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Abstract Fog computing has become adaptable and also as a promising infras-
tructure for providing elastic resources at the edge of the network. Fog computing
reduces the transmission latency and consumption of bandwidth while processing
the incoming requests from various Internet of Things (IoT) devices. Moreover, fog
computing can support and facilitate geographically distributed applications with
low and predictable latency. However, this technology also has significant research
issues in its current stage such as successful implementation of service location
models. In this paper, we propose a Deadline-aware and Energy-Efficient Dynamic
Service Placement (DEEDSP) technique for fog computing that supports the place-
ment of [oT based services. Further, hyper-heuristic algorithm based energy-efficient
service placement technique is proposed to balance the energy-delay trade-off based
on different service placement decision criteria (e.g., minimum response time or
energy consumption). The proposed algorithm is able to dynamically minimize the
energy consumption of the system while ensuring that the response time satisfies a
given time constraint. Finally, the proposed technique is evaluated in simulated fog
computing environment and experimental results show that this technique performs
better than state-of-the-art placement techniques in terms of energy and latency.
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1 Introduction

Within the next five years, the estimated number of Internet of Things (IoT) objects
would have reached 50 billion [1]. These objects include power and computation-
hungry devices such as wearable’s, autonomous vehicles, drones, robots, Augmented
Reality (AR) and Virtual Reality (VR) gadgets [2]. The seamless combination of all
“things” connected in the network presents a challenge at a scale which it is never
seen before. With the sheer increase in the amount of data traffic generated by billions
of these IoT devices [3], low latency and energy efficiency have become impractical
for the traditional cloud computing model under time-critical requirements [4]. The
idea is to add a new layer of networking, storage, computation and resources at the
edge of the network or at end users which is now known as fog computing [5].

Fog environment is needed for the optimization of Quality of Service (QoS)
parameters such as minimizing service latency, increasing service efficiency and
providing end user service with improved overall experience [6]. For example, sens-
ing and actuation modules are the IoT services in an IoT application which interacts
with the IoT or edge devices to exchange data [6]. These features are especially useful
in real-time applications [7] such as intelligent light systems, vehicle networks, smart
grid, pipeline monitoring, wired trains, wind farming, applications in the petroleum
and gas industry, and industrial loop control. The current central computer paradigm,
where IoT system’s control, data and intelligence are only accessible at the cloud [8],
is increasingly being transformed into a distributed computing paradigm. However,
the achievement of those criteria requires a smart choice of hosting systems, that is,
the applications must be properly assigned.

1.1 Motivation and Our Contributions

The decision-making in application placement is an NP-Hard problem [9] [10] [11].
The difficulty of placing the modules in fog computing environment when compared
to cloud becomes more complicated [12]. The reasons for the increased complexity
are: i) Diversity of devices (in terms of configuration of the devices, hardware and
also software, such as operating systems), ii) Location of the IoT devices required
to be considered in the IoT application placement, and a massive amount of these
devices, further escalating the complexity in placement and iii) Specific application’s
conditions must be satisfied, such as, computation and delay requirements.

The massive scale and rising demands for service, raise the power usage on cloud
servers. The energy conservation of the fog computing system is also important and
must be taken into consideration [13]. On the other hand, it is equally important to
guarantee the QoS such as response time of the application within the given deadline
[14]. We systematically inquire the trade-off between the power consumption and
response delay in the fog computing system. Based on the most applicable and new
techniques published in the field of IoT, cloud computing, and fog computing, a
framework for deadline-aware and energy efficiency in service placement strategy
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is proposed in this work. The proposed method adds novelty to the fog computing
environment by making effective decisions dynamically.

The proposed hyper heuristic-based algorithm incorporates various heuristic
techniques. This algorithm makes use of the fortes of heuristic algorithms, such
as Simulated Annealing (SA) [15], Genetic Algorithm (GA) [16], Particle Swarm
Optimization (PSO) [17], and integrates all of them into a single algorithm. This
proposed algorithm aims to look for service placement inside fog nodes, the fog con-
troller node, neighbor controller node, and the cloud node. Minimizing the energy
consumption with respect to the constraint; the application response time should not
exceed the given deadline; is the main objective of the work. The main contributions
of this work are:

e We proposed a hyper-heuristic based a Deadline-aware and Energy-Efficient
Dynamic Service Placement (DEEDSP) technique for IoT devices which prior-
itize different applications of the user and place the application modules in fog
environment.

* DEEDSP dynamically makes the decisions for mapping the application services
in fog computing environment to satisfy the application deadline and reduce
energy consumption.

* iFogSim simulator is used to evaluate the performance of DEEDSP in fog com-
puting environment and demonstrated that there is a significant improvement
in reducing the energy consumption and service response time as compared to
existing techniques.

1.2 Article Organization

The rest of the paper is structured as follows: In Section 2, we discuss the relevant
work in the area of service placement in fog computing environment and the analysis
of those works. In Section 3, we discuss how the system is modelled. We present the
proposed technique in Section 4. Afterwards, we present the experimental results in
Section 5. Finally, Section 6 concludes the paper and highlights the future directions.

2 Related Works

The positioning in fog nodes is a significant problem particularly in the case of
limited resource devices. Several experiments were undertaken to address the issue of
service placement in heterogeneous computing systems [18, 19]. These experiments
attempt to find the best location of modules in an optimized way. Parameters that
an optimal placement strategy must keep in mind are latency, reducing the energy
consumption, minimize the cost and response time [20, 21]. There are many existing
works related to service placement in cloud/fog computing. Rahman et al. [7] sum
up and outline the architecture of the fog computing model, functionality, related
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paradigms, security challenges, and various real-time applications such as smart
grid, traffic control and increased reality.

Qi et al. [8] has developed a cloud, fog and edge computing based hierarchical
architecture. The proposed fog system is composed of three levels of mobile-fog-
cloud; mobile users are provided with service from fog servers via local WiFi links
and fog servers are upgraded to cloud content through cellular or wired networks.
For IoT-based applications, Taneja and Davy [22] presented an efficient deployment
of fog-cloud infrastructure. To allow application modules to be deployed on devices
in fog layer close to the source, an image is distributed dynamically across the
fog and cloud layers. The outcome of this study is a micro-benchmark in IoT and
fog computing observation. This work is intended to serve as a benchmark for IoT
applications with Quality of Service (QoS).

Xuan and Huh [23] introduced an almost similar cloud-fog computing system
that combines fog nodes and cloud nodes which are owned and leased from cloud
providers. In order to benefit from this cloud-fog computing system, the process-
ing nodes of each layer are strategically assigned with the computing tasks. The
algorithm proposed by the author is not only guarantees the application efficiency,
but also decreases the expense of accessing cloud services. Gupta et al. [24] pro-
posed the iFogSim simulator, to model and calculate the effect on latency, network
usage, energy usage, and cost of the resources. In this work, the comparison of
resource management policies and modeling of IoT environment are manifested. In
many situations, with respect to computing size, storage and RAM consumption, the
scalability of the simulation toolkit is assured.

Recent research works have revealed the significance and pertinence of fog com-
puting [20]. However, in terms of implementation view, most of the works have not
bestowed up on the technical aspect of the paradigm.

Pham et al. [25] did the task offloading of Directed Acyclic Graph (DAG)-based
applications with the trade-off between cloud-based computing execution time and
cost when placing applications in the cloud-fog environment. The proposed cost-
aware placement algorithm satisfies the deadline restrictions of the application.
Mahmud et al. [26] focused on executing the applications of fog environment which
can be decomposed into modules, which might independently be executed. Ensuring
the QoS applications in completing before the deadline for service delivery and
maximize the resource use in the fog environment is the main purpose of the proposed
algorithm.

The above existing algorithms are unable to minimize the response time. The
reason for such inefficiency is, they executes the applications according to their
arrival sequence. In order to cope with the placement of IoT applications over fog
environment. The authors Huang et al. [27] has presented a placement solution while
minimizing the parameters latency and cost. This multi-objective problem has been
solved with an Ant Colony Optimization (ACO) based meta-heuristic approach.
Service orchestration is done at the cloud node. Skarlat et al. [28] [29] proposed
an optimization problem while taking into consideration the diversity of resources
and applications. For addressing the application modules placement, the authors
proposed two approaches to solve the optimization problem, one is using Linear
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Integer Programming in [28] and another is using the Genetic Algorithm (GA)
in [29]. Choudhari et al. [30] proposed a prioritized task scheduling algorithm to
minimize overall cost and response time of the application; this algorithm will assign
a priority based on its deadline. It is located in the fog layer using this determined
task priority. In each fog layer, there are many computational fog nodes that can
communicate with the other fog nodes of the same fog layer. If all the fog nodes
in the fog layer are infused, the task would be shifted to the cloud. The algorithm
decreases overall computing cost and response time with the increasing number of
modules.

Sriraghavendra et al. [31] proposed a Deadline-aware Service Placement (DoSP)
algorithm, which ensures the response time is satisfied for a given time constraint.
The DoSP algorithm plans to place the application modules in fog-cloud architecture.
A profitable application placement strategy for the integrated fog-cloud environment
is proposed by Mahmud et al .[32], which maximize the providers revenue and
decreases the deployment cost and application deadline.

The works [27], [28], [29], [30], [31], and [32] do not take the energy efficient
workflow execution into account. A placement algorithm needs to be built that
can reduce response time and meet deadlines for sensitive latency applications,
while minimizing energy consumption. Naranjo et al. [33] introduces a Penalty-
Aware Bin Packing (PABP) heuristic algorithm for the energy minimization. This
is accomplished by scaling up or down the processing speeds of virtual processors.
The final goal is to reduce the total energy per slot.

Ramirez et al. [34] evaluated Fog-to-Cloud (F2C) systems efficiency to demon-
strate the architecture’s advantages which include edge as well as cloud devices. On
the three separate architectural scenarios, the proposed policy evaluates the perfor-
mance of response time, power and bandwidth usage. The proposed design reduces
the power consumption than stand-alone cloud. Wu et al. [35] proposed the energy
minimization scheduling algorithm to place the IoI' workflow applications in fog
environment to minimize the consumption of energy. The energy consumption is
reduced when compare with the random, Integer Linear Programming (ILP) for
different workloads. The above existing works [29], [30], [31], [33], [34] and [35]
suffer from service placement optimization while minimizing energy and prevent
hitting the application deadline. To overcome the above disadvantages, we proposed
a service placement algorithm that is deadline-aware and energy-efficient in this
work.

Kim etal. [36] has suggested a power-aware algorithm for independent application
modules. The authors considers the time limit on Dynamic Voltage Scaling (DVS)-
enabled systems to lessen power usage and meet deadlines. Deng et al. [37] tackled
difficulties in the allocation of workload. These may be formulated to the minimum
consumption of energy and the delay in service. Their methodology is intended to
determine the best workload distribution between fog and cloud layers. The author
concentrates on static service planning which are pre-defined as the collection of
services that are to be allocated. The authors do not adequately address the necessary
information sharing and communication overhead.
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Sharma et al. [38] suggests 4-tier energy consumption architecture and deliberates
scheduling of delays in the fog environment. The author prioritizes the applications
based on their deadline. The priority for execution is given to the nodes that are least
loaded that are closer to the user. Mingfeng et al. [40] proposed a task offloading
scheme with service orchestration to enhance the cloud-MEC’s energy consumption
and latency among Mobile Edge Computing (MEC) server and cloud resources. The
works [36], [37], [38], and [40] mentioned above, does not consider the inter-task
dependencies and fog cluster head cooperation in the environment. While providing
a performance assessment of cloud-fog architecture, the work also aims at portraying
its benefits. This analysis is undertaken with respect to application response time,
understanding of deadlines and energy usage.

Our research work provides uniqueness in two perspectives, namely:

* A modeling perspective of constraints (operational and non-operational) opti-
mization metrics have also been taken into account to determine best application
placement.

* An algorithm and contribution methodological approach is used to deploy the
application modules in fog environment.

2.1 Critical Analysis

Table 1 compares proposed work (DEEDSP) with existing works based on important
key parameters such architecture, application and placement approach.

* The IoT application section discusses each proposal’s mode of dependence and
how each proposal is modeled according to the number of applications and
modules.

 In the architectural section, we studied the number of fog layers and fog cluster
head cooperation.

» The placement properties, specifies the Prioritized placement of application (or)
node (or) module, and considered the application placement approach for fog
environment.

¢ To the best of our knowledge, no hyper heuristic algorithmic approach with fog
cluster co-operation was proposed [6]. This framework also jointly considers the
deadline of IoT applications and also energy consumption of the system.
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3 Modeling

This section discusses the proposed technique for effective application placement in
fog computing.

3.1 DEEDSP: System model

In the architecture shown in Figure 1, the fog environment’s computational nodes
are ordered in a three-tier hierarchical layered architecture.

The IoT devices such as sensors and actuators, are connected to lower-level fog
nodes which have the capability of computing, storage and networking. In the fog
environment, there is a fog node that performs the controlling functionality. This
node is called fog controller node. The activities of the fog controller node are: (1)
receive the user requests; (2) control the available resources on fog nodes and cloud
node, such as computing power, memory and storage; and (3) it identifies the most
suitable placement for an application. It determines which application module will
be installed on which computing node. The fog controller node connects the cloud
node, the fog nodes and the neighbor controller node in order to run the modules for
utilizing the resources. The main components of fog controller node are described
below.

The responsibility of receiving the application request from the user is taken by
a component called application receiver. The parameters and details such as module
count, workload, and data input size are defined for each application reaching the
controller node. Fog Controller Node (FCN) administers to locate the appropriate
positioning of module in the fog computing infrastructure [41].

Resource collector takes responsibility for collecting and managing information
about the current system state of all processing nodes and storing it in resource
database. Frequent state information changes along with the resource addition or
elimination on the computing infrastructure [41]. This ensures that the final applica-
tion placement produced by fog controller node is matched with the current updates
on the resource consumption of computing nodes and therefore results in the greater
precision.

The application placer analyses the application, decides the required location and
distributes the modules of each application to a suitable computing node based on
knowledge about processing power and delay of communications of all the computing
nodes. The computing nodes that are considered in the proposed architecture are
Fog, Fog Controller Node, Neighbor Controller Node and Cloud. The frequency
of the sensors is seen as the same for convenience, and the fog nodes of the same
organizational levels are assumed to be of the same kind.

Application response time:

The optimization problem is formulated to minimize the response time and meet
requirements such as deadline and energy usage.
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Fig. 1 DEEDSP Architecture

Res;ime (1), is the response time of an n'”* application. The application response
time is calculated as follows:

Restime (n) = MKSpantime (n) + TOtalDept (I’l) (1)
Where

¢ The application makespan time, M K span;;m.(n), consists of the time needed to
execute all application modules, Execyime (1), and the time required for commu-
nication, Commy;y.(n), with the application modules from the controller node.

» The total deployment time of an application Totalp.,(n) takes into account
the time elapsed before the proper location of each service on the computational
framework resource sources or the computing nodes.

MKspan;ime (n) = Execrime (I’l) + CommDept (n) ()
ModuleC 1YV

Execiime(n) = —o—r eI 3)
NodeCapacity,

The execution time, Exec;ime(n), is the module capacity over node capacity.
Module capacity is “the required CPU power for the module" and the Node capacity
is “the CPU power of the computational node where the application service is
placed". The communication time is the sum of undeniable communication delays
from the nodes where each module in an application is placed. The variables dist ¢,
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distypy, distesr, and distqjo,4 represent the distances from the FCN to the fog node
(FN), the neighbour control node (NFCN), the controller node (FCN), and the cloud
node (CN) respectively. The fog controller node acts as manager, which places the
modules in the suitable nodes. The results from the nodes are returned back to the
controller node. Hence the communication happens twice between the nodes.

m

MKspan;ime(n) = Z{Exec,ime(ni) +distfog ¥ Xfog+
i=0

2% diStypr * Xppr + diStesr) * Xeprg + 2 % diStejoua * xcloud} 4)

In equation (4), m is the number of modules in each application. Total deployment
time of the application Totalp.p:(n) consists of Dept;ime(n) and the estimated
extra time when an application module n; is sent to the adjacent controller node.
Here n; represents i’ module in n’" application. The X £ og, Xnprs Xcrri, ANdXcloua
are binary decision variables. The value of the these variables will be 1 if the n;
is placed in the appropriate node, else the value is 0. The additional deployment
time comprises of delay for propagation Ppeiqy(7) and expected deployment time
Exptpep:(n) in neighbor controller node. We depend on the variable F'(n) to cover
the additional deployment time. If the neighboring controller node has at least one
application module of n'”* application propagated then F (n) = 1 otherwise F(n) = 0.
If F(n) == 1, we add Pperay(n) and Exptpep; (n) to Dept(n). Else we add nothing
to Dept(n). We formalize the total deployment time of an application Totalpe (1)
as follows:

Totalpep(n) = Dept(n) + {(I;Delay(f’l) + Exptpep: (n) II::EZ; i (1); 5)

3.2 Energy Consumption Model

In this work, we are considering the energy consumption of computational nodes
only and not considering the communication energy and cooling energy.

Enode = Estaric + Edynamic (6)
Edynamic = (Emax - Estatic) « Util @)

m
Etotal = Z Ern +Epcn + EnFen +Ecn 3)

i=0
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The goal of our work is to minimize overall energy consumption, i.e. the total
energy consumption in working conditions and energy consumed in idle condition.
The static energy is depleted when the computation node is inactive, and the dy-
namic energy refers to the host usage of resources. Util illustrates the host node’s
consumption point. E,,, is the nominal power implied by dissipating the full power
unit. Here m is the number of modules in each application.

3.3 Application Model

An application should be prior partitioned into modules, before it is needed to be
executed on the fog environment. The collections of interdependent modules promote
the distributed application concept. Each module in the application has importance
and certainly performs at least some functionality in the application. The connection
between two application modules is defined as application edges; if applications have
an edge between them it indicates they both are dependent on each other. Distributed
data flow model is a way of representing the application dependencies and data flow
in a directed graph form; either sequential or unidirectional.

Application Data flow Model for the Placement policy: As illustrated in Figure

———__ Sensed — Processed

Input // N Data Data
Sensor —)\ Sense Module M Process Module
- /

rocess Module 2)

Process Module>1—[

Processed
Processed Data

Data

Actuator Actuate Module

Fig. 2 Application Dataflow model

2, the IoT applications considered in this work consists of five major modules (tasks)
which perform processing - Sense Module, Process Modulel, Process Module2, Pro-
cess Module3 and Actuate Module.Every module in an application is characterized
as a set of dependent tasks. They are run in a sequential mode. In Fig 1, the sensor
transmits data from the Sense module to the application module. This module man-
ages authentication, data receiving frequency standardization and multi-sensor data
aggregation. The data coming from Sense module is processed in Process modules.
The application incorporates multiple functionalities. Therefore, each processing
module can perform at least single functionality on the data. The Actuate module
determines and manages the activities of the associated Actuator. The app modules
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are simulated with an AppModule class in iFogSim simulator. As shown in Figure
2, data dependency between modules were developed using the AppEdge class in
iFogSim simulator.

Sequence Flow of Application Service:
Figures 3 illustrates the concept where application modules are placed to VMs in

[ Mobile Users ] [ Fog Node ] Fog Broker 1 [ Fog Broker 2 ] [ Cloud Node ]

1. Service Request

2. Forwarding Request

3. Extracting
Module
Requirements

5. Resource
Availability

6. Placing the Modules o

7. Executing 7
Modules j 7
j 7 :
8. Results - '

4. Find
Required
Resources

8

:‘ 9. Combine
+ 10. Service Response L | Results

_410. Service Respons

Fig. 3 Application Dataflow model

Fog Node or Cloud Node or Fog Brokerl or Fog Broker2. Then, after processing the
application modules, they are sent back to Fog Brokerl to merge and send them to
user.

Step 01: The Mobile User requests for the Application, this request is handled by the Fog
Node which it is connected.

Step 02: The Fog Node forwards the request to the Fog Brokerl.

Step 03: Fog Brokerl extracts and sequences the modules of the requested application.

Step 04: Fog Broker! finds the required resources of the modules for execution.

Step 05: Fog Brokerl finds the resource availability information from itself, Fog Node,
fog Broker2 and Cloud Node.

Step 06: Fog Brokerl runs the placement algorithm to find the optimal module placement.

Step 07: The module assign nodes are responsible for processing the assigned module.

Step 08: The assigned nodes send the results of the modules back to the Fog Brokerl.

Step 09: Fog Brokerl combines the results which are send by the module assigned nodes.
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Step 10: The response send to the Mobile User through the Fog Node which it is connected.

Application Process Model:

As shown in Fig. 4, applications are buffered in the Application queue at the fog
controller node to achieve the objectives of improving response time and energy
efficiency of all the applications. The application buffering policy can be performed
on the Application queue. We propose a parallel virtual queuing model at the fog
controller node that buffers the arrival application modules of the same type into
a separate virtual queue as shown in Fig.1. Based on the framework, multiple IoT
applications exist in the fog environment system.

Fog Controller Node

Cloud Node

High Computational
Process Modules

@

Low Computational
Process Modules

Appq

App,

ision

Processing

Unit Neighbour Fog

Controller Node

Application
Queue

Appn

H’ Fog Node

Sense and
Actuation Modules

Fig. 4 Process model

4 Proposed Algorithm

Depending on the application deadline and energy usage, a hyper heuristic is used to
put IoT applications in a fog environment. In reality, existing methods used to process
the modules in the fog layer. Our strategy targets to position the delay-tolerable
applications in the cloud, and neighbor node, whereas delay-sensitive applications
are placed in low computational fog nodes. Comparing cloud with fog, the cloud
has greater computational capacity resources, with high communication latency
between cloud and Device layer. On the other hand, fog has limited computational
resources, with lower communication latency between the fog and the Device layer.
Furthermore, during the placement process, our approach takes application deadlines
and energy consumption into account. The data considered in running the proposed
algorithm is synthetic.

N
Objective_function = min {Z {Restime (n) + Econs (n)}} )

n=1
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Where, n is the index of modules in each application and N is the number
of applications. The aim of the proposed algorithm is to minimize the objective
function presented as above. There are three steps of the planned placement strategy:

1. Choosing an application
2. Choosing the module
3. Choosing the node

These phases are explained in the following subsections:

4.1 Application selection phase

Step 1: Prioritization of applications is done according to the deadline and deployment
time. The application that has least deadline-deployment time has the highest
priority. If multiple ready tasks have the same priority, then an application with
the First Come First Serve (FCFES) strategy is selected. The application priorities
Apri s given by

Apri = D(n) ~ Depi(n) (10)

4.2 Module selection phase

As soon as the application is selected, the modules of the application are extracted.
Later, we check how the application modules are to be categorized. This is achieved
as follows:

Step 2: Selected Application of Sense and Actuation modules are placed in Sense and
Actuation Modules Queue.

Step 3: Place the Process modules of the Application either in High Computational
Process Modules or Low Computational Process Modules Queue, based on the
CPU value of the process modules.

The step 2 and step 3 as discussed above are presented in the Algorithm 1. The
selected heuristic algorithm H; will evolve the solution Z for specified number of
iterations by using the Govern function (H;; Imp_Flag; Div_Flag), as defined in
Algorithm 2 and Algorithm 3.
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Algorithm 1: Deadline-aware and Energy-Efficient Applications Placement
input : Z{}, H{}, APP[N][M]
Initialize Threshold W.
Calculate Application Priorities, AppsortedbasedonAp,;[].
Construct MinHeap(App). ;
for (i=0;i<N;i++) do
EnQueue(SA_Queue,App[i][0],App[i][M-1]);
for (j=1;i<M-1;j++) do
if (App[i][j] > W) then
| EnQueue(HC_Queue,App[il[j]);
else
| EnQueue(LC_Queue,Applil[j]);

c;ll Module_Placement(Z,H);

4.3 Node selection phase

Step 4: Algorithm 1 calls the Module placement function to place the modules in the
selected nodes. The Module placement() choose the nodes as per satisfying the
constraints shown below for Application Module placement.

Let placel°8(n;), place” (n;), place™” (n;), placec’d") ¢ (0,1} be
binary factors that specifies whether the module n; is deployed on a Fog Node
(place’ °8(n;) = 1), or a Fog Controller Node (place’" (n;) = 1), or a Neighbor
Controller Nodeplace™" (n;) = 1), or on the Cloud Node (placec!*?(ni) = 1).
Since the module is deployed only once, in the constraint; is held:

constrainty : {placef"g (n;) + place ™ (n;) + place™” (n;) + place'"? (ni)}
(11)

Vni en,neN

The constraint| value will be 1, because the module will be placed in at least one of
the available nodes. The module placement strategy must be assured that Res ;e (1)
as specified in the constraint,, application does not compromise its deadline, D (n).

constrainty : {Ressime(n) < D(n),¥Yn € N} (12)

The constraints in this work is that, available resources, Avail,.s(r, nodes), such
as Processing power (CPU), storage space (STR), memory capacity (MEM) must
be sufficient to required resources, Req,.sh;, of the application in the deployment
node. This can be defined as:
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N

n
constraints : {Z Z Reqresn; <= Availres(r,nodes)} (13)

n n;

r € {CPU,MEM,STR},nodes € {fog, ctrl,nbr, cloud}

The constraint, in this work represents the sensing (x;) and actuation (y;) mod-
ules of the application that should be placed in lower Fog Nodes only. It is defined
as below:

constrainty : {placefvg(nxi) && place’ 8 (”yi)} =1 (14)
The above constraints) 4 are applicable independently for each application.

Step 5: The Algorithm 2, called Module Placement is shown below. First two of the Input
parameters of the algorithm are population of the solution and the candidate pool.
The population of the solution is specified the placement plans of the application
modules in the computational nodes. The Module Placement algorithm sequen-
tially selects the heuristic algorithm H; from the candidate pool H. The set H
comprises three hyper heuristic algorithms, Genetic Algorithm, Particle Swarm
Optimization, Simulated Annealing, H = {GA, PSO, SA}. The selected heuristic
algorithm H; will then be performed repeatedly until the Maximum iterations is
reached or if there is no improvement, as shown in Algorithm 2.

The Module Placement algorithm uses the Diversity_Detection() and the
Improvement_Detection() functions. During the convergence phase it uses
those two functions to balance the strengthening and variegation in the search
of the solutions. The flags Improvement_Detection, Imp_Flag, Div_Flag,
and Diversity_Detection determine if a new heuristic algorithm is to be cho-
sen. Imp_Flag is alone used for Heuristic Algorithms that are based on single
solution, while Heuristic Algorithms that are based on population both these
Imp_Flag and Div_Flag are used.

Step 6: The Module Placement algorithm will randomly select the next algorithm H;
from H whenever the Govern() function returns True. Then the solution Z is
obtained, as shown in Algorithm 3, to refine the solution.

Algorithm 2: Module Placement

input : Z{}, H{}, Max_iterations, Not_improve
Select a Heuristic Algorithm H; from set H.
while (Max;ierations reached or Notimprove 1s reduced to zero) do
Using H;, improve the population of solutions Z ;
Imp_Flag = Improvement_Detection() ;
Div_Flag = Diversity_Detection() ;
Flag = Govern(H;, Imp_Flag, Div_Flag) ;
if (Flag == TRUE) then
Select next H; from set H;
L Z = Fine_Tune(Z) ;
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Step 7:

Algorithm 3: Govern
input : H, Imp_Flag, Div_Flag
S = Single Solution Based Heuristic Algorithms
P = Population Based Heuristic Algorithms
if(HeS && Imp_Flag ==TRUE )| (H € P &&
Imp_Flag, Div_Flag == TRUE)) then
| return FALSE ;

else
L return TRUE ;

In Algorithm 4, while selecting the next heuristic algorithm H; from the
candidate pool H a sequential selection method is employed. The Algorithm
Module_Placement, suggests when to change to the next heuristic algorithm from
the list H;. If after a defined number of iterations, the selected H;‘s Notimprove,
can’t better the fitness value (which is obtained by BSDEE value) then we pick
a new heuristic algorithm by returning a False value to the calling function.
The Improvement_Detection function will suggest choosing a new Heuris-
tic Algorithm in three situations: when iterations exceed the Maxierarions, the
flag Notimprove has been met, and If the condition of termination is satisfied.

Algorithm 4: Improvement_Detection

BSDEE = Best so far Deadline and Energy Efficient
if (BSDEE is not Improved ) then
L return FALSE

else
| return TRUE

Step 8: In Algorithm 5, the Diversity_Detection() function determines when to change
the heuristic algorithm from the list H. Diversity of the initial solution D(Z)
is considered as the threshold value. (i.e. fitness values of the initial solution).
Average of the fitness function is determined as the diversity of the current
solution D(Z). If the threshold value is less than the diversity of the current
solution D(Z) and Module_Placement() algorithm will then select the next
new Heuristic algorithm.

Algorithm 5: Diversity_Detection
CS = Current Solution
if (CS > Threshold ) then
L return FALSE:

else
L return TRUE;
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Algorithm 6: Fine_Tune

input : Z
Send the solutions obtained by H; to the next chosen H; as input;

Step 9: In Algorithm 6, the newly selected Hyper heuristic algorithm receives the fine
tuned solutions obtained by H; from the Fine_Tune() algorithm. This means
that the candidate solutions created by the heuristic algorithm H; can be used
to balance the intensification and variegation of the search. More precisely, the
change in the solutions of the population is performed by the Fine_Tune()
algorithm.

Complexity Analysis: The running time complexity depends on the size of the
application list, which is N. The scheduler needs O(NlogN) time complexity to
arrange this list of applications and the space complexity is estimated to be O (N).
The time complexity of each heuristic algorithm in list H is O (SP?), here S specifies
the number of sub solutions of each solution of the problem and P indicates the
population size. So, if all heuristic algorithms are limited to SP? and r is the number
of iterations the algorithm takes, then O (rSP?) is the time complexity of the hyper
heuristic algorithm. O (NlogN + rSP?) is the total computational complexity of the
proposed algorithm.

5 Performance Evaluation

This section discusses the experimental methodology and results.

5.1 Experimental Methodology

There must be three primary dimensions of representation that need to be addressed
for the system benchmarking: computational platform, algorithm, and analyzing on
set of data. In the proposed work, we have done an extensive evaluation of system
with simulation tool and analytics algorithm. There are various simulation tools with
its own advantages such as iFogSim [24], FogNetSim++ [42], MyiFogSim [43], and
YAFS [44]. In this work, we used iFogSim simulator [24], which is most popular
fog computing simulator [39]. Further, iFogSim simulator is the most appropriate
simulator for simulating IoT, Fog, and Cloud computation nodes in a hierarchical
architecture. It is ideal choice for evaluating multiple key elements, such as response
time and energy consumption of IoT applications.

We used Fog Nodes, Fog Controller Node, Neighbor Controller Node and Cloud
Node as the computing nodes for benchmarking. The performance metrics of the
proposed work are satisfying applications deadline by minimizing response time and
energy efficiency. The overall experimental framework is shown in Fig. 5.
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For the analytics algorithm, we present hyper heuristic algorithm for applications
placement. We have evaluated the proposed work for benchmarking experiments

with different existing algorithms.

5.2 Experimental Environment

Table 2 provides the experimental environment for the evaluation process of our
model. Java with JDK 1.8 is used for developing fog infrastructure with iFogSim
simulator. In our simulations, the processing power of processors is expressed by

MIPS (Million Instructions Per Second).

Table 2 Simulation Setup

System Intel Core i5-2430 CPU,2.40GHz

Memory 8 GB

Simulator iFogSim
Operating System Windows 7 Professional
Topology model Hierarchy

Network topologies and resource description:

In terms of cloud Network Connectivity from the controller node and applications,

the suggested solution proposes module placement plans for various scenarios. The
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structure of the network topology is as follows: Sensors and Actuators are at lowest
level in the hierarchy, the next level contains several Fog Nodes (FN) controlled by
a Fog orchestration Controller Node (FCN), which resides in the next level, at the
same level, one Neighbor cluster Fog Controller Node (NFCN) is also placed, and a
Cloud node (CN) is at the top most level. Table 3 shows a setup framework consisting
of 1 cluster, with 10 fog nodes, controlled by the FCN and connecting to NFCN and
the CN node.

Table 3 Characteristics of the computation node

Placement
Node Type Number Of Nodes|Delays(s) [CPUMIPS) ‘ RAM(GB) [Power Max |Power Idle
Fog 10 0.2 100 0.5 88.57 80.23
Fog Controller 1 0 1000 2 109.33 85.47
Neighbour Controller 1 0.5 1000 2 109.33 85.47
Cloud 1 5 10000 4 170.62 110.82

Module configuration and resource demands:
We have analyzed applications such as Motion, Video, Sound, Temp and Humidity.
These application Deadlines, Deployment times are mentioned in Table 4.

Table 4 Applications configuration

| Applications | Deadlines | Deployment Time|

Motion 120 60
Video 300 0
Sound 300 60
Temp 360 60

Humidity 240 0

Each application contains 5 modules. They include Sensing, Data aggregation,
Data Analysis, Decision Making and Actuate. These module’s Processing power
(CPU), storage space (STR), and memory capacity (MEM) are given in the Table 5.
Concrete examples for these descriptions are presented in the next subsection that
describes different application scenarios. Different parameters have been varied to
ensure the diversity of the simulations.

Table 6 presents the parameters that influence the results and their values con-
sidered in the algorithms GS, DoSP, GA, PSO, SA and proposed DEEDSP. The GS
[29] and DoSP [31] algorithms are GA based algorithms. So, the population size,
crossover, mutation and elitism rate of GS, DoSP, GA algorithms are same.
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Table 5 Required resources of application modules

| Service module |Scenario 1 CPU (MIPS)|Scenari0 2 CPU (MIPS)|MEM (MB)|STR (MB)|

Sensing module 50 50 30 10
Data aggregation module 200 300 10 30
Data analysis module 200 300 20 30
Decision making module 100 300 30 30
Actuate module 50 50 20 10

Table 6 Parameters of GS, DoSP and DEEDSP algorithms for IoT applications placement

| Algorithm| Parameter Values |

GA Population size = 50, Crossover rate=0.5, Mutation rate=0.02, Elitism=0.2, Generations=10

PSO Swarm size=50, Acceleration rate=2
SA Starting temperature=10, Cooling rate=0.05
DEEDSP max iteration of low-level algorithm=50, non-improved iteration threshold=5

5.3 Performance Metrics

We believe that by placing the application modules will improve application re-
sponse time, deadline-aware and energy-efficiency. Hence, our criteria to evaluate
the proposed approach are deadline aware placement and minimizing the energy
consumption. Our null hypothesis and alternate hypothesis are given below:

HO: There will be no difference in meeting the application deadline and energy con-
sumption of the computation nodes after placing, using Hyper heuristic algorithm.

H1: The proposed technique (DEEDSP) with placement using hyper-heuristic will
have minimize energy consumption and satisfying deadlines of the application.

5.4 Evaluation Scenarios

The aim of this assessment is to analyze in contrast with different current meth-
ods how successful framework module placement plans are. Those approaches are
Cloud Only placement, Collaborative Task Offloading scheme with Service Orches-
tration (CTOSO) [40], Edge-ward placement (EWP) [24], Genetic scenario (GS)
[29], Deadline oriented Service Placement (DoSP) [31], Genetic Algorithm [16],
Particle Swarm Optimization [17], and Simulated Annealing [15]. In applying for
different service placement policies, we observe the response time, resource utiliza-
tion, deadlines and energy use. All application modules are placed on a cloud node
in the cloud only policy. This policy illustrates the advantages of fog cluster decen-
tralization. Collaborative task offloading scheme with service orchestration policy,
gives the higher priorities to the shorter delay modules requirements. The application
modules are placed closed to the edge fog nodes and if it is not possible then it placed
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in cloud. In the edge-ward algorithm, modules will be positioned at the network edge
and will move from the fog nodes towards the cloud. The Genetic scenario is based
on the Genetic Algorithm investigate a large search space for providing the qualita-
tive solution for QoS placement. The DoSP policy is a modified Genetic algorithm,
this algorithm places the sensing and actuation modules in the FN, high prioritized
processing modules in FCN, and the remaining processing modules in NFCN or CN.

5.5 Analysis of Results

This section analysis the results of time frame-conscious application placement
and reduction of the energy consumption as the functions with different applica-
tion complexities (i.e. latency sensitive, latency tolerable applications with various
computational capacities). They have been thoroughly evaluated through iFogSim
simulator on existing state-of-art approaches and proposed approach.

The results are divided into two scenarios. Scenario 1 has applications with low
computation. Scenario 2 has applications with high computation. The computations
are differentiated by comparing them with FN computations.

5.6 Response Time:

5.6.1 Scenario 1:

Deadline Satisfaction:

Each application’s response time, Res;; ;. is determined by the equation (5). The ex-
ecution time (Execyimue) and the total time of deployment (T'otalpep,)is computed
with (1) and (2) with the respective data given in Tables 3, 4 and 5. After com-
putations, the corresponding deadline D (n) of the application in Table 4 shall be
compared to Res;;n. With various cloud distances. The results for the first scenario
are shown in Figure 6, 7 and 8.

The Cloud-only policy exceeds the application deadline for Motion, Video, Sound,
Temp, and Humidity applications as shown in Figure 6, 7 and 8. It exceeds deadline
with an average cloud distance of 25 but in case of Motion Application it exceeds at
10, as it has short deadline.

The CTOSO policy exceeds the deadline in Video and Temp applications at the
cloud distance of 50 as shown in Figure 6(b), 7(b) respectively. This policy does
not exceed the deadline for short deadline application even at high cloud distances,
because it places the application in FN. The long deadline applications will be
given priority to place in CN, hence the applications exceed the deadline. At a
cloud distance 50, two latency tolerable applications (i.e. Video and Temp) exceed
the deadline. The EWP policy exceeds the deadline for the Motion application at
the distance 20. The previous applications may have exhausted the resources, FN
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Fig. 6 Performance comparison of Motion and Video applications

and FCN, hence the forth coming applications are left with resources, NFCN and
CN. When the TAU and CN distance is high there may be a chance to exceed the
deadline. The GS, DoSP, GA, PSO, SA and DEEDSP policies does not exceed the
deadlines in any scenario. The methods Cloud Only, CTOSO, and EWP exceeds the
application deadline. CTOSO exceeds the dealine for latency tolerable applications
at high cloud distances and for latency sensitive applications with high computation.
EWP policy exceeds the deadline for latency sensitive applications with low and high
computation. For short deadline applications, DoSP gives better response time where
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Sound Application
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Fig. 7 Performance comparison of Sound and Temp applications

as for high cloud distances DEEDSP gives better response times. GA, PSO, SA, and
DEEDSP policies produced low ‘combined response time’ than GS and DoSP.
Applications like Video and Temp whose deadlines are far enough, EWP has proven
to be the best, while at a point, 50, it is observed that the proposed method outperforms
EWP. In low and high computational tasks DoSP provides least response times for
latency sensitive applications. Comparatively in high computational modules the
DEEDSP provides equal response times for latency sensitive applications. In Figure
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Scenario 1:Response Time Of Motion Application With Various FN Capacities
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Fig. 9 Response time of Motion Application with various FN capacities

8, it is observed that GS and DoSP policies placed the application such that they are
close to its deadline. Figure 9 displays the response times of motion application, for
TAU = 25, cloud distance = 20, and varying FN MIPS. In this situation, the Cloud
Only and EWP policies exceed the deadline at 200 MIPS. The proposed method
produced low ‘combined response times’ than all other policies.
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Fig. 10 Performance comparison of Motion and Video applications

5.6.2 Scenario 2:

The results for the second scenario are presented in the Figures 10, 11, 12, and
13. In this scenario at the cloud distance of 10, all the policies that were used for
comparison do not exceed the deadline in all the applications except in Motion
application. In this motion application Cloud Only, CTOSO, and EWP policies
exceeds the deadline. CTOSO exceeds the deadline as there is no possibility to place
the high computational modules in FN. The proposed DEEDSP algorithm places
this application in FCN, so it is observed from the results that DEEDSP performs
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comparison of Sound and Temp applications

equally well as the DoSP. Figure 13 shows the response times of motion application,
for TAU = 25, cloud distance = 20, and varying FN MIPS. In this situation, the Cloud
Only, EWP, and CTOSO policies exceed the deadline up to the MIPS reaches 250.
Until MIPS 250, DEEDSP scheme and DoSP performed equally well, for the higher
MIPS values DoSP performs slightly better than the proposed DEEDSP algorithm.



28 Meeniga Sri Raghavendra, Priyanka Chawla and Sukhpal Singh Gill

Humidity Application

240 - 240

= Response Time

1 Deadline
100.17
100 93.29

Response Time(S)

29.71 32.24
2 2

Policies

Fig. 12 Performance comparison of Humidity application

Scenario 2:Response Time Of Motion Application With Various FN Capacities

——Cloud Only

—8—Deadline
K i = = #|  ——cros0

E 115

; —%—EWP

g 105 ——Gs

g ~o—DosP

85 1

75

65

NS

GA
~==PSO

SA
~&- DEEDSP

\_//i_\
55
200 250 300 350 400 450 500

FN Capacities(MIPS

Fig. 13 Response time of Motion Application with various FN capacities

5.7 Resource Utilization:

The cloud utilization for Cloud Only, CTOSO, EWP, GS, DoSP, GA, PSO, SA, and
DEEDSP policies is 100%, 24%, 0%, 36%, 32%, 4%, 8%, 8%, and 0% respectively
is shown in Figure 14. The FN utilization of Cloud Only, CTOSO, EWP, GS, DoSP,
GA, PSO, SA, and DEEDSP policies is 0%, 76%, 76%, 40%, 40%, 68%, 68%,
68%, and 68% respectively. The FCN utilization of Cloud Only, CTOSO, EWP, GS,
DoSP, GA, PSO, SA, and DEEDSP policies is 0%, 0%, 12%, 20%, 16%, 16%, 16%,



Title Suppressed Due to Excessive Length 29

Service Placement In Various Policies

Number Of Services(%)
o
8

Cloud Only CT0sO EWP GS DosP GA PSO SA DEEDSP

Policies.

WFN WFCN WNFCN WCN

Fig. 14 Service Placement In Various Policies

16%, and 16% respectively. Finally, the NFCN utilization for Cloud Only, CTOSO,
EWP, GS, DoSP, GA, PSO, SA, and DEEDSP policies is 0%, 0%, 12%, 4%, 12%,
12%, 8%, 8%, and 16% respectively. In both GS and DoSP policies, the fog nodes
are allowed to run only the sensing and actuation modules of an application. If we
observe all the policies, the EWP and DEEDSP policy has placed no application
modules in the cloud node. The GS policy has placed more modules in cloud node
except in Cloud Only policy. CTOSO, EWP, GA, PSO, SA, and DEEDSP policies
placed more or almost same number of modules in FN nodes than GS, DoSP and
Cloud Only.

Service Placement With Various Cloud Distances Of DEEDSP Policy

Number Of Services(%)

0 5 10 15 20 25 30 35 40 45 50

Cloud Distance(s)

WFN WFCN WNFCN BCN

Fig. 15 Service Placement With Various Cloud Distances Of DEEDSP Policy
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Figure 15 shows the share of each resource type, while varying the cloud distance.
As the cloud distance increase the module placement in the cloud node gets gradually
decreased. To avoid applications to exceed its deadline the applications are placed in
fog node, this will increase the fog node utilization. In a deadline-aware environment,
with the increase in the TAU value and respectively the cloud distances, the modules
are preferred to get placed mostly in FCN rather than in NFCN.

Service Placent With Various TAU Values Of DEEDSP Policy
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Fig. 16 Service Placement With Various TAU Values Of DEEDSP Policy

With the increase in TAU value the module placement in the NFCN is gradually
decreased because of the application deadline, this can be observed in Figure 16. The
module placement increases either in cloud node, FCN, or FN node. If we increase
the cloud distance along with the TAU values the modules is preferred to run in FN
node or FCN node. The applications which are far from the deadline are preferred
to place either in NFCN or CN.

5.7.1 Scenario 1:

Figure 17 shows the FN utilization for varying FN’s MIPS values. The applications
are assumed to have low computational cost and short deadline. Observations can be
made that the Cloud Only policy does not place the application modules in the FN
node. GA, PSO, SA, CTOSO and EWP policies places the equal number of modules
in the FN node. GS and DoSP policies utilize 40% of the fog node resources for the
all FN node MIPS. These two policies do not allow placing the application’s process
modules. In the GA, PSO, SA, and DEEDSP schemes, until 350 MIPS, FN node
utilization is lesser than CTOSO, EWP, GA, PSO, and SA policies. After 400 MIPS
CTOSO, EWP and DEEDSP policies place all the modules in FN node.
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Scnario 1: Service Placement with various FN capacities
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Fig. 17 FN utilization with various capacities

5.7.2 Scenario 2:

Scnario 2: Service Placement with various FN capacities
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Fig. 18 FN utilization with various capacities

Figure 18 shows the FN utilization with respect to various FN MIPS values.
The applications are assumed to have high computational cost and short deadline.
Here in the case of Cloud Only policy, it does not place the application modules in
the FN node. Same as in the previous case, CTOSO and EWP policies places the
equal number of modules in the FN node. Coming to GS and DoSP policies, they
utilize 40% of the fog node resources, here only the sensing and actuation modules
of the applications are allowed to run in FN. These two policies do not place the
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application process modules in FN. In the GA, PSO, SA, and DEEDSP policies, FN
node utilization is lesser than CTOSO, EWP, GA, PSO, SA and DEEDSP policies.
Here in the same policy FN nodes are occupied by sensing and actuation modules
which block the FN nodes from running other modules. After 400 MIPS CTOSO,
and EWP policies place all the modules in FN node.

5.8 Energy Utilization:
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Fig. 19 System Energy consumption of Various Policies

In Figure 19, The Cloud-only policy consumes more energy than all other policies.
It places all modules in cloud, so cloud takes more energy for executing the modules.
The policies GA, PSO, SA consumes less energy than all the other policies except
EWP, DEEDSP. The EWP and DEEDSP policy consumes lesser or equal Cloud (CN)
energy than all the other policies. DEEDSP policy consumes less energy than all the
other policies. CTOSO policy places more modules in FN. CTOSO consumes more
FN energy because it places more modules in FN. In CTOSO policy, it gives priority
to place the modules in the fog node and the remaining modules in Cloud (CN).
EWP and DEEDSP policies mostly does not place the modules in the cloud. EWP
consumes more energy than DEEDSP because of high FN energies. All the policies
that consider FCN for placement except EWP, consumes equal FCN energies. The
NFCN energy is high for DEEDSP than all other policies which consider NFCN.
This policy succeeds other policies in utilizing the NFCN node with out exceeding
the application deadline.
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5.8.1 Scenario 1:

Scnario 1:Overall Energy Consumption With Various FN Capacities
1600
z 1400 -
H 1200 -
§ 1000 -
b 800
En 600
& 400 -
200 -
200 250 300 350 400 450 500
M CloudOnly| 1589.142 1589.142 1589.142 1589.142 1589.142 1589.142 1589.142
= CTOSO 1349.714 1165.542 922.552 789.5556 615 546.66 492
=EWP 1091.142 957.028 883.847 702.857 615 546.66 492
mGs 1293.857 1158.685 1154.895 1135.371 1097.185 1109.33 1100.22
¥ DoSP 1246.771 1158.685 1131.352 1111.828 1097.185 1085.79 1076.68
GA 1126.657 984.21 892.34 702.857 615 546.66 492
= PSO 1138.628 992.173 892.34 702.857 615 546.66 492
SA 1162.171 997.326 892.34 702.857 615 546.66 492
" DEEDSP 1068 935.142 824.19 702.857 615 546.66 492

Fig. 20 Overall Energy Consumption With Various FN Capacities

Figure 20 shows the energy consumption for varying Fog Node MIPS. The Cloud
energy consumption is constant in the case of Cloud Only policy for all the FN MIPS
values. Upto 350 FN MIPS value, DEEDSP consumes less energy than all other
policies. Up to 250 FN MIPS, the CTOSO consumes more energy than DEEDSP
policy because it places more modules in the cloud node. From 400 FN MIPS,
the CTOSO, EWP, GA, PSO, SA, and DEEDSP policies consume same amount of
energy, as there is enough space to accommodate all the modules alone in FN. The
GS and DoSP policies are not affected by the increase of FN MIPS value. These
two policies place the sensing and actuation modules only in FN. It utilizes the
FN resources equally even the FN MIPS value increases. The proposed DEEDSP
consumes lesser or sometimes equal energy than other policies for to varied FN
capacities.

5.8.2 Scenario 2:

The Cloud Only policy, as shown in Figure 21, consumes constant amount of energy
for various FN MIPS as all the modules are placed in CN. Until 350 FN MIPS of
the fog node, DEEDSP consumes less or equal energy than all the other policies.
DEEDSP policy has organized to place all the high computation modules in FN.
From 400 FN MIPS CTOSO and EWP policies are proven to be the best in system
energy consumption. GS and DoSP policies are not affected by the FN MIPS value;
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Scenario 2:0Overall Energy Consumption With Various FN Capacities
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"Gs 1470.428 1429.428 1402.095 1382571 1247.598 1197.015 1197.015
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SA 1273.54 1157.23 942.64 812.42 7185 642.888 609.511
™ DEEDSP 1182.19 1147.028 927.276 789.555 7185 642.888 609.511

Fig. 21 Overall Energy Consumption With Various FN Capacities

these two policies place sensing and actuation modules only in FN. It utilizes the FN
resources consistently even the FN MIPS value increases. It is also observed that,
starting at 400 MIPS GA, PSO, SA, and DEEDSP consumed equal FN energies.

Overall Energy Consumption With Various Cloud Distances
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Fig. 22 Overall Energy Consumption With Various Cloud Distances

Figure 22 presents the energy consumption of all the policies with varied cloud
distances. The energy consumption of Cloud Only, CTOSO and EWP policies does
not get affect by the change in cloud distance. GS, DoSP, GA, PSO, SA, and DEEDSP
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polices energy consumption is decreased with increase in the cloud distance. When
the cloud distance is increased these 3 policies avoid placing the modules in the
cloud. Reducing the module placement in cloud avoids the application to exceed its
deadline. The proposed method consumes less energy than all other policies at high
cloud distances. GA, PSO, and SA policies consumes less energy then other policies
except EWP and DEEDSP policies.

Overall Energy Consumption With Various TAU Values
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Fig. 23 Overall Energy Consumption With Various TAU Values

Figure 23 shows the energy consumption of all policies with various TAU values.
Between TAU values 5 to 20, the energy consumption of GA and DEEDSP is
less than EWP policy. The energy consumption of Cloud Only, CTOSO and EWP
policies does not change with TAU values. In Cloud Only policy all modules are
placed in cloud node so it does not get impact by the TAU value, hence keeps the
energy consumption constant. As in Cloud Only the scenario in CTOSO policy is
same. Even after increasing the TAU value, the EWP policy places the modules in
the neighbor controller node in a hierarchical order. So there is no change in the
energy consumption with increased TAU values. In GS, DoSP, GA, PSO, SA, and
DEEDSP policies, the total energy consumption of the system is increased with
respect to the increase in the TAU value. When the TAU values increases, the GS
and DoSP policies try to place the modules in FCN and CN. If more modules are
placed in controller node and cloud node it automatically consumes more energy.
With increase in TAU value, the DEEDSP policy energy consumption is lower than
the GS, DoSP, GA, PSO, and SA. When the TAU value is increased the GS, DoSP,
GA, PSO, SA, and DEEDSP policies minimize the module placement in neighbor
fog controller node to avoid exceeding deadline.
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5.8.3 Trade-off between energy and Execution Time

Trade Off Between Energy Consumption and Makespan Time of DEEDSP Policy
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Fig. 24 Trade-off Between Energy Consumption and Makespan Time of DEEDSP Policy

Figure 24 plots the change in time and energy with a function of cloud distance (D)
achieved by DEEDSP policy. In the case, D = 0, Energy consumption is maximized,
however Makespan Time is very less at 20.64s because many modules are assigned
to CN. At a cloud distance D = 15, energy consumption and makespan time is
improved by 23.543 joules and 23.74 sec respectively. As D gradually changes to
50, the energy consumption decreases and the makespan time increases. Here in
the DEEDSP policy Energy consumption is optimized and module placement in
FN increases, so the Makespan Time increases. This experiment showed that, by
adjusting the cloud distance D, our proposed work could be flexible. It satisfies
user’s requirements when they are interested in high performance execution or in
energy consumption. At the cloud distance 30, the system balances with respect
to energy consumption and makespan time. This point is an optimal point which
balances energy consumption and makespan time.

6 Conclusions and Future Work

This paper suggests a multi-tiered application service fog computing paradigm and
analyses its performance in IoT applications. There are numerous fog nodes with ex-
ploitative computational resources in the multi-tier fog computing model. A deadline-
aware and energy-efficient service placement algorithm is proposed to improve the
placement of the service over fog environment. To support the deadline-aware and
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energy-efficient service placement scheme, extensive benchmark experiments over
fog environment were conducted to measure the response time of applications and
energy consumption of the system over fog environment. By comparing with dif-
ferent state-of-the-art algorithms, the proposed deadline-aware and energy-efficient
service placement algorithm is tested. The simulation results showed that the pro-
posed algorithm works effectively over a multi-level fog environment. The possible
future directions can be:

e DEEDSP can utilize latest artificial intelligence or machine learning models to
optimize the QoS parameters [12].

* DEEDSP can incorporate security by utilizing the concept of Blockchain or
Quantum Computing, which can further increase the computational power [13].

* DEEDSP can be utilized for other IoT applications such as Industry 4.0, healthcare
or agriculture [12].

* DEEDSP can use the concept of serverless edge computing to scale the applica-
tions effectively [13].

7 Data Availability Statement

A significant amount of data is presented in this article. The remaining data that
support the findings of this study are available on request from the corresponding
author. The data are not publicly available due to privacy or ethical restrictions.

8 Acknowledgments

We would like to thank Manmeet Singh (Fulbright-Kalam Fellow, The University
of Texas at Austin) for his useful suggestions and discussion to improve the quality
of the paper. We would also like to thank the Editor in Chief (Prof. Changgiao Xu),
associate editor and anonymous reviewers for their valuable comments and sugges-
tions to help and improve our systematic review.

References

1. Dadashi Gavaber, Morteza, and Amir Rajabzadeh. "BADEP: Bandwidth and delay efficient
application placement in fog-based IoT systems." Transactions on Emerging Telecommunica-
tions Technologies (2020): e4136.

2. Benrazek, Ala-Eddine, Zineddine Kouahla, Brahim Farou, Mohamed Amine Ferrag, Hamid
Seridi, and Muhammet Kurulay. "An efficient indexing for Internet of Things massive data
based on cloud-fog computing." Transactions on emerging telecommunications technologies
31, no. 3 (2020): e3868.



38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Meeniga Sri Raghavendra, Priyanka Chawla and Sukhpal Singh Gill

. Bashir, Hayat, Seonah Lee, and Kyong Hoon Kim. "Resource allocation through logistic

regression and multicriteria decision making method in IoT fog computing." Transactions on
Emerging Telecommunications Technologies (2019): e3824.

. Sukhpal Singh Gill, Rajesh Chand Arya, Gurpreet Singh Wander, and Rajkumar Buyya,

Fog-Based Smart Healthcare as a Big Data and Cloud Service for Heart Patients Using IoT,
International Conference on Intelligent Data Communication Technologies and Internet of
Things (ICICI 2018, ISBN: 978-3-030-03146-6, Springer Nature, Switzerland), Coimbatore,
India, August 7-8, 2018.

. Gill, Sukhpal Singh, Shreshth Tuli, Minxian Xu, Inderpreet Singh, Karan Vijay Singh, Do-

minic Lindsay, Shikhar Tuli et al. "Transformative effects of IoT, Blockchain and Artificial
Intelligence on cloud computing: Evolution, vision, trends and open challenges." Internet of
Things 8 (2019): 100118.

. Jagdeep Singh, Parminder Singh, Sukhpal Singh Gill, Fog Computing: A Taxonomy, Sys-

tematic Review, Current Trends and Research Challenges, Journal of Parallel and Distributed
Computing, 2021, https://doi.org/10.1016/j.jpdc.2021.06.005.

. Rahman G., and C. C, "Fog Computing, Applications, Security, and Challenges, Review,”

International Journal of Engineering & Technology, 7(3), 1615-1621,2018.

. Q. Qi and F. Tao, "A Smart Manufacturing Service System Based on Edge Computing, Fog

Computing, and Cloud Computing," in IEEE Access, vol. 7, pp. 86769-86777, 2019, doi:
10.1109/ACCESS.2019.2923610.

. S. S. Gill, P. Garraghan, and R. Buyya, ROUTER: Fog Enabled Cloud based Intelligent

Resource Management Approach for Smart Home IoT Devices, Journal of Systems and
Software (JSS), Volume 154, Pages: 125-138, 2019.

Xia Ye, Etchevers Xavier, Letondeur Loic, Coupaye Thierry, Desprez Frédéric. Combining
hardware nodes and software components ordering-based heuristics applications in the fog.
in Proceedings of the 33rd Annual ACM Symposium on Applied Computing:751-760ACM;
2018.

Brogi, A, Forti, S, Guerrero, C, Lera, 1. How to place your apps in the fog: State of the art and
open challenges. Softw: Pract Exper. 2020; 50: 719— 740. https://doi.org/10.1002/spe.2766
Yyi Kai Teoh, Sukhpal Singh Gill and Ajith Kumar Parlikad, IoT and Fog Computing based
Predictive Maintenance Model for Effective Asset Management in Industry 4.0 using Machine
Learning. IEEE Internet of Things Journal, 2021. DOI: 10.1109/JI0T.2021.305044 1
Sukhpal Singh Gill, Quantum and Blockchain based Serverless Edge Computing: A Vi-
sion, Model, New Trends and Future Directions, Internet Technology Letters, 2021,
https://doi.org/10.1002/it12.275

B. V.Natesha and R M R Guddeti. "Adopting elitism-based Genetic Algorithm for minimizing
multi-objective problems of IoT service placement in fog computing environment." Journal
of Network and Computer Applications (2021): 102972.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science,
vol.220, no. 4598, pp. 671-680, 1983.

J. H. Holland, Adaptation in Natural and Artificial Systems: An IntroductoryAnalysis with
Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press,
1975.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” In Proceedings of the IEEE
International Conference on Neural Networks, 1995, pp. 1942-1948.

Zhang, Guanglin, Wenqgian Zhang, Yu Cao, Demin Li, and Lin Wang. "Energy-delay tradeoff
for dynamic offloading in mobile-edge computing system with energy harvesting devices."
IEEE Transactions on Industrial Informatics 14, no. 10 (2018): 4642-4655.

Zhou, Zhenyu, Zhao Wang, Haijun Yu, Haijun Liao, Shahid Mumtaz, Luis Oliveira, and Vale-
rio Frascolla. "Learning-based URLLC-aware task offloading for Internet of Health Things."
IEEE Journal on Selected Areas in Communications (2020).

Hosseini Bidi, A, Movahedi, Z, Movahedi, Z. A fog-based fault-tolerant and QoE-
aware service composition in smart cities. Trans Emerging Tel Tech. 2021; e4326.
https://doi.org/10.1002/ett.4326



Title Suppressed Due to Excessive Length 39

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Li, X, Qin, Y, Zhou, H, Zhang, Z. An intelligent collaborative inference approach of service
partitioning and task offloading for deep learning based service in mobile edge computing
networks. Trans Emerging Tel Tech. 2021;e4263. https://doi.org/10.1002/ett.4263

M. Taneja and A. Davy, “Resource aware placement of IoT application modules in fog-cloud
computing paradigm,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pp. 1222-1228, IEEE, 2017.

X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud- fog computing system,”
in 2016 18th Asia-Pacific network operations and management symposium (APNOMS), pp.
1-4, IEEE, 2016.

Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R. iFogSim: a toolkit for modeling and simu-
lation of resource management techniques in the Internet of Things, edge and fog computing
environments. Softw Pract Exper. 2017;47(9):1275-1296.

X.-Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.-N. Huh, “A cost-and performance-
effective approach for task scheduling based on collaboration between cloud and fog
computing,” International Journal of Distributed Sensor Networks, vol. 13, no. 11, p.
1550147717742073, 2017.

R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-aware application module manage-
ment for fog computing environments,” ACM Transactions on Internet Technology (TOIT),
vol. 19, no. 1, pp. 1-21, 2018.

T. Huang, W. Lin, C. Xiong, R. Pan and J. Huang, "An Ant Colony Optimization-Based Mul-
tiobjective Service Replicas Placement Strategy for Fog Computing," in IEEE Transactions
on Cybernetics, doi: 10.1109/TCYB.2020.2989309.

O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-aware fog service place-
ment,” in 2017 IEEE Ist international conference on Fog and Edge Computing (ICFEC),
89-96, IEEE, 2017.

Skarlat, O., Nardelli, M., Schulte, S. et al. Optimized IoT service placement in the fog. SOCA
11, 427-443 (2017). https://doi.org/10.1007/s11761-017-0219-8

T. Choudhari, M. Moh, and T.-S.Moh, “Prioritized task scheduling in fog computing,” in Proc.
ACMSE, Richmond, Kentucky, Mar. 2018, pp. 401-405.

Meeniga Sriraghavendra, Priyanka Chawla, Huaming Wu, Sukphal Singh Gill and Rajku-
mar Buyya, DoSP:A Deadline-Aware Dynamic Service Placement Algorithm for Workflow-
oriented IoT Applications in Fog-Cloud Computing Environments,in book title “Energy Coser-
vation Solutions for Fog-Edge Computing Paradigms” to be published by Springer book series
“Lecture Notes on Data Engineering and Communications Technologies”.

R. Mahmud, S. N. Srirama, K. Ramamohanarao and R. Buyya, "Profit-aware application
placement for integrated fog—cloud computing environments", J. Parallel Distrib. Comput.,
vol. 135, pp. 177-190, 2020.

P. G. V. Naranjo, E. Baccarelli, M. Scarpiniti, "Design and energy efficient resource manage-
ment of virtualized networked fog architectures for the real-time support of iot applications,"
in The Journal of Supercomputing 74 (6), 2018, 2470-2507.

W. Ramirez, X. Masip-Bruin, E. Marin-Tordera et al., “Evaluating the benefts of combined
and continuous Fog-to-Cloud architectures,” Computer Communications, vol. 113, pp. 43-52,
2017

H. Y. Wu, C.R.Lee, "Energy Efficient Scheduling for Heterogeneous Fog Computing Archi-
tectures,"42nd IEEE International Conference on Computer Software & Applications, 2018.
K.H. Kim, R. Buyya, J. Kim, Power aware scheduling of bag-of-tasks applications with
deadline constraints on DVS-enabled clusters, in: Proc. 7th IEEE Int. Symposium on Cluster
Computing and the Grid, CCGrid 2007, Rio de Janeiro, Brazil, May 2007.

R.Deng, R. Lu, C. Lai, and T. Luan, “Towards power consumption delay tradeoff by workload
allocation in cloud fog computing,” in Communications (ICC), 2015 IEEE International
Conference on, June 2015, pp. 3909-3914.

S. Sharma and H. Saini, "A novel four-tier architecture for delay aware scheduling and load
balancing in fog environment", Sustainable Computing: Informatics and Systems, vol. 24, pp.
100355, Dec. 2019.



40

39.

40.

41.

42.

43.

44.

Meeniga Sri Raghavendra, Priyanka Chawla and Sukhpal Singh Gill

Mohammad S. Aslanpour, Sukhpal Singh Gill, and Adel N. Toosi. "Performance evaluation
metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards
for future research." Internet of Things (2020): 100273.

M. Huang, W. Liu, T. Wang, A. Liu and S. Zhang, "A Cloud-MEC Collaborative Task
Offloading Scheme With Service Orchestration," in IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 5792-5805, July 2020, doi: 10.1109/JI0T.2019.2952767.

Sukhpal Singh and Inderveer Chana. Advance billing and metering architecture for infras-
tructure as a service. International Journal of Cloud Computing and Services Science, 2(2),
123 133, 2013.

T. Qayyum, A. W. Malik, M. A. Khan Khattak, O. Khalid and S. U. Khan, "FogNetSim++: A
Toolkit for Modeling and Simulation of Distributed Fog Environment," in IEEE Access, vol.
6, pp. 63570-63583, 2018, doi: 10.1109/ACCESS.2018.2877696.

M. M. Lopes, W. A. Higashino, M. A. Capretz, and L. F. Bittencourt, “MyiFogSim: A
Simulator for Virtual Machine Migration in Fog Computing,” in Proceedings of thelOth
International Conference on Ultility and Cloud Computing, pp. 47-52, Austin, Texas, USA,
December 2017.

I. Lera, C. Guerrero and C. Juiz, "YAFS: A Simulator for IoT Scenarios in Fog Computing,"
in IEEE Access, vol. 7, pp. 91745-91758, 2019, doi: 10.1109/ACCESS.2019.2927895.



