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Abstract. In this paper, a method is presentedfor the efficient estimation of rarecvent (buffer overflow) probabilities 
in queueing networks using importance sampling. Unlike previously proposed change of measures, the one used here is 
not static, i.e., it depends on the buffer contenrs at each of the network nodes. The ‘optimal’ statedependent change of 
measure is determined adaptively during the simulntion. using the cross-entropy method. The adaptive statedependent 
importance sampling algorithm proposed in this paper yields asymptotically efficient simulation of models for which it is 
shown (formally or otherwise) that no effective static change of measure exists. Simulation results for queueing models 
of communication systems are presented to demonstrate the effectiveness of the method. 

1 INTRODUCTION 

During the last decade, there has been much interest i n  
the estimation of rare-event probabilities in queues and net- 
works of queues, with applications to models of telecom- 
munication networks as well as computer and manufactur- 
ing systems. Two methods have gained popularity: im- 
portance sampling ([I}, [2]), and importance splitting (or 
RESTART) [3], the former of which is used in this paper. 

One simple network that received a lot of attention is 
a set of two or more queues in tandem. Despite its sim- 
plicity, a complete analysis of this system is hard due to the 
behaviour at the state-space boundaries. As a consequence, 
no importance sampling change of measure is known that 
is provably asymptotically efficient for estimating e.g. the 
overflow probability of the total population in such a sys- 
tem. 

In [4]. an importance sampling procedure was de- 
scribed for estimating the overflow probability of the to- 
tal population in tandem queues. A simple and static (i.e., 
state-independent) change of measure was used: exchange 
the arrival rate with the service rate (of the bottleneck 
queue, in case of a tandem system). In [ 5 ] ,  the asymptotic 
efficiency of that method for a single queue was proved. 
In [6]  this heuristic was extended to overflows of the to- 
tal population in any Jackson network. However, it was 
shown in [7] that for two or more queues in tandem, this 

heuristic does not always give an asymptotically efficient 
simulation, depending on the values of anival and service 
rates. It is reasonable to expect that similar problems wilI 
occur with this method in other Jackson networks. 

Clearly, by allowing the change of measure to depend 
on the state of the system (i.e., the content of each of the 
queues), more efficient importance sampling schemes may 
be obtained. This approach was recently used in [8], where 
the overflow probability of the second queue in a two-node 
tandem Jackson network is estimated using a simulation 
in which the change of measure depends on the content 
of the first buffer; the functional dependence of the rates 
on the buffer content is derived from a Markov additive 
process representation of the system. Furthermore, in [9] 
a state-dependent change of measure is used for simulating 
link overloads in a telecommunications network; again, the 
functional dependence of the importance sampling rates on 
the system state is derived using. a heuristic. And in [ 101, 
an efficient exponential change of measure is considered 
for a certain class of Markov chain problems, where the 
exponential tilting parameter is a function of the state and 
is determined using large-deviations theory. The biggest 
obstacle to the use of a state-dependent change of measure 
in general is the problem of determining this dependence: 
rather specific mathematical models are used in the publi- 
cations mentioned, making the results very specific to those 
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problems. 
As an alternative to avoid the complex mathematical 

analysis often used to determine a good (state-independent) 
change of measure, several adaptive methods have been 
proposed recently; see [l l l .  [12], [13]. 1141, [151, [161. 
[17]. All of these either try to iteratively minimize the 
variance of the estimator involved, or a related quantity 
like the cross-entropy. However, none of these papers con- 
sider a state-dependent change of measure for simulation 
of queueing models. 

In this paper, we present an adaptive method for deter- 
mining a state-dependent change of measure for rare events 
in queueing problems. This is a rather versatile method: 

0 due to the adaptiveness, a complex mathematical 
analysis of the problem is not necessary. 

0 since the state-dependent change of measure is less 
restrictive, problems can be solved for which no ef- 
fective state-independent change of measure exists. 

In particular, with this method the probability of overflow 
of the total network population in Jackson tandem net- 
works can be asymptotically efficiently estimated, even in 
those casts for which i t  is shown in [7] that the heuristic 
of exchanging the arrival rate with the bottleneck service 
rate does not work. In addition, the combination of state- 
dependence and adaptiveness leads to another useful prop- 
erty: the standard deviation of the estimator can decrease 
faster than proportional to the square-root of the total sim- 
ulation effort. 

Here we restrict our discussion to the estimation of 
rare-event probabilities in discrete-time Markov chains 
(DTMCs). However, efforts are underway to expand the 
method to more general models. 

The rest of this paper is organized as follows. Section 2 
provides a summary of the most important aspects of the 
adaptive method from [15]. Section 3 explains the imple- 
mentation of this algorithm for statedependent simulation, 
discusses some of the problems involved and their solu- 
tions, and provides a mathematical analysis of the variance. 
In Section 4. empirical results demonstrate the effective- 
ness of the method. Concluding remarks and directions for 
further research are given in Section 5 .  

2 PRINCIPLES OF THE CROSS-ENTROPY 
METHOD 

In this section, we briefly review the cross-entropy 
method for the adaptive optimization of an importance 
sampling simulation. Only the aspects that are relevant for 
the rest of this paper are discussed; for more details. the 
reader is referred to [ 151 and [ 161. 

2.1 BASICS 

Assume that the change of measure (or “tilting”) is pa- 
rameterized by some vector v ;  then an adaptive importance 
sampling procedure should try to find the value of v which 
results in minimal variance for the resulting estimator. 

Another approach for choosing v was introduced i n  
[16]. It is well known that always an importance sampling 
distribution (change of measure) exists which results in a 
zero-variance estimator, and that this distribution is pre- 
cisely the original distribution conditioned on the occur- 
rence of the rare event. In practice, this distributionmay not 
be within the family of distributions that can be obtained 
by the change of measure parameterized by v .  However, 
if a simulation distribution is used that is in some sense 
“close” to the unattainable zero-variance distribution, then 
a low (but non-zero) variance should be expected. So, in- 
stead of choosing v such that the variance is minimized 
explicitly, one could try to devise a procedure that mini- 
mizes some distance measure between the distribution un- 
der the change of measure given by v ,  and the distribution 
that would give zero variance. The latter distribution will 
henceforth be called the “zero-variance distribution”. 

Before proceeding with details of such a procedure, 
some more notation needs to be defined. The sample path 
of one replication of the simulation is denoted by 2. The 
function f (2)  is the indicator function of the Occurrence of 
the rare event in 2. We already defined v to denote the tilt- 
ing vector; consistently with this, f( 2, v )  is the probability 
(or, for continuous systems, the probability density) of the 
sample path 2 under the tilting v ,  with v = 0 correspond- 
ing to the original (untilted) system. The likelihood ratio 
associated with the sample path 2 and the tilting vector v 
is denoted by L (2, v )  : 

Finally, I&, denotes the expectation under the tilting v .  
A suitable “distance” measure for this procedure is the 

Kullback-Leibler cross-entropy, which is defined, see [ 191, 
as 

where f(z) and g(z) are two density functions whose “dis- 
tance” is to be calculated. Note that this “distance” mea- 
sure is not symmetric: in general, exchanging f and g in 
the above will result in a different value of CE. 

We want to apply the Kullback-Leibler cross-entropy 
to measure the distance between the distribution to be used 
for the simulation (assumed to be of the form f(z, v ) )  
and the zero-variance distribution. To do this, substitute 
g(z) = f ( z , v )  (i.e., the distribution to be optimized by 
changing v )  and f ( z )  = p o l ( z ) f ( r ,  0) with normaliza- 
tion factor p i ’  = -f f ( z ) f ( : ,  0 ) d r  into the above; note that 
this f( z) is the original distribution conditioned on the rare 
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event (i.e., the zero-variance distribution). Then we need to 
do the following minimization: 

= arg max I (  z) f (  z,  0) In f (z ,  v ) d z  . J  
= argmaxI&I(Z) lnf (Z ,v) ,  (1) 

v 

where vt denotes the value of v that minimizes the cross- 
entropy. In the above form, the equation is not useful, 
since we do not know I ( 2 )  In f (Zl  v ) .  However, we 
can rewrite it as follows: 

where vj  is any other tilting vector; we will later interpret it 
as the tilting vector used during the jth iteration of an itera- 
tive procedure. The above form can easily be approximated 
by a sum (stochastic counterpart of the expectation) over N 
samples from a simulation performed with tilting vj, thus 
yielding an approximation to vt which we call vj+ l :  

N 
uj+l = a r g r n a x z  I ( z~ )L( z , ,  v j )  In f (Z i ,  v), (2) 

i= l  

where the Zi are sample paths drawn under the tilting v j .  

2.2 THE BASIC CROSS-ENTROPY ALGORITHM 

Now we have all elements for an iterative procedure to 
approximate the optimal' tilting vector v + :  

1. Initialize as follows: 
j := 1 (iteration counter) 
01 := initial tiltingvector (see below) 

2. Simulate N replications with tilting v j ,  yielding 
21.. .ZN. 

3. Find the new tilting vector v j + l  from the maximiza- 

4. Increment j and repeat steps 2-4, until the tilting 

tion (2). 

vector has converged (i.e.- vj+l  w Vj ) .  

Choosing the initial tilting vector v1 in step I is not trivial. 
The most obvious choice is to set v 1  = 0, i.e., use the orig- 
inal transition probabilities. However, with that choice the 
rare event of interest will typically not be observed, mak- 
ing (2) unusable. In [16], this is solved by introducing an 
additional step in the algorithm, in which the rare event is 
temporarily modified into a less rare event (e.g., by choos- 
ing a lower overflow level). In the present paper, a different 

'In the sense that it minimizes the cross-cntmpy; this may not be equal 
to minimizing the varimce of the estimator. although in practice the dif- 
ference turns out to be small. 

approach is used: we choose u1 on the basis of heuristics 
like exchanging the arrival rate with the bottleneck service 
rate. Although such a heuristic by itself does not produce 
an asymptotically efficient simulation in the cases consid- 
ered here, it does provide a convenient starting point for the 
iterative process. 

3 STATE-DEPENDENT TILTING 

One application of the adaptive procedure described 
above is finding a "static" change of measure for queueing 
problems, i.e., finding the optimal arrival and service rates 
for simulation of a buffer overflow. In that case, the vec- 
tor v just contains one component for every such rate that 
is allowed to change. Indeed, for many problems this turns 
out to work well; see [ 151 and 1201 for examples. However, 
for many other problems no static change of measure seems 
to exist that gives an efficient simulation; for those systems, 
a less restrictive change of measure should be used, which 
can be obtained by allowing the arrival and service rates in 
the simulation to depend on the state. In this section we will 
do precisely that for DTMC models of queueing networks. 

3.1 PRINCIPLES 

A DTMC model is completely described by its initial 
probability distribution and its set of transition probabil- 
ities: the probabilities of going from one state to another. 
Since many DTMC models (e.g., for queueing systems) are 
derived from continuous time models with exponential ar- 
rival and service time distributions (CTMCs), the transition 
probabilities are typically calculated from transition rates: 
the probability of going from state i to state j is given by 
A;j/ Ck Xik. where X,j is the transition rate from state i to 
state j, and k in Ck runs over all states. In fact, for the 
cross-entropy calculations done in this section, it is more 
convenient to work with rates; the transition probabilities 
can trivially be calculated from the rates by normalizing 
their sum to 1. Collectively, all rates X;j will be referred to 
as a vector A. 

In DTMC models, only one type of tilting is possi- 
ble: changing the transition probabilities. Equivalently, 
one can change the transition rates of the corresponding 
CI'MC model and calculate the transition probabilities for 
the DTMC from those, as shown above. It turns out that the 
latter approach is slightly simpler. So the aim is to find a 
set of transition rates X which minimizes the cross-entropy. 

Before deriving the actual cross-entropy minimization 
formula, let us first build a mathematical description of 
one replication 2 of a DTMC simulation. Define the se- 
quence zi, i = 1 , 2 , 3 , .  . .. which denotes the state of the 
system just before the ith transition in this replication Z. 
Denote by A(,,, the rate (or probability) of going from state 
I to state rn. Then obviously the probability of the ith step 
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is 
X E , L , + ,  

x k  A r , k  ' 

where k runs over all states (or only those states that can be 
reached in  one step from state zi, since allother X:,k are 0). 
The total probability of the sample path 2 is 

where i runs over all steps in the sample path. 
Substitute the above expression for the probability of a 

sample path into Equation (1); then we get the following 
expression for the optimal transition rate vector At:  

To find the maximum in the right-hand side, set the deriva- 
tive with respect to XI,,, to 0, for any two states 1 and 772: 

or, equivalently: 

Thus, we find the following expression for the optimal tran- 
sition probability qlm from state 1 to state rn: 

Of course, the expectations in the right-hand side are gen- 
erally not known, but we can approximate them as follows: 

where cgzz, is a sum over the sample paths from LV 
replications, simulated with transition rates A, (i.e.. from 
the j th iteration). Note that the factor XI::,=( 1 in the de- 
nominator isjust the number of visits to state I during repli- 
cation 2. and that ci:.,=I l(L,+,=m) in the numerator is 
the number of those visits in which the transition to state 171 

was chosen next. Consequently, the right-hand side of (4) 
can be interpreted as the observed conditional (on the oc- 
currence of the rare event) probabilityof the transition from 
state 1 to state rn; this is not surprising, since it is known 
that using the true conditional distributions for importance 
sampling yields a zero-variance estimator, as discussed be- 
fore. 

3.2 PRACTICAL PROBLEMS 

Using the adaptive importance sampling algorithm 
from [ 151 or [ 161 with state-dependent parameters chosen 
according to (4) seems very simple. There are, however, 
practical difficulties. The cause of these is the enormous 
number of states that a typical queueing network can have. 
For example, a network with three queues and an over- 
flow level of 50 for the total network population has 23461 
states'. Doubling the overflow level to 100 multiplies this 
number of states by almost 8. If the rare event of interest 
is the overflow of one particular queue, other queues in the 
network can have an infinite size, thus making the number 
of states infinite. 

One of the consequences of the enormous state space 
is that a lot of data needs to be stored: this takes a lot 
of memory capacity; but with present-day computers and 
the size of the queueing networks studied here, this is typ- 
ically not a problem (except if the state space is infinite, of 
course). However, manipulating such a lot of data (e.g., in 
the smoothing techniques that will be discussed later) can 
be prohibitively time-consuming. 

The accuracy of the estimations in the right-hand side 
of (4) is more problematic. The only sample paths that give 
a contribution to the sums in the numerator and denomina- 
tor are those that reach the rare event (because of the I (  2 )  
factor) and pass through the state 1 (because of the sum- 
mation over i for which z, = I ) .  The factor f ( Z )  will 
typically not be a problem: the tilting used in the j t h  iter- 
ation is usually such that the event of interest is no longer 
rare. However, the tilting will not favor visits to states that 
are away from some optimal path to the rare event of inter- 
est. If the state space is multi-dimensional, this means that 
many states will not be visited often or at all, even under a 
tilting that makes the event of interest non-rare. States that 
are not visited at all during the N replications of a simula- 
tion yield 0/0 (undefined) in the right-hand side of (4). And 
states that are visited only a few times make the quotient of 
sums a bad approximation of the quotient of expectations. 

There is in fact a rather fundamental risk here: suppose 
the transition from some state 1 to another state rn happens 
in  only 10 % of all visits to state I ,  and state I is visited only 
5 times during the N replications of a simulation. Then i t  
is quite likely that in none of those 5 visits to state I ,  a 

?This is the total number of ways lo distribute among three distinct 
queues a total of I customer (3 ways). 2 indistinguishable custoiners (6  
ways). 3 indistinguishablecustomers ( 10 ways), up to 50 indistinguishable 
cusiomers. 
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transition to state m will be made. Consequently, using (4) 
to choose the simulation parameters for the next iteration 
would set the rate (probability) of this transition to 0, thus 
making the transition impossible. Then in the next simu- 
lation, surely no transitions from state 1 to state m will be 
observed, so this rate will again be set to 0 for the next iter- 
ation: it will remain at 0 forever, even though that is wrong 
if the transition has a non-zero probability in the untilted 
system, thus possibly resulting in a biased estimator. 

The only case in which the above does not give a biased 
estimator is when the rare event of interest can no longer be 
reached after that particular transition has been made. As a 
matter of fact, all paths Z which contain such a transition 
necessarily have I (  2) = 0; as a consequence, (4) will au- 
tomatically set the rate of such a transition to zero for the 
next iteration. Therefore, after the first iteration, afl sample 
paths will reach the rare event. 

3.3 DEALING WITH A LARGE NUMBER OF STATES 

Figure 1 : Optimal state-dependent transition probabilities for 
simuiating the overjfow of the total network popula- 
tion of two ( M ) / M j 1  queues in tnnciem; X = 0.04, 
pi = p2 = 0.48, over$ow level = 15. 

to the probability. Furthermore, for each state there is a 
black line which is just the vector sum of the three gray 
lines in that state: this can be interpreted as the "average 
drift" out of that state. 

From this figure, it is apparent that the optimal tran- 
sition probabilities don't just vary arbitrarily from state to 
state, but follow some patterns: 

States that are close to each other in the state space 
often have approximately the same transition proba- 
bili ties. 

On a larger scale, the transition probabilities tend to 
be monotonous, smooth functions of the state vari- 
ables (i.e.. the number of customers in the queues). 

The strongest variations occur near the boundaries of 
the state space: only when a queue is nearly empty 
do the transition probabilities depend strongly on its 
level. 

Each of these observations leads to a way of reducing the 
large-state-space problems, as explained below. 

3.3.1 Boundary layers 

The observation that when a queue's content is suffi- 
ciently large, the optimal transition probabilities are nearly 
independent of it, suggests that we can assign a single set 
of transition probabilities to a group of such states. Graph- 
ically, this is illustrated in Figure 2, which shows the state 
space of a system with two queues. Gray shading is used to 
group states for which one or both queues contain at least 
3 customers, which graphically turns into a picture with 3 
layers along each boundary. Thus for each gray area, we 
store one set of transition probabilities, to be used during 
simulation for each visit to any of the states in that gray 
area. 

0 1 2 3 4 5 6  In order to get some ideas for dealing with large state 
spaces. t*e a look at Figure 1. This figure h s  been drawn 
on the basis of numerical evaluation of (6) for every point 
of the state space of a network of two ( M ) / M /  1 queues 
in tandem. For each state, it shows the optimal transition 
probabilities to each of its neighbour states as a gray line 
directed toward that neighbow, with a length proportional 

Figitre 2:  Grouping of states using three boundary layers in the 
state space of ( I  nvo-qrreue system: nl = level of ith 
queue. 

In order to choose these transition probabilities on the 
basis of simulation results from the previous iteration, one 
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can readily modify (4) to calculate a transition probabil- 
ity qlm on the basis of visits to a range of states (namely 
those in the Same gray group) as follows: 

(5) 

Here I’ runs over all those states of which the observations 
should be used for the estimation of the transition proba- 
bilities for state I ,  i.e., all states in the same gray group. 
State m’ is the state whose position relative to state I‘ is the 
same as the position of state rn relative to state I ;  e.g., if 
state rn has 1 more customer in queue 2 than state I has, 
then state rn’ must also have 1 more customer in queue 2 
than state 1’ has. This sounds complicated, but it just means 
considering the same “type of event” (e.g., arrival) for each 
state I’ in the same gray area. Note that at state-space 
boundaries, some types of transitions may be disabled (e.g.. 
departure from a queue that is empty at that boundary); then 
observations from states where such a transition is enabled 
cannot be combined with those from states where that tran- 
sition is disabled, since the m’ would not be well-defined. 
This problem does not arise with the boundary layer tech- 
nique discussed here, but it does happen in other applica- 
tions of the formula, discussed later. 

Choosing the optimal number of boundary layers seems 
to be done best by trial and error. Using too few causes 
the change of measure to be insufficiently state-dependent, 
which may not only increase the estimator variance, but 
also cause the same problems that occur with a completely 
state-independent change of measure, and/or lead t6 con- 
vergence problems. Using unnecessarily many boundary 
layers mainly increases the amount of computation and 
storage required. Typical numbers of boundary layers used 
in practice were between 4 and 10. One could consider 
using different numbers of boundary layers along different 
boundaries; for example in Figure 1, clearly fewer bound- 
ary layers would be needed along the vertical than along 
the horizontal axis. However, this kind of information is 
usually not available in advance. 

3.3.2 Local average 
8 

As noted in Section 3.2, it frequently happens that a 
transition probability estimate is not good due to a lack of 
observed sample paths involving that particular state. In 
such cases, we can apply (5) to use observations from sur- 
rounding states to try to obtain a more accurate estimate, 
on the basis of the observation that nearby states often have 
approximately equal optimal transition probabilities. 

The local-average technique uses an adaptive procedure 
to decide from which states observations should be com- 
bined, separately for every state. It starts by using only the 
observations pertaining to the state of interest; i.e., using 
just (4). If this already gives good enough estimates of the 

transition probabilities, we’re done for this state. If not, 
add states for which each queue’s content differs at most 1 
from the state of interest and apply (5 ) ;  if the estimates 
are now good enough, we’re done. If not, add states with 
queue contents differing at most 2, and so on until the es- 
timates are good enough (or no more states are available). 
Whether estimates are good enough is judged by three cri- 
teria: (a) whether the number of observations (visits to the 
states or group of states) is not too small, e.g. at least 100; 
(b) whether all transition probabilities are non-zero if they 
should (cf. Section 3.2); and (c) by demanding that the rel- 
ative error associated with the estimates ( 5 )  is smaller than 
a threshold, e.g. 0.2. 

Note that grouping of states as described above has two 
effects: on one hand, it typically reduces the variance of the 
transition-probability estimates because it uses more sam- 
ples for each estimate; on the other hand, the optimal tran- 
sition probabilities in reality differ from state to state, so 
combining observations results in a bias (but only the tran- 
sition probabilities are biased; not the final estimate of the 
rare-event probability of interest). The adaptive algorithm 
needs to find a compromise between these two effects, by 
only grabbing more states until the accuracy seems satis- 
factory; obviously, parameters such as the upper limit im- 
posed on the relative error determine where this compro- 
mise lies. Also the number of replications per simulation 
run has an influence: the more replications, the less group- 
ing is needed. Fortunately, the process seems to be rather 
insensitive to these parameters, so trial and error (typically 
a lack of convergence) is a usable way to choose them. 

3.3.3 Smoothing 

The estimated transition probabilities on the basis of (4) 
or (5) tend to be somewhat noisy, and thus not the smooth 
and monotonic functions of the state variables that they 
should ideally be. This is natural, since they are simula- 
tion results. However, we may improve the accuracy by 
replacing the noisy data by a smooth function that to some 
extent fits the noisy data. This is called smoothing. 

The smoothing method we used is based on spline- 
fitting. Only the main points of it will be described here, 
since many other smoothing methods from the literature 
would probably work just as well or better; the interested 
reader can find more details in [20]. 

Splines are piecewise-polynomial functions. 1.e.. the 
domain of the function (the state space in our application) 
is divided into pieces (we typically used square, cubic, etc., 
pieces with a size of 3 to 5 on each side), and over each 
piece a polynomial function is defined. At the boundaries 
between the pieces, the polynomials are chosen such that 
they are equal, and possibly also that one or more deriv- 
atives are equal, thus providing a smooth connection be- 
tween the pieces. We chose to use polynomials that are 
cubic (i.e., of degree three) in each of the state variables. 
Such polynomials have enough degrees of freedom (para- 
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meters) to allow choosing the value of the polynord it- 
self, and of its first derivative(s), at each comer point. Thus 
a natural way to fit such splines to the noisy data, is to es- 
timate the value and the derivatives at each comer point 
from the noisy data; this can be accomplished by doing a 
weighted least-squares approximation around every comer 
point, giving the highest weight to data points closest to the 
comer point under consideration. 

Note that the spline-fitting method is a rather simple 
method, with two shortcomings: (i) due to the weighted 
least-squares scheme, not all of the “raw” datapoints con- 
tribute equally to the final smooth function (which means 
information is thrown away), and (ii) the use of cubic 
polynomials puts a strong restriction on the set of smooth 
functions which is not supported theoretically. Smoothing 
methods without these shortcomings are known in the lit- 
erature, and are expected to perfom equally well or better. 

However, the above method is still quite effective, as 
demonstrated in Section 4. 

3.3.4 Combination 

In practice, two or all three of the above methods are 
combined. Before the simulations are started, the number 
of boundary layers is chosen; this is very effective to re- 
duce the amount of data to be stored and processed. Next, 
the simulation is performed. Following this, the transition 
rates are calculated on the basis of the simulation results, 
using Equations (4) and (5) ;  the local average technique 
is used to group neighbouring states where necessary to 
obtain reliable estimates of the transition probabilities. Fi- 
nally, the spline smoothing can be applied, if needed or de- 
sired. If the results after the local average step are already 
relatively good, spline smoothing may worsen the accuracy 
by imposing an unsuitable form on the data; on the other 
hand, if the data is rather noisy, the spline smoothing usu- 
ally improves its accuracy. We will see examples of both in 
Section 4. 

3.4 THE COMPLETE ALGORITHM 

To summarize, the adaptive importance sampling pro- 
cedure looks like this: 

1. Choose the number of boundary layers to be used; 
this should preferably be done in advance, since it 
significantly reduces memory usage. 
Also, other parameters need to be fixed in advance, 
such as the number of replications per iteration, max- 
imum acceptable relative error in the local average 
method, etc. 

2. Initialize the iteration counter j := 1, and the ini- 
tial transition probabilities vector XI. In the present 
paper, we choose v1 on the basis of heuristics like 
exchanging the arrival rate with the bottleneck ser- 
vice rate. Although such a heuristic by itself does 
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6. 

7. 

not produce an asymptotically efficient simulation in 
the cases considered here, it does provide a conve- 
nient starting point for the iterative process. 

Simulate N replications using transition probabili- 
ties A j .  While doing this, keep track of the quantities 
needed to evaluate (4); i.e., 

for all pairs of states 1 and m; or rather, dis- 
tinct groups of states resulting from the boundary 
layer technique. Furthermore, some other quanti- 
ties needed for the local average algorithm need to 
be recorded, such as the number of times each state / 
distinct group of states is visited. 

Apply the local average algorithm to these data, 
yielding estimates for the simulation parameters 
xj+l. 

Optionally, apply the spline-based smoothing to 
Aj+1. 

Increment the iteration counter: j := j + 1 

Repeat steps 3-6 until convergence has been 
achieved. 

3.5 THE VARIANCE OF THE ESTIMATOR 

In this section, we derive some results about the vari- 
ance of the estimator of the rare-event probability. 

We start by showing that in principle, the method tends 
to converge to precisely that set of transition probabilities 
which would give a zero variance estimation of the quantity 
of interest, followed by a discussion of the reason why this 
zero variance is not actually reached. 

Next, the influence of the statistical error in the transi- 
tion probabilities (due to the fact that they are simulation 
results themseIves) will be investigated. This leads to an 
explanation for the experimental observation that the vari- 
ance of the rare-event probability estimator can decrease 
proportionally to the square of the number of replications 
used. 

3.5.1 Zero variance 

Start by rewriting the denominator of (3) as follows: 
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m 

i :,A l = ?  

m 

i = l  

where rl is defined as the probability of reaching the rare 
event before an absorbing state is reached, starting from 
state 1; note that rrzl is the rare-event probabilityof interest, 
since 21 is the initial state. Rewrite the numeratorsimilarly: 

is the untilted transition probability from state 1 
to state m. By substituting the aboie into (3). we find the 
following expression for the optimal transition probabili- 
ties: 

One can easily recognise the right-hand side as the condi- 
tional probability of going from state I to state rn, given 
that the rare event will be reached. 

Now consider a random path 2 leading to the rare 
event, containing TIZ steps. The probability of this path 
in the tilted simulation is 

(7) 

The probability of the same path in the untilted system is 
just n,,, p , , : , + , ,  so the likelihood ratio is K , , / T T , ~ ~ + ,  . 
Since 2 was defined as a path leading to the rare event, 
its last state znZ+1 must be the rare event itself; therefore 
K ~ ~ ~ + ~  = I .  Consequently, the likelihood ratio of the path 
is just r,, , which is (by definition) the rare-event probabil- 
ity of interest, and thus a constant independent of the path. 
Since all sample paths in the tilted system reach the rare 
event (see3 the last paragraph of Section 3.2), and thus have 
this same likelihood ratio, the vmhnce of the estimator is 
zero. 

In practice, zero variance is not reached of course. 
There are two reasons for this: 

n z  

a 

a 

3.5.2 

The new transition probabilities are estimated from 
sirnulation results, which obviously have a statisti- 
cal error; the effect of this is discussed further be- 
low. Note that this error can be made arbitrarily small 
by increasing the number of replications used in the 
simulation. 

The techniques for dealing with the large state space 
discussed in Section 3.3 introduce errors. E.g., the 
boundary-layer method makes all transition proba- 
bilities far away from the boundaries equal, and the 
spline approximation only allows transition proba- 
bilities which fit the form of the splines used; these 
errors do not disappear with increasing number of 
replications. (Note that the local average technique 
is different in this respect: with increasing number of 
replications, fewer states need to be grouped, so the 
error introduced also decreases.) 

Injluence of the Statistical error in the transition 
probability estimates 

As discussed above, the non-zero variance of the rare- 
event probability estimator is caused by the statistical er- 
ror in the transition probability estimates. In the follow- 
ing, a model of these statistical errors is constructed, which 
is subsequently used to calculate the resulting variance of 
the rare-event probability estimator. This serves to give in- 
sight into the relative importance of the iteration which esti-, 
mates the transition probabilities, and the subsequent itera- 
tion which uses these to estimate the rare-event probability. 

For clarity, let us refer to the simulation iteration in 
which the rare-event probability is estimated4 as the "last" 

'Or observe hat  the expectation (in the tilted system) of I (  Z)L( 2) is 
the probability of interest rIl  . We have j u t  shown that. given I (  2) = 1. 
L itself equals r I 1 ,  so the expectation of I( Z ) L (  2) can be equal 10 r=, 
only if I (  2) = 1 for any sample path in the tilted system (remember 
that I( 2) is an indicator function and thus is either 0 or 1).  Thus. every 
sample path in the tilted system reaches the rare event. 
'Of course, one can estimate the mre-event probability (as a by- 

product) in every itention. and this will in fact be done in the experiments 
in section 4. However. for the purpose of discussing the estimate's v x i -  
ancc. we need to refer clearly to one estimate; that's why this definition is 
made. 
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simulation (or iteration). Then this simulation uses tran- 
sition probabilities which are simulation results from the 
“second-last” simulation. On its turn, the second-last it- 
eration uses transition probabilities which are simulation 
results from the third-last simulation, and so on. 

As before, define qlm as the optimal transition probabil- 
ity from state 1 to rn. Furthermore. define if,,, as the sirnu- 
lation estimate of this probability (obtained in the second- 
last iteration), which contains a statistical error. Assume 
that this error has a normal distribution5 with variance .I”, 
as follows: 

where N ( m ,  s) is the normal distributionwith mean m and 
variance s. Using the optimal transition probabilities gm, 
the likelihood ratio would be a constant (independent of the 
sample path), but using the simulation estimates i r m ,  this 
is not the case. The ratio of the ideal ( L z )  and the practical 
(2, z) likelihood ratio on a sample path 2 is 

i= l  i = l  

where it is assumed that typically ulm < l /nz,  so the 
higher order terms can indeed be neglected at the = sign. 
Furthermore, the above assumes that the errors A,,, are in- 
dependent of each other, and that the sample path does not 
(or rarely) visit a state twice; otherwise, the variance of the 
resulting normal distribution would be different due to the 
dependencies. 

We see that the variance of the likelihood ratio (which 
is the variance of the estimator of the rare-event probability, 
since all sample paths reach the rare event) is proportional 
to the variance of the individual transition probabilities. 
Sjnce these individual transition probabilities are simula- 
tion results from the second-last simulation, their variance 
is inversely proportional to the number of replications used 
in that simulation. Clearly, the variance of the rare-event 
probability estimator is also inversely proportional to the 
number of replications used in the last simulation. Thus. 
we find that the variance of the final estimator is inversely 
proportional to the product of the number of replications 
used in the last and in the second-last simulation; or, if the 

5Although a normal distribution is usually an appropriate approxima- 
tion for a simulation error, it is not completely realistic hen .  It docs not 
take into account the fact that all transition probabilities fmm a mte sum 
up to 1 .  Furthermore, it  docs not take into account that all mnsition prob- 
abilities must be betweenOand I :  the normal distribution has infinite tails. 
However. for small variances these effects can be neglected. 

same number of replications is used in both of them, the 
variance is inversely proportional to the square of the num- 
ber of replications. This phenomenon will be demonstrated 
experimentally in Section 4. 

One might be tempted to take this reasoning one step 
further: the accuracy of the transition probabilities used in 
the last iteration not only depends on the number of replica- 
tions in the second-last iteration, but also on the accuracy of 
the transition probabilities used in that second-last simula- 
tion; the latter depends on the number of replications of the 
thrd-last iteration, so the accuracy of the rare-event proba- 
bility estimation should also depend on the number of repli- 
cations in the third-last iteration. This can indeed be the 
case, but it will not nearly be as strong as the dependence on 
the number of replications in the second-last iteration. The 
reason for this is that the estimation of the transition proba- 
bilities is inherently not a zero-variance simulation: even if 
the third-last iteration had yielded perfect estimates of the 
transition probabilities to be used in the second-last sirnu- 
lation, the latter would not give zero-variance estimates of 
the transition probabilities for the last simulation. 

3.5.3 Relationship with optimal splitting (RESTART) sim- 
ulation 

Using a calculation similar to (7). one easily sees that 
under the zero-variance change of measure. the likelihood 
ratio on any path from the initial state zl to a given state J 
equals ~ ~ / r , , .  Clearly, this is independent of the path 
taken to reach state z .  (This independence could also be 
found by first assuming that there are two paths from z1 to : 
with different likelihood ratios, from which it follows that 
‘there are paths to the rare event with different likelihood 
ratios, which contradicts the assumption of zero variance.) 

According to Theorem 2 in Chapter 5 of (211. the opti- 
mal “importance function” for splitting simulation is such 
that its levelsets are the sets of states from which the rare 
event is reached with equal probability. Thus, the prob- 
ability T ,  itself is such an optimal importance function. 
Another optimal importance function is T ~ / T ~ ~ ,  which, as 
shown above, is the likelihood ratio under importance sam- 
pling simulation with the zero-variance change of measure. 

Note however that this is only of theoretical interest. 
Practically, it would not be efficient to first derive the zero- 
variance change of measure for a system, and then use that 
to perform a splitting simulation which gives an estimator 
with non-zero variance. 

4 EXPERIMENTAL RESULTS 

In Sections 4.14.3, overflows in a simple Jackson net- 
work will be considered. This network consists of four 
queues in tandem, with arrival and service rates chosen in 
the region where the standard state-independent change of 
measure (exchanging the arrival rate with the bottleneck 
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service rate) does not work well according to [7]: the ar- 
rival rate is 0.09, the service rates of the first through fourth 
queue are 0.23, 0.227, 0.227 and 0.226, respectively. The 
rare event of interest is the total network population reach- 
ing a high level, starting from 0 and before returning to 0 
again . 

For all experiments, the boundary layer technique was 
used to reduce the enormous state space; 10 boundary lay- 
ers turned out to work well, but possibly fewer would have 
betn sufficient. Furthermore, the local average technique 
was used. The spline-smoothing was only used in some 
cases, as indicated below. 

4.1 RESULTS FOR OVERFLOW LEVEL 50 

Figure 3: Results for the four-node tandem queue, overjlow level 
= 50. 

The results €or an overflow level of 50 are presented 
in Figure 3, both without and with spline-based smooth- 
ing. Along the horizontal axis, the iteration number is in- 
dicated. Vertically, the estimate of the overflow probability 
and its relative error (standard deviation from the simula- 
tion, divided by the estimate itself) are shown as two lines 
in the graph. At the first iteration, a static tilting accord- 
ing to the well-known heuristic of exchanging the arrival 
rate with the bottleneck service rate was used, to get things 
started. In the experiments without spline-based smooth- 
ing (upper graph), lo4 replications were used per iteration 
up to the 23rd iteration; the 23rd iteration was performed 
twice, once with lo4 and once with lo5 replications, and 
all later iterations used lo5 replications. With spline-based 
smoothing (lower graph), the switch from lo4 to lo5 repli- 
cations per iteration was made at the 9th instead of the 23rd 
iteration. 

Obviously, the spline smoothing is quite beneficial to 
the convergence in this case: without splines, the conver- 
gence is rather slow and irregular, with a major excursion 
around the 13th iteration. whereas with spline smoothing 
the convergence is quick and monotonic, and the resulting 
relative error at lo4 replications is smaller by almost a fac- 
tor of 2. 

Next, note what happens when the number of replica- 
tions is increased: at the 23rd (without splines) and 9th 
(with splines) iteration, the same simulation was done with 
lo4 and lo5 replications; the relative error of the latter 
clearly is about a factor of smaller, as it should. How- 
ever, without splines the relative error continues to decrease 
in the next iteration: this is a consequence of the fact that 
these later iterations have better transition probabilities be- 
cause those have been obtained with lo5 instead of lo4 
replications, as discussed in Section 3.5. In the end, the 
relative error has decreased by a factor of 10 in total. With 
splines, this does not happen: the relative error does not 
significantly decrease further, and in fact is higher than 
without splines; apparently, the spline form does not fit the 
optimal state-dependence well enough. 

Figure 4 serves to give an idea of how the transition 
probabilities depend on the state in this particular problem. 
Of course, since we have up to five transition probabilities 
and a four-dimensional state space, it is hardly feasible to 
give a complete picture. Therefore, only the probability of 
the transition corresponding to a service completion at the 
first queue is shown, as a function of the contents nl and nz 
of the first and second queues, respectively, while the third 
and fourth queues are empty. Clearly, the splines perform 

~ o l  n p ~ . .  no spline l d   rep^.. no spline 

0.5 

0 0  

0 

l f  f 
0.5 

0 0  0 

0 0 

10" rcpi., with spline lo5 TI., with spline 

Figure 4: State-dependent transition probabilities. 

a very effective smoothing: most of the noise disappears. 
On the other hand, the splines used here are apparently not 
able to completely follow the true functions: the "dip" at 
112 = 1 is much deeper without splines (only sufficiently 
visible in the 105-replications plot) than with splines. This 
agrees with the experimental observation that at lo5 repli- 
cations, the hal estimate is more accurate when the transi- 
tion probabilities are not restricted by applying splines. 
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overfl . 
level iter. 

4.2 RESULTS FOR OVERFLOW LEVEL 200 

relative 
error repl. 1 bnd. 1 estimate lav. 

For the case of an overflow level of 200, Figure 5 shows 
the simulation results. For this problem, all three tech- 
niques (local average, 10 boundary layers, and splines) 
were used initially (up to iteration 16). After conver- 
gence had been achieved, the number of replications was 
increased, resulting in a branch with splines and a branch 
without splines in the graph. 

5 

15 
9 

10-74 

10-73 
0 - 
.- 2 
I z 

1 o - ' ~  

20 lo4 ' 4 7.752. 0.0247 

50 lo6 4 2.610.10-44 0.0014 
50 105 4 2.619.10-44 o.0100 

10' replications i 10' repl. 
* -0.001 

0 5 10 15 20 
iteration 

18 
27 

Figure 5: Resulis for the four-node tandem queue, ove$ow level 
= 200. 

It seems as if the convergence process can be divided 
into two phases. During the first phase, the estimate is 
quite inaccurate (typically too low), but it approaches the 
correct value; in the present example, this phase comprises 
iterations 1 through 7. During the second phase, the es- 
timate stays correct, and the relative error decreases to its 
final vdue; in the present example this happens during iter- 
ations 7 through 11. These phases can also be recognized 
in the results with overflow level 50 in Figure 3. 

Note, like before, the strong decrease of the relative er- 
ror after increasing the number of replications by a factor 
of 10, and the fact that switching off spline smoothing at 
that point is beneficial. 

100 lo5 7 3.761-10-93 0.0194 
100 lo6 7 3.964. ' 0.0017 4.3 ASYMPTOTIC EFFICIENCY 

Results from the above experiments, and from repeti- 
tions of those experiments at overflow levels 25 and 100, 
are shown in Table 1. All of these experiments used the 
same number of replications per iteration (lo5) and no 
splines in the final iterations. It is clear from the table that 
the relative error grows with the overflow level, but clearly 
less than exponentially fast, while the probability of inter- 
est does decrease exponentially fast. This demonstrates the 
asymptotic efficiency of the method for this problem. 

The table also shows an exact (numerical) calculation 
of the overflow probability for an overtlow level of 25. 
Comparing this with the simulation estimate shows a good 
agreement. No exact numbers could be calculated for 
higher overflow levels due to the large state space involved. 

Table I :  Test of asymptotic efficiency (faur-node tandem queue). 

level exact estimate rel.error 

2.396. 0.0042 
1.422.10-35 0.0044 

200 6.722. 0.0082 

4.4 AN EXAMPLE WITH ROUTING AND FEEDBACK 

Figure 6 shows a more complicated network, compris- 
ing five queues, three points at which random routing (with 
probability 0.5) occurs, and two feedback loops. Like in the 
previous section, we want to estimate the overflow prob- 
ability of the total network population. The arrival rate 
X is 3, and the service rates are pl&. p2=20, p3=50, 
p4=50 and p5=60. Note that this choice makes the load 
of all queues equal (O.l), which generally causes state- 
independent tilting to work badly. 

Figure 6:  A five-node Jackson network. 

Table 2: Results for the jive-node Jackson network, showing the 
convergence for progressively higher oveg7ow levels. 

Simulation results using the method described in this 
paper are given in Table 2. These results were not ob- 
tained independently of each other, but by increasing the 
overflow level in several steps; this was necessary to ob- 
tain convergence. We started with an overflow level of 20, 
and 4 boundary layers. After converging in this case, we 
increased the overflow level to 50 and continued iterat- 
ing (i.e., starting with the transition probabilities that were 
found for the overflow level of 20). Note that starting from 
scratch with overflow level 50 did not lead to convergence, 
for both 10' and lo5 replications per iteration. After ob- 
taining convergence for the overflow level of 50. the over- 
flow level was increased to 100, and iterations continued. 
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With 4 boundary layers, no convergence was obtained at 
this overflow level, but with 7 boundary layers the proce- 
dure converged nicely. So we see that in hard cases like this 
one, convergence can be improved by first starting with a 
lower overflow level; furthermore, fewer boundary layers 
can be used at the lower overflow level to reduce the com- 
putational effort. 

5 CONCLUSIONS AND FURTHER 
RESEARCH 

In this paper, we have proposed an importance sam- 
pling simulation method with two important features: the 
change of measure is completely state-dependent, and a 
cross-entropy-based adaptive method is used to approxi- 
mate the optimal change of measure. To show the method’s 
performance, we have applied it to estimate the overflow 
probability of the total population of two Jackson net- 
works. This simulation has been shown to be asymptot- 
ically efficient, ar a parameter setting at which asymp- 
totically efficient simulation is not obtained with state- 
independent tilting. Furthermore, we have demonstrated 
experimentally. and explained analytically, that with this 
method the relative error can decrease faster than propor- 
tional to the square root of the total simulation effort. The 
method has also been applied successfully to other rare- 
event problems in Jackson-like networks, such as over- 
flow of a non-bottleneck queue in a network with bounded 
queues; see [20] for more details. 

However, all of the systems considered so far are mod- 
elled by DTMCs, and the number of queues is not too large 
to avoid state space explosion. This indicates two obvi- 
ous directions for future work: extension to non-DTMC 
systems, and developing more efficient methods for han- 
dling large state spaces. Furthermore. it may be possible to 
improve the method’s convergence by combining observa- 
tions from several iterations. 

In the present paper, the good performance of the 
method has only been demonstrated experimentally. An- 
other direction for further research would therefore be pro- 
viding more solid mathematical foundations, such as a 
proof of the convergence of the tilting vector. 
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