reference distance of d0 = 1m, α is the path loss exponent, which
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determines how fast the signal power decays with the distance, d(n), in meters, is the sum of the distance

between the cth cluster to the nth antenna element and the distance between the kth UE to the cth cluster.

Finally, in the step 4 the channel from each cluster c corresponding to each user k is generated as:

hk,c = βk,c ◦ (R
1
2

k,czk,c) (24)

where ◦ denotes the Hadarmard product, βk,c is the vector of path loss amplitude gain, related to user k and

cluster c, while Rk,c is the correlation matrix for the cluster c and user k, described like the stationary case,

and the short term fading is given by zk,c ∼ CN (0, IM ). Thus, the channel from the UE k is obtained:

hk =

CT∑

c=1

hk,c (25)

where CT is the total number of clusters for the kth mobile user. Hence, the entire channel matrix H ∈ CM×K

is defined simply as H = [h1 h2 . . . hk . . . hK ].

Algorithm 1 Generation of the VR

1: Input M,λ, rmin, rmax, p0, p1, c
2: Pick a radius r with uniform probability distribution between rmin and rmax

3: LVR = 2r
4: dH = 5λ
5: LBS = (M − 1)dH

6: MVR =
⌈
MLVR

LBS

⌉

7: vprob = [p0 p1]
8: Pick a initial number vant (0 or 1) with equal probability

9: i = 0
10: for n = 1 : MVR do

11: Mset(n) = vant

12: if vant = 1 then

13: vprob = [p0 p1]
14: i = 0
15: else if vant = 0 and (p1 − i) ≥ 0 then

16: vprob = [p1 − i p0 + i]
17: i = i + c
18: else if vant = 0 and (pr1 − i) < 0 then

19: vprob = [0 1]
20: end if

21: Pick another number vant (0 or 1) with probability function of vprob

22: end for

23: Mset: antenna set within VR; antennas may be obstructed [Mset(n) = 0] or not obstructed [Mset(n) = 1]

24: Output Mset

E. Downlink Transmission in XL-MIMO with Linear Precoding

For the downlink transmission, the BS transmits payload data to its UEs, using a linear precoding. Let sk be

the symbol to be transmitted to the kth user, where E{|sk|2} = 1. Each user is associated with the precoding

vector w ∈ CM×1, that determines the spatial directivity of the transmission. Thus, the transmitted signal is

described by:

x = Ws (26)
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where W = [w1 ... wK ] and s is the transmitted signal vector. Aiming at satisfying the power constraints, the

precoding must be chosen obeying E{|x|2} = P . The received signal at the K users is given by:

y = HHx + n (27)

where (.)H is the the Hermitian operator, n is a vector whose kth element, nk, is the additive noise at the kth

user and H ∈ CM×K contains the channel vectors of each user. Two selected low-complexity linear precoding

techniques are the Conjugate Beamforming (CB) and Zero-forcing (ZF), defined respectively by:

WCB = H (28)

WZF = H(HHH)−1 (29)

To satisfy the power constraint of the transmitted signal, the precoding in (28) and (29) are normalized as:

WCB =

[
p1

wCB
1

||wCB
1 || ... pK

wCB
K

||wCB
K ||

]
(30)

WZF =

[
p1

wZF
1

||wZF
1 || ... pK

wZF
K

||wZF
K ||

]
(31)

where p1, ..., pK are the transmit powers for each user in which the average transmit power at the BS is

P = p1 + p2 + ...+ pK , wCB
1 , ...,wCB

K and wZF
1 , ...,wZF

K are the precoding vectors for each user according to the

CB and ZF principle, respectively.

III. FIGURES OF MERIT

We analyze the channel models for M-MIMO and XL-MIMO presented previously using the capacity as a

valid figure of merit. The ergodic channel capacity is given by:

C = E

{
log2

[
det

(
I +

η

M
HHH

)]}
(32)

where η is the average signal-to-noise ratio, M is the number of antennas in BS and H is the channel matrix.

As the capacity is a concave function (logarithmic function), we can apply the Jensen’s inequality to obtain

the following upper bound (UB) on the mean (ergodic) capacity [21] .

Cub = log2

[
det

(
I +

η

M
E{R}

)]
(33)

where R is the channel matrix defined by each channel model. Thus, the upper bound on ergodic capacity Cub

was analyzed to all channel models, assuming high signal-to-noise ratio.

To analyze the XL-MIMO channel models, we have selected the SINR as the figure of merit. The choice

for another figure of merit to evaluate the XL-MIMO channel models was necessary due to the construction

of the XL-MIMO model including the visibility regions, in step 2, and correlation in step 4, Fig. 3, where the
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correlation matrix is defined for a stationary case, and then added non-stationarity to the model. Thus, one can

describe the SINR for the kth user as:

γk =
|hH

k gk|2
K∑
j=1
j 6=k

|hH
k gj |2 + σ2

(34)

where σ2 is the noise power, gk and hk are the precoding and channel vectors from user k, respectively

It is worth to note that across the numerical results section, the path loss of each XL-MIMO channel hk,c has

been normalized by the inverse of path loss gain, i.e., A = d̃α, defining the adopted power allocation policy.

IV. NUMERICAL RESULTS

In this section the validation of the analyzed M-MIMO and XL-MIMO channel models is corroborated

numerically. The adopted channel and system parameter values are described in Table I.

TABLE I
PARAMETER VALUES ADOPTED IN THE NUMERICAL SIMULATIONS FOR M-MIMO AND XL-MIMO CHANNELS.

Parameters Values

M-MIMO Channel

Average signal-to-noise ratio η = 60 dB

Figure of merit: Ergodic capacity Cub

Path loss term β = 1

XL-MIMO Channel

Average signal-to-noise ratio η = 10 dB

Figure of merit: SINR γk
Number of antennas M at the BS 100

Number of clusters by UE 2

Distance d1 for the 1st scheme of clusters distribution 35 m

Distance d2 for the 2nd scheme of clusters distribution 20 m

Distance between the UE and the BS d̃ 40 m

Path loss exponent for the VR αVR= 3 dB

Path loss exponent out of the VR αnVR= 6 dB

Normalization factor A = d̃αVR = 403

Cluster radius r ∈ [rmin; rmax] r ∼ U(5, 10) m

Probability of the antenna not visible p0 = 0.05

Probability of the antenna is visible p1 = 1− p0 = 0.95
Factor c related to the VR c = 0.05
Channel average path loss gain L0 −34.53 dB

Pathloss reference distance d0 = 1 m

MIMO System

Linear Precoding CB; ZF

Carrier frequency f = 2.4 [GHz]

Carrier wavelength λ =12.5 [cm]

Total transmit power P 1 W

Transmit power for each user pk P/K
Number of Monte Carlo realizations 300

A. CBSM

For CBSMs, the Table II describes the parameters evaluated in each simulation. Thus, we individually present

the values used to generate each figure.
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TABLE II
PARAMETER VALUES ADOPTED FOR CBSMS.

CBSM - Parameters adopted in each simulation

Fig. 5a Fig. 5b Fig. 6a Fig. 6b Fig. 7a Fig. 7b

Path loss term β 1 1 1 - 1 1

Number of antennas M [20:400] 100 [20:400] - [20:400] 100

Correlation factor ρ [0:0.2:1] [0:1] - - [0:0.2:1] [0:1]

Shadowing - standard deviation σϕ - - [0:2:6] [0:10] 4 [0:2:6]

Angle of arrival θ - - - - π/2 π/2

1) Exponential: The first model is the exponential presented in eq. (1). The Cub for this model was analyzed

by the number of antennas and by the increase of the correlation factor as showed in Fig. 5.a and Fig. 5.b,

respectively. The capacity presents an exponential gain with the logarithmic increase in the number of antennas.

For this model, the number of BS antennas M can increase the capacity up to 7 times, if we compare a system

with 20 antennas against 400 antennas. However, the correlation factor has an undesirable effect on the capacity,

mainly, when ρ > 0.6, the capacity decreases drastically. Therefore, it is possible to see that the correlation

factor has a strong impact on the system capacity even under a large number of antennas.

2) Uncorrelated Fading: The second model is the uncorrelated fading defined in eq. (2). The analysis of

capacity versus number of antennas is depicted in Fig. 6.a. Besides the same increasing capacity behavior with

the logarithmic increment on the number of antennas, one can observe the effect of the shadowing. Indeed,

when the standard deviation of the shadowing increases, the channel capacity also increases.

In order to measure the gain that the shadowing can offer, in Fig. 6.b, the shadowing average amplitude is

depicted as a function of its standard deviation. One can see that the shadowing channel term is able to provide

an exponential gain in the channel capacity explaining the behavior in the Fig. 6. From the shadowing term

described in eq. (2), one can verify that the term is always positive even when fm (f1, ..., fM) is negative.

If fm has small variance, on the average, the shadowing term will be small. However, for high variances,

fm may assume more likely larger values and, on average, the shadowing term will be large. Besides, the

shadowing term provides a descorrelation effect between the antenna signals, increasing the channel capacity.

The difference in capacity is high if we compare the channel with shadowing variance σshad of 1 dB against

10 dB, resulting in average amplitude of shadowing of 1 versus 14, respectively.

3) Exponential Model with Large Scale Fading: The last CBSM considered herein is the exponential model

combined with shadowing effects, as defined in eq. (3). The channel capacity for an increasing number of

antennas and a growing correlation factor is depicted in Fig. 7.a and 7.b, respectively, where the increase rate

of capacity with the number of antennas depends on the channel correlation index ρ. However, differently from

the simple exponential model, the values of capacity are higher due to presence of the shadowing. Moreover,

one can observe that even under a correlation factor near or equal to ρ = 1, the channel capacity increases

steadily with M , but of course with reduced rate when ρ → 1. Furthermore, Fig. 7.b, shows channel capacity

values for correlation values in the range ρ ∈ [0; 1] and different standard deviation shadowing values. As

expected, when the std shadowing values increases, the UB capacity increases too. Besides, notice that the

capacity is close to uncorrelated channel capacity values without shadowing when the standard deviation value
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Fig. 5. CBSM exponential model. Capacity as a function of a) number of antennas; (b) correlation factor assuming M = 100.

is 6 dB for a fully correlated channel condition, ρ = 1.

B. GBSM

For GBSMs, the Table III describes the parameter values adopted in each numerical simulation. Thus, we

individually present the values used to generate each figure.

1) One-ring Model with ULA: Next, we analyze the channel models for M-MIMO and XL-MIMO systems

based on the geometry, starting with the 2D models for scenarios where the user is around the scatterers

uniformly distributed i.e. the one-ring geometry, as defined in eq. (10). First, the capacity was analyzed when

the nominal AoA ϕ and the angular spread ∆ are varying, as illustrated in Fig. 8. Indeed, if we imagine a
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(σshad); b) Shadowing amplitude when the standard deviation is increased.

TABLE III
ADOPTED VALUES FOR GBSMS CHANNEL PARAMETERS.
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H

A
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A

(a
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)
ϕ

A
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A
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ϕ

A
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A

S
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σ
ϕ

S
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ad

.
S

td
σ

sh
ad

A
o
A

(e
le

v
at

io
n
)
θ

A
o
A

R
an

g
e
∆

θ

A
o
A

S
td

σ
θ

8b 100 0.5 λ [0;360) [0:45] - - - - -

9a 100 0.5 λ π/6 [1:50] - - - - -

9b 100 0.5 λ π/6
√

3[10; 20; 30] - - - - -

10a 100 0.5 λ [0;90] [0:45] - - - - -

10b 100 0.5 λ [0:360] [10;30] - - - - -

10c [20:400] 0.5 λ [0;90] [10;30] - - - - -

10d 100 [0:10] λ 0 [10;30] - - - - -

11a 100 0.5 λ π/6 - [0:5:15] 0 - - -

11b 100 0.5 λ π/6 - [0:5:15] 2 - - -

12a 100 0.5 λ [0;90] - [0:15] [0:2:4] - - -

12b 100 0.5 λ [0:360] - 15 [0:2:4] - - -

12c [20:400] 0.5 λ [0;90] - 15 [0:2:4] - - -

12d 100 [0:10] λ 0 - [5;15] 0 - - -

13a 100 0.5 λ [0:360] 10 - - [-90:90] 2 -

13b [16:400] 0.5 λ [0;90] 30 - - [0;90] [15;30] -

13c 100 0.5 λ [0:360] [10;30] - - 0 [2;10;30] -

13d 100 [0:10] λ 0 [10;40] - - 0 [5;20] -

14a [16:400] 0.5 λ [0;90] - 30 - [0;90] - [15;30]

14b 100 0.5 λ [0:360] - [10;30] - 0 - [2;10]

14c 100 [0:10] λ 0 - [5;20] - 0 - [5;20]

horizontal ULA, we can suppose that perpendicular angle of arrival will present higher capacity than parallel

ones, because parallel angles result in antennas strongly correlated, hence, smaller capacity.

This behaviour is observed in Fig. 8.b, in which the angles 0o and 180o represent the perpendicular angles to

the antennas array and the angles 90o and 270o represent the parallel angles to the antennas. We also observed

that the angular spread ∆ can result in an increase in the capacity. The ∆ is related to how close the angle of the

signals received from each multipath component are, indicating that the arrived signals may are correlationed
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Fig. 7. Correlated-based sthocastic

channel fading: a) UB capacity when the number of antennas increases; b) UB capacity for different values of

std shadowing for M = 100 antennas.

according to the value of ∆.

Aiming to verify if the behavior of capacity according to ∆ is due to the spatial correlation, we analyzed the

condition number (CN), i.e. the ratio between the maximum (σmax) and the minimum (σmin) singular value

related to the channel matrix A [30]:

κ(A) =
σmax

σmin
(35)

In our massive MIMO channel analysis, the CN is used as an environmental characterization metric and it

can express the spatial correlation degree of a correlation channel matrix [31]. As well known, if a matrix is
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of the relation between capacity and nominal AoA. b) Capacity analysis vs AoA and ∆.

correlationed, only the first singular value is representative, while the others result in ”small” singular values,

indicating that the matrix is near to the singularity. Hence, in Fig. 9, one can see that the CN has decreased

with the increasing of ∆; however, such values remain high due to the high correlation associated with the

One-ring channel model. Therefore, the behavior seen in Fig. 8.b with respect to ∆ is due to the degree of

correlation in the One-ring model, in which the higher the degree of correlation, the lower capacity.
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Fig. 9. a) Condition number when the angular spread is increased; b) Singular values for different angular spread.

In order to compare the capacity values of the GBSM and CBSM models, Fig. 10 depicts the variation of

capacity with ∆, AoA, number of antennas M and normalized distance between antennas dH

λ
. Fig. 10.a analyzes

the capacity as a function of ∆ assuming fixed the nominal angles of arrival in ϕ = 0o and 90o, representing

the best and worst case in terms of capacity for a wide range of ∆ values. Hence, from the two AoA values, one

can see that to ∆ near zero, the capacity is small and approximately constant, i.e. independent of the nominal

angle of arrival ϕ. However, one can see a huge difference of almost 190 bit/s/Hz with ∆ = 45o. Moreover,

even with the increase of ∆, nominal angles of 90o and 270o do not increase significantly the capacity when
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compares to 0o and 180o. Such behavior is justified if we imagine two arrival angles ϕ = 0o and ϕ = 90o;

in the first case, the ULA would receive the signals with the best AoA and the in the second case the ULA

would receive the signals with the worst AoA, thus, even as the ∆ increases, the capacity will increase much

fast for the first case than for the second case. Moreover, comparing GBSM with CBSM model (section IV-A),

one can observe a similarity in GBSM behavior with respect to ∆ and the correlation factor presented in 5.b),

where the correlation factor and ∆ are inversely proportional. Capacity behavior according to the number of

antennas was analyzed in Fig. 10.c). For any angle of arrival and with a nonzero ∆, the capacity increases with

the number of antennas. However, the observed capacity values are very low if compared with the Exponential

model of Fig. 5.a). According to the geometric model, the obtained capacity does not exceed 500 bit/s/Hz,

being this value compared to the CBSM with a correlation factor between 0.8 and 1. Moreover, we see that the

difference in the capacity is more pronounced between the angles ϕ when the number of antennas increases.

The last analysis was developed according to the distance between the antennas presented in Fig. 10 d). As the

distance increased, we observed that capacity increased, and capacity remained constant over a certain distance.

This behavior is related to the degree of correlation between the antennas, where with increasing spacing, the

degree of correlation decreases. The fact that capacity reaches a limit indicates that the antennas are completely

uncorrelated. The difference between ∆ = 10o and ∆ = 30o is that under the latter angular spread the signals

are more uncorrelated, thus, the capacity increases with a distance smaller than ∆ = 10o.

2) Gaussian Model with ULA: The second GBSM is the Gaussian Local Scattering Model defined in eq.

(14). Unlike the One-ring model, in the Gaussian model the spreaders are around to the user with Gaussian

distribution, suggesting that in a propagation environment some spreaders are more likely to influence signals

arriving at the BS. The first analysis was performed by analyzing the capacity when the σϕ increases. Such

behavior is similar to ∆ and it was explained for the One-ring model using CN metrics. Even knowing that

σϕ affects the degree of correlation between signals, we analyze the singular values, but in order to verify the

influence of shadowing on signal correlation. In Fig. 11, there are two cases, the first without the shadowing

effect, Fig. 11.a, and the second with shadowing of 2 dB, Fig. 11.b. Clearly one can see that increasing

shadowing standard deviation implies in decreasing the difference between the largest singular value and the

smallest singular value, resulting in a better (smaller) condition number. Such result is understandable if we

realize that each antenna receives a signal with a shadowing amplitude distinct from the shadowing amplitude

of another antenna, such amplitude being given by a random variable and uncorrelated to the other one1.

In Fig. 12 one can check the capacity value for M = 100 antennas under the Gaussian local scattering model

with ULA when varying the angular standard deviation (ASD, σϕ) and AoA. One can infer the gain that ASD

provides; however, at angles close to ϕ = 90o and ϕ = 270o the models suggest that there is no gain (eq. (14)).

Thus, the capacity remains constant regardless of the presence of shadowing. We also see that shadowing has a

greater influence on capacity than the increase in ASD itself; so, we can see that for ASD equal to zero we have

a capacity gain of 500 bit/s/Hz with a shadowing standard deviation of 4 dB, i.e., even though both variables

result in a reduction in the degree of correlation, shadowing has a greater impact than angular scattering. Also,

we have observed that due to the signals from each antenna are more uncorrelated when the shadowing value

1See the definition of correlation elements in the Gaussian Local Scattering Model, eq. (14), as well as the random fluctuation of the
large-scale fading fm description in eq. (2)
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Fig. 11. Singular values decomposition analysis for the GBSM Gaussian local scattering model

.
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is higher, the impact of the arrival angle on the degree of signal correlation is smaller, resulting in less impact

on capacity.

Another analysis for the Gaussian model is related to the increase of the number of antennas presented in

Fig. 12.c. For this case, we also check the dependence with three shadowing values. The capacity gain was

exponential for this model as well as the previous models. If we compare the capacity gain provided by this

model without shadowing against the One-ring model, one can see that both models are similar, despite the

Gaussian model resulting in a greater gain that presented by the One-ring. channel model. Finally, Fig. 12.d

demonstrates that the channel capacity under the Gaussian model in ULA antenna arrangement increases when

distance between antenna array elements increases as well, but unlike the One-ring model, at a certain distance

the capacity remains constant without slight oscillations. Anyway, in both channel models when the capacity

is stabilized with antenna distance increasing, such capacity values become very close.
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d) normalized distance between antennas.

C. 3D Models

1) One-ring Model with UPA: The next analysis is related to GBSM with UPA. In a model where the

antennas array configuration is planar, we have to analyze not only the azimuth angle, ϕ, but also the elevation
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angle, θ. First, the capacity behavior is presented according to the nominal angles in Fig. 13.a. For the azimuth

angles, the better arrival angles are the same demonstrated to ULA. Indeed, using ULA, one can identify that the

elevation angles is not a determinant factor on the system performance, while in UPA the elevation angle affects

greatly the channel capacity. As one can suppose or infer, the better angle is perpendicular to the azimuth and

the elevation i.e. when both is equal to 0o, the capacity is maximum, as depicted in Fig. 13.a. Capacity behavior

according to the number of antennas is also analyzed and presented in Fig. 13.b, when the nominal angles are

equal to 0o (best case) and equal to 90o (worst case). Previously, we saw that the UPA is limited by elevation

and azimuth angles while ULA is only limited by azimuth angle. In fact, the UPA presents the advantage to

perform the beamforming and a more versatile and compact spatial arrangement of antennas, but the capacity

is smaller than ULA; for instance, one can see that the capacity value is C ≈ 100 bit/s/Hz when the BS is

equipped with an UPA arranged as Mh × Mv ≡ 20 × 20 antennas. Moreover, from previous analysis to the

ULA, we know that the ∆ defines the range of the arrival angles. Thus, we can conclude that for the UPA the

same behavior will be verified, in which when ∆ϕ and ∆θ increase, the arrival signals become less correlated,

and therefore increasing the capacity. We analyze the capacity for some fixed values of ∆, being the elevation

nominal angle defined as 0o. According to Fig. 13.c, one can notice that the higher the value of ∆, greater the

capacity; however, the capacity only increases significantly if both ∆ϕ and ∆θ increase simultaneously. As we

know, when the BS is equipped with ULA, the elevation angle does not interfere on the capacity, unlike the

UPA. Thus, the channel capacity using UPA arrangements is reduced compared to the ULA models. Lastly,

in Fig. 13.d the capacity is investigated according to the vertical and horizontal antenna spacing for different

values of ∆ϕ and ∆θ . From this analysis, one can see that when both ∆ϕ and ∆θ are simultaneously larger,

the capacity is increased faster considering small vertical/horizontal antenna separation distances. The same

oscillation characteristic observed in the One-ring channel model when the BS is equipped with ULA is also

confirmed with UPA arrangements, where the capacity is also limited in C ≈ 350 bit/s/Hz, due to the number

of antennas is the same in both situations.

2) Gaussian Model with UPA: The second 3D channel model for massive MIMO systems is the Gaussian

model with UPA arrangements. As a numerical result, the channel capacity with increasing number of antennas

is presented in Fig. 14 a. One can observe that when BS is equipped with both ULA and UPA, the Gaussian

model results in a higher capacity than that provided by One-ring model, considering the same nominal values

of ∆ and σ, i.e., the spread range is not equivalent in both models. Hence, with a uniform distribution, the

spread is limited differently when compared with a Gaussian distribution, thus the angular range for the arrival

signals in Gaussian model is larger, resulting in greater capacity gain. Moreover, the arrival angles are analized

in Fig. 14 b. When compared with the One-ring UPA model, Fig. 13.c, considering the same AoA and number

of antennas, the Gaussian model presents higher channel capacity, since we know that this behavior is related

to the antenna array geometry. For instance, the channel capacity predicted by the Gaussian UPA model when

the nominal angles equal to zero and the respective standard deviations σϕ = 30o and σθ = 10o, the capacity

is almost 200 bit/s/Hz while the One-ring UPA model predicts a capacity of C ≈ 105 bit/s/Hz. The fact that

the Gaussian model provides a larger angular arrival range than the One-ring model can be confirmed when

we increase the ∆θ = 30o as depicted in the same Fig. 13.c. The capacity in this case is C ≈ 175 bit/s/Hz,

even smaller compared to that predicted by the Gaussian UPA model.
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Fig. 13. One-ring Model with UPA. Capacity analysis according to: a) the nominal angles of azimuth and elevation; b) increasing Mh

and Mv simultaneously; c) the azimuth nominal angle; d) increasing the horizontal and vertical spacing between the antennas.

Finally, the behavior of the channel capacity based on Gaussian UPA model according to the spacing between

the vertical/horizontal antennas is shown in Fig. 14.c. As explained previously, the spacing between antennas is

related to the degree of signal correlation and therefore the capacity increases with increasing antenna separation

until saturate in C ≈ 350 bits/s/Hz. In this analysis we simulate at first σθ = 5o and σϕ = 20o and in a second

moment we analyze the capacity when σθ = 20o and σϕ = 5o. Hence, the capacity results quite similar,

evidencing the fact that the increasing in the spread range, measured by the standard deviation in the elevation

σθ and the azimuth σϕ angles, implies in a consistent increment in thr channel capacity.

D. CBSM and GBSM Compared to Channel Measurements

To corroborate the validity of the proposed stochastic channel models, in this section a performance analysis

of the CSBM and GBSM models are compared to the massive MIMO channel campaign measurement conducted

in [32]. The channel measurements were performed outdoors with a scalable virtual antenna array consisting

of up to 112 ULA elements, representing a residential urban area. The deployed CBSM and GBSM channel

parameter values are depicted in Table IV.
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Fig. 14. Gaussian Model where BS is equipped with UPA. Capacity according to: a) increasing the number of antennas; b) azimuth
nominal angle.

For this analysis, we used the correlation coefficient between two channel vectors defined with:

ν(M) =
|hH

i,Mhj,M |
||hi,M || ||hj,M || (36)

where hi,M and hj,M are the channel vectors from the user i and user j, respectively. The correlation coefficients

were evaluated according to the number of antennas M for the models in which the BS is equipped with ULA.

The results obtained for this simulation are depicted in Fig. 15.

First, we can observe that both the measurement and the channel models show a decreasing correlation

behavior with the increase in the number of antennas. This result is due to the favorable propagation massive

MIMO property, in which the orthogonality of the channels between users is attained when the number of

antennas increases. According to the data of the measured values, it is possible to observe that the correlation

has a rapid decay when the number of antennas increases in the range [1; 10]. However, the correlation decays

very slow, remains with few variations, when the number of antennas exceeds 50, i.e., characteristic values of a

massive MIMO system. In Fig. 15a, if we divide the analysis according to the number of antennas, we see that

the uncorrelated model and the exponential model with large-scale fading better capture the channel conditions

for this outdoor channel measurement scenario. However, for a larger number of antennas, the GBSM models
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TABLE IV
PARAMETER VALUES ADOPTED IN THE NUMERICAL SIMULATIONS FOR CHANNEL CORRELATION ANALYSIS.

Parameters Values

Exponential Model

Path loss term β = 1

Correlation index ρ = [0.8; 0.85]
Exponential Model with Large Scale Fading

Path loss term β = 1

Correlation index ρ = 0.8
Shadowing – standard deviation σshad = 0 dB

Angle of arrival θ ∼ U(0, θmax) degrees

Maximum angle of arrival θmax = [60; 90; 180] degrees

One-ring ULA

Path loss term β = 1

Angular interval of the angles of arrival ∆ = 10 degrees

Angle of arrival ϕ ∼ U(0, 180) degrees

Antenna spacing dH = 0.5

Gaussian ULA

Path loss term β = 1

Shadowing – standard deviation σshad = 0 dB

Angular standard deviation σϕ = 10 degrees

Angle of arrival ϕ ∼ U(0, 180) degrees

Antenna spacing dH = 0.5

and the exponential model behave similarly to the measured values. Moreover, in Fig. 15b, some channel model

parameter values have been modified aiming at better fitting the measured channel. Hence, for the exponential

model, we increased slightly the value of the correlation factor while for the exponential model with large-scale

fading, the arrival angle was reduced from θmax = 180o to θmax = 90o and 60o. We observed that the angle of

arrival θ affects the correlation, in which for smaller values, the correlation coefficient increases. Such behavior

is related to the confinement of the arrival signals, that is, if the θ assumes smaller values, the signals will

be confined to a smaller angular interval. Therefore, given the results of each model, one can notice that this

specific outdoor measurement environment presented a high degree of correlation, in which the parameters of

each model could be adjusted in order to more accurately represent each environment.

E. XL-MIMO channel model

In this section the validation of the analyzed XL-MIMO channel models is corroborated numerically. To

evaluate the XL-MIMO scenario, it was used the SINR as a figure of merit. The adopted channel and system

parameters values were described in Table I.

First, we present an analysis of the algorithm to create the visibility region (VR). The algorithm was

constructed so that obstructions usually involve more than one antenna, i.e. the obstacle impacts on the

received signal strength along the array antennas. Also, as distances between mobile terminal and BS antenna

array are close, the likelihood of no obstacles is high. Fig. 16 depicts an example of VR with obstructions

generated randomly and the correspondent histogram indicating the number of visible (active) antennas. From

the histogram, one can infer that it is highly probable that the ≈ 75% of antennas (i.e., 24 to 27 of 33 antennas)

become visible or even 100% of the antennas lie in the visibility region.
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Fig. 16. VR generation algorithm considering ULA with M = 33 antennas: a) Example of three VR, where the obstacles result in a
received power equal to zero; b) histogram of the number of active antennas.

Besides, the SINR analysis considering both schemes of cluster distribution sketched in Fig. 4, as well as

both linear precoding conjugate beamforming (CB) and zero-forcing (ZF) and three correlated channel models,

namely Uncorrelated fading, Exponential and One-ring have been carried out. Firstly, we compare the average

SINR by user attainable with CB and ZF precoding for the first cluster distribution scheme from Fig. 4.a,

considering the correlation matrix as i.i.d. Rayleigh and the One-ring channel model, as depicted in Fig. 17.a

and 17.b. The uncorrelated fading model implies that there is not correlation between antennas, unlike the

One-ring model in which the channel correlation is implicit in the received signal via spread ∆ parameter and

between the antennas, according to the azimuth angle ϕ. Hence, the achievable SINR considering both CB and
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ZF precoding under uncorrelated channel model is higher than that attainable under One-ring channel model

and the respective linear precoding for any number of users. However, when the number of users increases,

the SINR is reduced, considering both linear precoders, while the SINR values difference provided by the

uncorrelated vs One-ring channel models increases. Indeed, the behaviour of the SINR is similar considering

both linear precoders, but CB and ZF linear precoders implement different rules. The CB precoding focus is

on increasing the power of the desired user, while, the ZF focus on decreasing or virtually reduce to zero the

power interference. Thus, one can observe that the ZF precoding presents higher SINR’s than the CB; however,

it is known that there is a maximum number of users in which the ZF can eliminate completely the interference,

and when that value is exceeded, the performance of the ZF precoding is reduced.

Furthermore, as the Exponential channel model depends of the correlation factor, the analysis was developed

separately and presented in Fig. 17.b. One can observe that the reduction in the SINR is impacted by the system

loading K
M

, as well as by the increase of the correlation factor ρ. As discussed previously, in the Fig. 5.b), the

channel capacity is reduced substantially when the channel correlation factor approach to 1, being this impact

more pronounced when the correlation factor is ρ > 0.6. Hence, the same characteristic is corroborated for the

SINR analysis in Fig. 17 when the ρ = 0.8.

Considering the second cluster distribution scheme where all users are aligned and parallel to the ULA

arrangement, as sketched in Fig. 4.b, we calculate the average SINR performance when the One-ring and

uncorrelated fading channel models are considered; the results are depicted in Fig. 17.c and 17.d. The behavior

of the SINR is same for the uncorrelated if compared to the first scheme. However, for the One-ring model

the attainable SINR is higher than that achieved under the first cluster distribution scheme. The reason of the

first scheme presented worst performance is due to distribution region of the clusters are in locations where

the received signal is perpendicular to the antenna array, increasing the correlation between the antennas (see

Fig. 8). Finally, in the Fig. 17.d, the Exponential channel model under second cluster distribution scheme is

analyzed. The same SINR gain can be observed comparing Fig. 17.b and 17.d for the Exponential channel

model. The results demonstrate that the attainable average SINR provided by each linear precoding depends

strongly on the signal propagation environment. Nevertheless, only the One-ring model properly describes

the propagation characteristics because it is a geometric-based channel model. Thus, the Uncorrelated and

Exponential channel models do not show SINR performance differences because they are correlation-based

models, where for the Exponential model, the impact of environmental propagation on the degree of correlation

is indirectly considered by a correlation factor. From our numerical simulated results, one can infer that for the

second cluster distribution scheme using the One-ring model, an Exponential model with a correlation factor of

ρ = 0.8 have resulted in a similar SINR behavior, indicating a high degree of correlation for this distribution

on the One-ring model.

V. CONCLUSIONS

Channel models for massive MIMO and extreme large (XL) MIMO systems addressing relevant features

implicit in such rich and innovative communication system scenarios are not completely available in the

literature. Recent works have investigated stochastic channel models, such as correlated-based (CBSM) and

geometric-based (GBSM) stochastic models due to the possibility of implementing massive MIMO channel
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Fig. 17. Attainable SINR as a function of number of users (K) for two schemes of clusters distribution: a) Correlation matrix R is modelled
by Uncorrelated and One-ring models; b) R is modelled by Exponential channel model. c) Second scheme of clusters distribution: R is
modeled by Uncorrelated and One-ring model; d) R is modeled by Exponential channel model.

models with low-computational complexity and considering physical characteristics of signal propagation. This

paper focused on an extensive analysis and comparison of these channel models in both stationary and non-

stationary scenarios aiming at M-MIMO and XL-MIMO applications. We have discussed how the characteristics

such as shadowing, angle of arrival, and angular spread can emulate the channel correlation degree implicitly.

Among 2D and 3D GBSMs, the 2D channel model presents higher capacity gain due to the possibility of the

received signals between the antennas result uncorrelated at any elevation angle. However, the model with the

highest capacity gain is the CBSM. Although the CBSM model presented higher capacity gain, for the XL-

MIMO applications, both channel models when compared considering two representative cluster distribution

schemes, only the GBSM model has resulted SINR performance variations. Thus, the GBSM model proved

to be more suitable for XL-MIMO channel modelling, since the propagation parameters are considered in the

model.
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