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Blockchain-assisted Twin Migration for Vehicular

Metaverses: A Game Theory Approach
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Abstract—As the fusion of automotive industry and metaverse,
vehicular metaverses establish a bridge between the physical
space and virtual space, providing intelligent transportation
services through the integration of various technologies, such as
extended reality and real-time rendering technologies, to offer
immersive metaverse services for Vehicular Metaverse Users
(VMUs). In vehicular metaverses, VMUs update vehicle twins
(VTs) deployed in RoadSide Units (RSUs) to obtain metaverse
services. However, due to the mobility of vehicles and the
limited service coverage of RSUs, VT migration is necessary to
ensure continuous immersive experiences for VMUs. This process
requires RSUs to contribute resources for enabling efficient
migration, which leads to a resource trading problem between
RSUs and VMUs. Moreover, a single RSU cannot support large-
scale VT migration. To this end, we propose a blockchain-
assisted game approach framework for reliable VT migration in
vehicular metaverses. Based on the subject logic model, we first
calculate the reputation values of RSUs considering the freshness
of interaction between RSUs and VMUs. Then, a coalition game
based on the reputation values of RSUs is formulated, and RSU
coalitions are formed to jointly provide bandwidth resources
for reliable and large-scale VT migration. Subsequently, the
RSU coalition with the highest utility is selected. Finally, to
incentivize VMUs to participate in VT migration, we propose
a Stackelberg model between the selected coalition and VMUs.
Numerical results demonstrate the reliability and effectiveness of
the proposed schemes.

Index Terms—Metaverse, blockchain, vehicle twins, reputation,
coalition game, Stackelberg game.

I. INTRODUCTION

The metaverse is a stereoscopic virtual space that exists

parallel to the physical space and has recently experienced

significant advancements through cutting-edge technologies,

such as Artificial Intelligence (AI), eXtended Reality (XR),

and blockchain. Vehicular metaverse is defined as a future

continuum between automotive industry and metaverse [1].

Vehicle Twins (VTs) that act as a critical component in

the vehicular metaverse, are highly accurate and large-scale

digital replicas that cover the entire life cycle of vehicles and

Vehicular Metaverse Users (VMUs) [2]. VMUs that consist
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of drivers and passengers, can access the vehicular metaverse

through VTs to enjoy immersive virtual experiences, e.g., AR

navigation, virtual games and virtual traveling [3]. Virtual

traveling specifically involves utilizing interactive technologies

like Virtual Reality (VR) and Augmented Reality (AR) to

fully immerse individuals in the metaverse’s virtual world,

allowing for a realistic travel experience. One application of

VTs for smart driving is to forecast the collision risks as

warning and safety instructions for VMUs [4]. To ensure

real-time physical-virtual synchronization, vehicles and VMUs

continuously update their VTs in virtual spaces by obtaining

sensing data from surrounding environments through the use

of smart sensors, such as real-time vehicle status and passenger

bio-data [5].

As computational requirements for building VTs and meta-

verse services may be unbearable for resource-limited vehicles

[6], vehicles offload computation-intensive tasks to nearby

edge servers in RoadSide Units (RSUs) that possess sufficient

resources [7], such as bandwidth and computing resources [2],

[4], and multiple VTs can be deployed in the RSU simulta-

neously. However, because of the limited service coverage of

RSUs and the mobility of vehicles [8], a single RSU cannot

continuously provide metaverse services for VMUs, requiring

each VT to migrate from the current RSU to another to ensure

a seamless immersive experience for VMUs. Considering that

the number of VTs will increase sharply with the advent

of metaverses [6], there are some challenges for the future

development of vehicular metaverses: C1) Some RSUs may

misbehave to decrease VT migration efficiency. C2) A single

RSU cannot provide sufficient bandwidth resources for VT

migration simultaneously. C3) The VMUs may be reluctant

to participate in VT migration without a reasonable incentive.

Some efforts have been conducted for resource optimization in

vehicular metaverses [6], [9], but they ignore the VT migration

problem due to the mobility of vehicles.

To address the above challenges, we first calculate the

reputation values of RSUs based on the subjective logic model

in this paper. Since blockchain is a distributed technology

and can effectively prevent data tampering [10], we propose

a blockchain system to achieve distributed secure reputation

management in vehicular metaverses. Then, we formulate a

coalition game among RSUs based on the reputation values

to select the RSU coalition with the highest utility for reliable

and large-scale VT migration. Finally, a Stackelberg model is

proposed to incentivize VMUs for VT migration. The main

contributions are summarized as follows:

• We calculate the reputation values of RSUs based on the
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freshness of interaction between RSUs and VMUs and

propose a blockchain-assisted reputation rating system in

vehicular metaverses, where RSUs acting as miners are

divided into different levels according to their reputation

values for lightweight consensus. (For C1)

• We formulate a coalition game based on the reputation

values of RSUs for reliable and large-scale VT migration.

The reputation values are utilized to evaluate the reliabil-

ity of RSUs, and a blockchain-assisted reputation rating

system is proposed to manage the security of reputation.

In the coalition game, RSUs form coalitions to increase

their profits. (For C2)

• To incentivize VMUs for VT migration, we propose a

Stackelberg model between the RSU coalition with the

highest utility and VMUs, where the RSU coalition acting

as the leader determines the bandwidth pricing strategy

and VMUs acting as followers determine the bandwidth

demand strategies based on the strategy of the RSU

coalition as responses to the RSU coalition. (For C3)

The rest of the paper is described as follows. Section

II presents the related works. Section III demonstrates the

blockchain-assisted game approach framework for VT mi-

gration in vehicular metaverses. Section IV introduces the

coalition game-based RSU selection for vehicular metaverses.

Section V introduces the single-leader and multi-follower

Stackelberg model between the selected RSU coalition and

VMUs. Numerical results are shown in Section VI. Section

VII concludes the paper and elaborates the future work.

II. RELATED WORKS

Metaverse was first introduced in the fiction named Snow

Crash in 1992 [11]. In [12], the authors studied the avatars

compared to the real-time virtual human research state. Virtual

space is a parallel space with physical space, and humans

have begun to migrate to virtual spaces on a large scale. With

the development of cutting-edge technologies, metaverse has

aroused widespread attention. In [13], [14], the authors gave

a survey and detailed introduction to metaverse, including the

technologies, development, applications, and open challenges

of metaverse. The vehicular metaverse can be defined as the

immersive integration of vehicular communications that merge

virtual spaces and real data to create emerging vehicular ser-

vices for VMUs [15], which has attracted widespread attention

from scholars and the automotive industry. The authors in [1]

proposed a new term named Vetaverse, which is defined as the

future continuum between vehicular industries and metaverse.

The academic discussion on metaverse service optimization

focused on two aspects: resource allocation optimization and

Quality of Service (QoS) optimization. For resource allocation

optimization, the authors in [16] proposed a resource alloca-

tion framework for augmented reality-empowered vehicular

metaverses to improve the utility of the system, which is

considered from the perspective of resource optimization for

metaverse services. The authors in [17] proposed a stochastic

optimal resource allocation scheme based on random integer

programming to minimize the cost of the virtual service

provider. For QoS optimization, the authors in [3] reconsidered

QoS and proposed a framework that simultaneously considered

the metaverse system design, the utility of consumers, and

the profitability of the Metaverse Service Providers (MSPs).

The authors in [18] proposed distributed and centralized

approaches to study the joint optimization problem of user

association and resource pricing for metaverses. Although

a lot of work has been done to study the optimization of

metaverse services, most of the existing works do not consider

both resource optimization and QoS optimization in vehicular

metaverses nor do they consider the VT migration problem

because of the mobility of vehicles.

With the exponential growth in data volume and value, the

evolving metaverse faces service security requirements and

challenges [19]–[21]. Blockchain technologies can be utilized

to meet the trusted construction, continuous data interaction,

and computational needs of the metaverse [22]. Blockchain

securely stores and shares data through a decentralized system

that uses cryptography to ensure security. Transactions are

verified through proof of work, which makes the whole process

transparent and secure without the need for a central authority

[23]. In [24], the authors discussed how to protect digital

contents and data of metaverse users by using blockchain

technologies that have the features of decentralization, im-

mutability, and transparency. In [25], the authors proposed a

system model that can transparently manage user-identifiable

data in the metaverse by using blockchain technologies. In

[26], the authors proposed MetaChain, a novel blockchain-

based framework that allows MSPs to allocate their resources

to meet the needs of metaverse applications and metaverse

users efficiently. Many works have been conducted to examine

the use of blockchain for user data preservation and resource

management in the metaverse. However, the existing works

have not yet devised a comprehensive security scheme based

on blockchain technology to adequately safeguard the service

security of VT migration.

III. SYSTEM MODEL

Vehicular metaverse mainly includes the physical space, the

virtual space, and the interaction layer [5], [6]. In the physical

space, VMUs are drivers and passengers within vehicles,

they can enjoy metaverse services with the application of

XR technologies [1]. For example, VMUs can see virtual

scenes of the front windshield and side windows through

head-mounted displays [6]. To ensure seamless immersion and

interactions for VMUs, resource-limited vehicles offload the

large-scale rendering tasks of updating VTs to the nearby edge

servers in RSUs [2], [4], and VTs have to be correspondingly

migrated from the current RSUs to other RSUs due to the

limited RSU coverage and the mobility of vehicles [2]. To

achieve reliable and efficient VT migration, VMUs purchase

sufficient bandwidth resources from well-behaved RSUs [18].

Especially, we mathematically calculate the reputations of

RSUs to quantify their reliability of RSUs. Then, we propose

a blockchain-assisted reputation rating system to manage the

reputation values securely. Figure 1 shows the blockchain-
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Fig. 1. A blockchain-assisted game approach framework for reliable VT migration in vehicular metaverses.

assisted game approach framework for reliable VT migration

in vehicular metaverses. Here, we provide further elaboration

on the components of this framework as follows:

Step 1 (Send VT migration requests): When VMUs travel

on the road, the RSU cannot provide continuous metaverse

services for VMUs due to the limited service coverage [2],

[4]. Therefore, to ensure seamless immersive experiences for

VMUs, VTs should be migrated from the current RSUs that

they are deployed in (i.e., premigration RSUs) to other RSUs

[2]. Before VT migration begins, VMUs send VT migration

requests to the premigration RSUs.

Step 2 (Construct and select the best RSU coalition):

Upon receiving the VT migration requests, the premigration

RSUs broadcast the requests to their surrounding RSUs. Then,

the surrounding RSUs first form RSU coalitions based on

the reputation values of RSUs. The reputation values are

calculated based on the subjective logic model [6], [27],

which are recorded and managed securely on the blockchain.

Finally, to ensure reliable and efficient VT migration, the

RSU coalition with the highest utility is selected to provide

bandwidth resources for VMUs.

Step 3 (Stackelberg game between the selected RSU coali-

tion and VMUs): In the VT migration, the selected RSU

coalition is the sole bandwidth resource holder and VMUs

purchase bandwidth resources from the RSU coalition to

migrate VTs from the premigration RSUs to the selected

RSU coalition. To maximize the profit of the RSU coalition

and maintain its monopoly power, a single-leader and multi-

follower Stackelberg model is proposed, which consists of

two stages, as shown in Fig. 2. In the first stage, the RSU

coalition acting as the leader determines the selling price of

unit bandwidth. In the second stage, the VMUs acting as

followers determine the amount of bandwidth to purchase

based on the pricing strategy of the RSU coalition. This can

also be regarded as a resource pricing optimization problem.

From the perspective of the selected RSU, it can optimize

resource allocation, and from the perspective of VMU, it can

optimize service quality.

Step 4 (Complete VT migration): Based on the optimal

selling price of unit bandwidth decided by the RSU coalition

and the optimal amount of bandwidth to purchase decided by

VMUs, VTs are migrated from the premigration RSUs to the

selected RSU coalition.

Step 5 (Update reputation values in the blockchain-assisted

reputation rating system): The reputation values of RSUs are

updated by the blockchain-assisted reputation rating system.

Firstly, based on the reputation values, RSUs (i.e., miners)

are proportionally divided into three groups of A, B, and C

levels through reputation rules. Then, each group has distinc-

tive responsibilities. Specifically, 1) The A-level RSU group

creates a block and broadcasts it to the B-level RSU group.

2) The B-level RSU group validates the block. If the block is

legitimate, the B-level RSU group submits the validated block

to the C-level RSU group. 3) The C-level RSUs broadcast the

block to all RSUs for data synchronization. Finally, the RSUs

in the workgroup are rewarded according to their behaviors

through reputation bonus-penalty rules, and the reputation

values of RSUs participating in the coalition game are updated

in the blockchain system. Note that the Practical Byzantine

Fault Tolerance (PBFT) consensus algorithm is utilized in the

blockchain system for lightweight consensus [28].

Step 6 (Establish new connections with RSUs of the coali-

tion): When VTs are migrated to the RSU coalition success-

fully, VMUs establish new connections with RSUs of the

coalition to access metaverse services [2], and the RSUs of

the coalition will become new premigration RSUs in the next

VT migration.

IV. COALITION GAME-BASED RSU SELECTION FOR

VEHICULAR METAVERSES

A. Subjective Logic Model for Reputation Calculation

1) RSU reputation: The authors in [29] proposed a sub-

jective logic model, the model proposes the concept of fact

space and idea space to quantify trust relationships and offers

a series of subjective logic operations for trust computation

and comprehensive derivation [30], and it can quantify trust,

doubt and uncertainty, taking into account the credibility of

the source of opinion, which is a widely used mathematical
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tool for reliability modeling [31]. Therefore, the subjective

logic model in computing reputation has been widely utilized

[27], [32], [33]. In this paper, we consider that there is a

set of R RSUs, R = {1, . . . , r, . . . , R}, and a set of V
VMUs, V = {1, . . . , v, . . . , V }. We use a 4-tuple vector

wv:r = {bv:r, dv:r, uv:r, αv:r} to denote the reputation opinion

of VMU v to RSU r [33]. bv:r, dv:r , uv:r, and αv:r represent

belief, disbelief, uncertainty, and the base rate of VMU v
toward RSU r, respectively, where bv:r, dv:r, uv:r, αv:r ∈ [0, 1]
and bv:r + dv:r + uv:r = 1. Belief and disbelief are mapped

from the interactions between VMUs and RSUs positively

and negatively, respectively [6]. The base rate represents the

willingness of VMU v to believe RSU r, which is an effective

uncertainty coefficient of the reputation of RSU r [6], [32].

We define Rv:r as the reputation of VMU v to RSU r, which

is given by

Rv:r = bv:r + αv:ruv:r. (1)

2) Local reputation opinions: The reputation of RSU r is

affected by direct reputation opinions including local reputa-

tion opinions [6], [27]. Considering that VMU v may interact

with RSU r more than once, the reputation value of VMU v
to RSU r is predicted by previous interactions. However, if

the interactions between them occurred a long time ago, the

reputation value may not have a large effect. Therefore, we

define τ as the effective period for interactions and divide the

period τ into a series of time windows as {t1, . . . , tx, . . . , tX}
[32]. The reputation opinion of VMU v to RSU r in the time

window tx is















btxv:r =
δ1p

tx
v:r

δ1p
tx
v:r+δ2q

tx
v:r+ξ

,

dtxv:r =
δ2q

tx
v:r

δ1p
tx
v:r+δ2q

tx
v:r+ξ

,

utxv:r =
ξ

δ1p
tx
v:r+δ2q

tx
v:r+ξ

,

(2)

where ptxv:r and qtxv:r are the number of positive and negative

interactions between VMU v and RSU r in the time window

tx, respectively. δ1 and δ2 are weights of the positive interac-

tion and the negative interaction, respectively. ξ is a parameter

controlling the rate of uncertainty. To reduce the occurrence

of negative interactions [27], we set ξ = 1, and we ensure that

0 < δ1 ≤ δ2 < 1, satisfying the condition δ1 + δ2 = 1 [34].

The recent interactions with high freshness have a greater

impact on the reputation of RSUs than the past interactions.

Therefore, it is necessary to consider interaction freshness for

the reputation calculation [27]. To reflect the influence of time

on the reputation calculation, we use tv:r ∈ {T − τ, T − τ +
1, . . . , T } to denote the time VMU v interacting with RSU

r. Then, we use T (·) to illustrate the degree of reputation

attenuation over time, which is given by

T (tv:r) =
c

c+ θ(T − tv:r)
, (3)

where θ ∈ (0, 1) is an attenuation coefficient, c is a fixed value

that is set to 1, and T is the current time. By using the time

attenuation function to evaluate the reputation, the system can

take more into consideration the performance of the RSU in

the recent period to identify the reliability of the RSU more

accurately. The local reputation opinion of VMU v to RSU r
is defined as a vector ωloc

v:r = {blocv:r, d
loc
v:r, u

loc
v:r, α

loc
v:r}, which is

expressed as [27]






























blocv:r =
∑

tv:r∈{T−τ,...,T} T (tv:r)b
tx
v:r∑

tv:r∈{T−τ,...,T} T (tv:r)
,

dlocv:r =
∑

tv:r∈{T−τ,...,T} T (tv:r)d
tx
v:r∑

tv:r∈{T−τ,...,T} T (tv:r)
,

ulocv:r =
∑

tv:r∈{T−τ,...,T} T (tv:r)u
tx
v:r∑

tv:r∈{T−τ,...,T} T (tv:r)
,

αloc
v:r = αv:r.

(4)

Based on (1), the local reputation of VMU v to RSU r is

Rloc
v:r = blocv:r + αloc

v:ru
loc
v:r. (5)

3) Recommended reputation opinions: In addition to the

local reputation opinion of VMU v, the reputation value of

VMU v to RSU r is also affected by other VMUs acting



as recommenders that have interacted with RSU r, and their

opinions are called recommended reputation opinions [6], [27].

We define M = {1, . . . ,m, . . . ,M} ⊂ V as a set of

recommenders to VMU v, meaning that VMU v receives a

number of M recommended opinions. The familiarity value

between recommenderm and RSU r is defined as Fm:r, which

is determined by their interaction frequency. The interaction

frequency is the ratio of the number of interactions between

recommender m and RSU r to the average number of inter-

actions between recommender m and RSUs [32]. Therefore,

Fm:r is given by

Fm:r =
INm:r

INm

, (6)

where (INm:r = pm:r + qm:r) is the interaction numbers

between recommender m and RSU r within the interaction

period τ , pm:r and qm:r are the number of the positive in-

teractions and the negative interactions between recommender

m and RSU r, respectively, and INm =
∑

r∈R
INm:r

R
[32].

Therefore, the reputation of the recommended opinion is

γm:r = ρmFm:r, where ρm ∈ [0, 1] is a predefined parameter

for reputation calculation [32].

Considering that the recommender’s familiarity with RSU

r can better use the existing information to reduce the un-

certainty value [33], we use ωrec
m:r = {brecm:r, d

rec
m:r, u

rec
m:r, α

rec
m:r}

to denote the recommended reputation opinion of VMU m to

RSU r, where brecm:r, drecm:r, and urecm:r are given by [27]



















brecm:r =
∑

m∈M
γm:rb

loc
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,
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,
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(7)

4) Final reputation opinions: Based on the above anal-

yses for calculating the local reputation opinion and rec-

ommended reputation opinions of RSU r, we can further

calculate the final reputation opinion of RSU r. We use

ωfin
v:r = {bfinv:r , d

fin
v:r , u

fin
v:r , α

fin
v:r } to denote the final reputation

opinion of RSU r, which is given by
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,
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dloc
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v:r

uloc
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rec
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,
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v:ru

rec
m:r

uloc
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rec
m:r

,

αfin
v:r = αv:r.

(8)

Based on (1), the final expectation of the reputation of VMU

v to RSU r is expressed as

Rfin
v:r = bfinv:r + αfin

v:r u
fin
v:r . (9)

Without loss of generality, the number of interactions be-

tween VMUs and RSUs is set to 0 on initialization [6]. After

calculating the final reputation opinions, we can select RSUs

with high final reputation values to form coalitions.

B. Coalition Formation Game Formulations

Due to the limited bandwidth resources of a single RSU, it

is not feasible to facilitate simultaneous migration of multiple

VTs. As a solution, we propose a coalition game approach for

ensuring reliable and large-scale VT migration. In this game,

RSUs form coalitions, and the coalition with the highest utility

is chosen to allocate bandwidth resources to VMUs. Conse-

quently, this enables the coalition to facilitate the concurrent

migration of multiple VTs.

We denote the coalition of RSUs as Go ⊆ R, and o
is an index of the coalition. A group of mutually disjoint

coalitions in R is represented as Π = {G1, . . . ,Go, . . . ,GO},

where Go 6= Go
′ if o 6= o′ and O is the number of RSU

coalitions [6]. Therefore, this coalition game model is made

as G = {R,Π,U}, where U represents the utility function of

the RSU coalition. The final reputation of RSU r is defined

as the average reputation of all VMUs toward RSU r, which

is expressed as

Rfin
r =

∑V
v=1R

fin
v:r

V
. (10)

Because of the traffic volume in some areas (e.g., crossroad

areas), RSUs need to be deployed in large numbers, and an

edge server may serve multiple RSUs [8]. Therefore, we use

the RSU node to denote a node composed of an edge server

and several RSUs served by it. Then, the RSU nodes construct

RSU coalitions. The set of RSU nodes is denoted as N =
{1, . . . , n, . . . , N}. Each RSU has a unique identity number.

We denote several RSUs forming an RSU node n as Rn =

{R1
n, . . .R

ω
n , . . . ,R

|Rn|
n } ⊆ R, where Rω

n represents the RSU

with the identity number ω, which is one of the components

of the RSU node. Therefore, the RSU set for the coalition Go

is denoted as ∪n∈Go
Rn, the number of RSUs in ∪n∈Go

Rn is

denoted as | ∪n∈Go
Rn|, the RSU node set for the coalition

Go is denoted as No, and the number of RSU nodes in No is

denoted as |No|.

Based on the calculation of RSUs’ reputation opinions, the

contribution value of the coalition Go is expressed as [6]

Q(Go) = ζ1
| ∪n∈Go

Rn|

R
+ ζ2

∑

n∈Go

∑|Rn|
r=1 R

fin
r

| ∪n∈Go
Rn|

, (11)

where the first part
|∪n∈GoRn|

R
is the percentage of RSUs that

the coalition Go has, and the second part

∑
n∈Go

∑|Rn|
r=1

Rfin
r

|∪n∈GoRn|
is

the average reputation value of RSUs in the coalition Go. ζ1
and ζ2 represent the weights of two parts of the contribution

value [6].

Since the large latency of VT migration leads to a poor

immersive experience for VMUs, in addition to considering

the contribution value, we also consider the latency of VT

migration for the utility of the coalition. Each RSU joining the

coalition can decide the amount of bandwidth provided for VT

migration, and the provided bandwidth of the coalition is the

sum of the bandwidth provided by RSU nodes in the coalition.

We define the provided bandwidth of the coalition as B and



the communication rate of the coalition as Rt. Based on the

Shannon theorem [18], Rt is given by

Rt = B log2

(

1 +
ρh0d−ε

N0

)

, (12)

where ρ, h0, d, ε, and N0 represent the transmitter power

of the premigration RSU, the unit channel power gain, the

average distance between RSUs, the path-loss exponent, and

the average noise power, respectively [18]. Note that Rt is

variable because the total amount of bandwidth B is a variable

decided by the RSUs participating in the coalition formation.

Therefore, the service latency of the coalition Go is [35]

I(Go) =
Dλ

Rt

, (13)

where D is the VT data size of the VMU and λ is the data

compression ratio.

Since forming an RSU coalition needs negotiation and

information exchange between RSU nodes, which may incur

communication costs and reduce the utilities of RSU coalitions

[6], [36], the communication cost between RSU nodes is

needed to be considered, which is denoted as C(Go). Com-

munication cost calculation should meet two conditions [6].

The first condition is that C(Go) increases with the increase

of the number of RSU nodes |No|. The second condition is

that the slope of C(Go) becomes steeper with the increase of

|No|. Therefore, the communication cost of the coalition Go is

expressed as [6]

C(Go) =

{

−ln
(

1− |No−ǫ|
N

)

, |No| ≥ 2,

0 , otherwise,
(14)

where ǫ is set to 0.1, which is used to avoid an infinite value

of C(Go) when |No| = N . Based on the contribution value

Q(Go), the service latency I(Go), and the communication cost

C(Go), the utility function of the coalition Go is expressed as

U(Go) = Q(Go) + γln

(

1 +
1

I(Go)

)

− σC(Go), (15)

where γ and σ are coefficients that represent the service

latency and communication cost, respectively.

Definition 1. (Non-Transferable Utility (NTU)): Let ψ(·) is

a mapping function such that for every coalition Go ⊆ R,

ψ(Go) is a closed convex subset of RGo that contains the utility

vectors that RSUs in Go can achieve [37].

For the coalition Go, whether the RSUs (i.e., the miners)

can be rewarded by the blockchain-assisted reputation rating

system depends on the coalition utility U(Go) [6]. If a coalition

game is said to be NTU, the utility of a coalition cannot arbi-

trarily be divided between coalition members [37]. Therefore,

the RSU coalition selection can be modeled as a coalition

formation game with NTU. Each RSU can choose the suitable

coalition based on the received utility, and the utility of each

RSU in the coalition Go is equal to U(Go) instead of a fraction

of U(Go) [6].

C. Coalition Formation with Merge-and-Split Rules

Definition 2. (Preference operator): A preference operator

⊲ is defined for comparing Π1 = {G1
1 , . . . ,G

1
O} and Π2 =

{G1
1 , . . . ,G

2
O′} that are partitions of the same subset A ⊆ R

(i.e., same RSUs in Π1 and Π2). Therefore, Π1⊲Π2 represents

that Π1 is better than Π2 for subset A [6], [36].

The authors in [38] proposed an approach for coalition

formation based on merge and split rules. Many orders can be

used to compare relationships between partitions, e.g., coali-

tion value orders and individual value orders [36]. Individual

value orders compare relationships between partitions by using

the individual payoff, e.g., Pareto order [36]. In this paper, we

use the Pareto order to perform the comparison.

Definition 3. (Pareto order): For two partitions Π1 =
{G1

1 , . . . ,G
1
O} and Π2 = {G1

1 , . . . ,G
2
O′}, the utility of RSU r in

Π1 and Π2 are denoted as Ur(Π1) and Ur(Π2), respectively.

Then, π1 is better than π2 with the Pareto order defined as

Π1 ⊲Π2 ⇐⇒ {Ur(Π1) ≥ Ur(Π2), ∀r ∈ {Π1,Π2}, (16)

with at least one strict inequality(>) for RSU r [6], [37].

For the same RSUs, the partition Π1 is preferred over the

partition Π2 by the Pareto order if at least one RSU can

improve its utility when it joins Π1 from Π2 without reducing

the utility of other RSUs. We adopt a coalition formation

algorithm based on the Parote order utilized for comparison

and the merge-and-split rules [6]. Coalition formation requires

multiple rounds of merging and splitting, involving all coali-

tions in each round [6]. It is necessary to ensure that the

utilities of all coalitions remain stable or increase during the

formation process. The merge-and-split rules are defined as

follows [6], [39]:

• Merge Rule: For any set of coalitions {G1, . . . ,GO},

merge {G1, . . . ,GO} into {∪O
o=1Go}, i.e., {∪O

o=1Go} ⊲

{G1, . . . ,GO}, which is denoted as {G1, . . . ,GO} →
{∪O

o=1Go}.

• Split Rule: For any set of coalitions {G1, . . . ,GO},

split {∪O
o=1Go} into {G1, . . . ,GO}, i.e.,

{G1, . . . ,GO} ⊲ {∪O
o=1Go}, which is denoted as

{∪O
o=1Go} → {G1, . . . ,GO}.

The merge-and-split rules based on the Pareto order indicate

that a coalition will merge only if at least one RSU can

improve its utility by merging without reducing the utilities

of other RSUs. Similarly, a coalition splits only if at least

one RSU can improve its utility by splitting without harming

other RSUs, namely reducing the utilities of other RSUs [6].

With the merge-and-split rules based on the Pareto order, we

propose a coalition algorithm based on [6], [36] to form RSU

coalitions, which consists of three main phases: initialization,

adaptive coalition formation, and selection. In the initialization

phase, all RSUs are disjoint, and they form initial coalitions.

In the adaptive coalition formation phase, the merge-and-split

rules based on the Pareto order are utilized to form coalitions

by maximizing the utilities of all coalitions. In the selection



Algorithm 1 Coalition Formation Algorithm

Input: The RSU set R = {1, . . . , r, . . . , R}, the final repu-

tation of each RSU Rfin
r , r ∈ R, and the RSU node set

N = {1, . . . , n, . . . , N}.

Output: The RSU coalition with the highest utility.

Phase 1 - Initialization

Initialize the RSU partition, i.e., each RSU forms a coali-

tion, indicating that all RSUs are disjoint.

Phase 2 - Adaptive Coalition Formation

Compute the utility of each coalition based on the utility

function (15).

repeat

Merge mechanism: The coalition Go merges into Go′

according to the Merge Rule [6], [36], [39].

Split mechanism: The coalition Go splits into Go′ ac-

cording to the Split Rule [6], [36], [39].

until Merge-and-split iteration terminates.

Phase 3 - Selection

The RSU coalition with the highest utility is selected.

phase, the RSU coalition with the highest utility is selected.

Here are the details of the coalition algorithm.

The computational complexity of Algorithm 1 mainly

depends on the merge-and-split process [6]. Note that the worst

computational complexity is O(R3) [6]. A large coalition is

formed after the first merge operation. The split operation is

only performed on each RSU coalition, reducing the complex-

ity of the split operation. The result of Algorithm 1 is an RSU

partition consisting of disjoint independent confederations.

The stability of the final coalition partition can be analyzed

by the defection function Dhp.

Definition 4. (Defection function Dhp): A partition Π =
{G1, . . . ,Go, . . . ,GO} is Dhp-stable if no RSU wants to leave

Π, or when the RSUs which want to leave only can form the

partitions allowed by Dhp [36], [40].

If Π = {G1, . . . ,Go, . . . ,GO} is Dhp-stable, two conditions

need to be satisfied [36]:

i) For o ∈ {1, . . . , O} and each partition {R1, . . . ,Rp}
of coalition Go : {R1, . . . ,Rp} ⋫ Go, where ⋫ is the

opposite rule of ⊲.

ii) For S ∈ {1, . . . , O} :
⋃

o∈S Go ⋫ {Go|o ∈ S} [36].

Theorem 1. The final partition resulting from our coalition

formation algorithm based on merge-and-split rules is Dhp-

stable.

Proof. Please refer to [6].

V. STACKELBERG MODEL FOR VEHICULAR METAVERSES

After the coalition game, the RSU coalition with the highest

utility will be selected. The upper limit of provided bandwidth

of the RSU coalition depends on the amount of bandwidth

each RSU node in the coalition is willing to contribute, which

is denoted as Bmax. We consider that each VMU has a

corresponding VT for managing vehicular applications and

VTs would be migrated from the premigration RSUs to the

RSU coalition. The RSU coalition can determine the selling

price of unit bandwidth and VMUs determine the amount of

the purchased bandwidth based on the price unit of bandwidth.

We define Bv as the amount of bandwidth that the RSU

coalition provides for VMU v. The RSU coalition can earn

P per unit of bandwidth from each VMU. Simultaneously,

the RSU coalition needs to pay the transmission cost of C of

unit bandwidth.

The RSU coalition can determine how much VMUs should

pay for bandwidth, and based on the bandwidth price, VMUs

can determine how much bandwidth they would purchase.

Therefore, we formulate a single-leader multi-follower Stack-

elberg model between the RSU coalition and VMUs, which is

denoted as G. In the Stackelberg model, the RSU coalition

acting as a leader first declares its strategy, i.e., the price

of unit bandwidth. Based on the leader’s strategy, VMUs

acting as followers would decide their strategies, i.e., the

amount of bandwidth requested. The Stackelberg game model

is described in detail as follows:

A. VMUs’ Bandwidth Service Demands in Stage II

In this part, we formulate the utility function of the VMU.

For VMU v, we define Av as the service latency of the VT

migration, where Dv is defined as the data size of the VT.

Similar to (13), the service latency of the VT migration of

VMU v is given by

Av =
Dvλ

Rt

=
Dvλ

Bv log2
(

1 + ρh0d−ε

N0

)
. (17)

The higher the bandwidth price or the service latency, the

lower profits that VMUs obtain. However, the lower the

bandwidth price set by the RSU coalition, the larger the

response time of bandwidth it provides, so VMUs need to

decide their strategies based on the RSU coalition’s strategy.

Therefore, the utility function of VMU v is expressed as [41]

Uv = αvln
(

1 +
1

Av

)

− PBv, (18)

where αv ∈ (0, 1) is a parameter centered on VMU v,

indicating the sensitivity of VMU v to the service latency of

VT migration.

B. RSU Coalition’s Selling Price in Stage I

The RSU coalition acting as a bandwidth resource provider

not only ensures that its resource allocation can meet the needs

of VMUs but also ensures that its utility can be maximized. To

incentivize VTs to be migrated to the RSU coalition and gain

as much as possible profits, the RSU coalition formulates an

appropriate pricing strategy, indicating that the RSU coalition

needs to constantly adjust its pricing strategy according to the

bandwidth demands of VMUs to maximize its utility. The RSU

coalition can obtain profits by providing bandwidth resources

to VMUs but needs to pay the transmission costs of bandwidth



resources. Therefore, the problem of maximizing the utility of

the RSU coalition is formulated as

Problem: max
P

Ur =

V
∑

v=1

(P − C)Bv,

s.t. 0 <
∑V

v=1Bv ≤ Bmax,

0 < Bv, ∀v ∈ {1, . . . , V },

0 < C ≤ P ≤ Pmax.

(19)

where Ur is the utility of the RSU coalition, Bmax is the total

amount of bandwidth that the RSU coalition provides, which

has been determined by the selected RSU coalition after the

coalition game, and Pmax is the maximum selling price of

unit bandwidth determined by the RSU coalition. Note that no

VMU would buy bandwidth resources from the RSU coalition

if the selling price of unit bandwidth exceeds Pmax.

C. Stackelberg Equilibrium Analysis

The Stackelberg equilibrium ensures that the utility of the

RSU coalition is maximized, considering that VMUs formulate

policies of requesting the amount of bandwidth according

to the best response. In this part, we seek the Stackelberg

equilibrium, at which the RSU coalition acts as a leader and

VMUs act as followers. Both the leader and followers can

maximize their utilities by constantly changing their strategies

until they reach the optimal strategies in equilibrium. The

Stackelberg equilibrium is defined as follows:

Definition 5. (Stackelberg Equilibrium): Let B
∗ =

{B∗
v}, v ∈ V and P ∗ are denoted as the optimal bandwidth

demands of VMUs and optimal pricing bandwidth of the

RSU coalition, respectively. The strategy (B∗, P ∗) is the

Stackelberg equilibrium if and only if the following set of

inequalities are strictly satisfied [18]
{

Ur(P
∗,B∗) ≥ Ur(P,B

∗),

Uv(B
∗
v ,B

∗
−v, P

∗) ≥ Uv(Bv,B
∗
−v, P

∗), ∀v ∈ V.
(20)

In the following, we utilize the backward induction method

to analyze the Stackelberg equilibrium [6].

1) VMUs’ optimal strategies as equilibrium in Stage II:

In the Stackelberg game, based on the selling price of unit

bandwidth P , VMUs acting as followers would determine the

optimal bandwidth demand strategies to maximize their profits

in Stage II [6].

Theorem 2. The sub-game perfect equilibrium in the VMUs’

subgame is unique [6], [26].

Proof. The first-order derivative and the second-order deriva-

tive of Uv with respect to Bv are shown as

∂Uv

∂Bv

=
αv log2

(

1 + ρh0d−ε

N0

)

Dvλ+Bv log2
(

1 + ρh0d−ε

N0

)
− P,

∂2Uv

∂Bv
2 = −

αv log2

(

1 + ρh0d−ε

N0

)2

(

Dvλ+Bv log2(1 +
ρh0d−ε

N0

)
)2 < 0.

(21)

Since the first-order derivative of Uv has a unique zero point

and the second-order derivative of Uv is negative, the utility

function Uv is strictly concave concerning the VMU’s band-

width demand strategy Bv. Therefore, the sub-game perfect

equilibrium in the VMUs’ subgame is unique.

Then, we set the first-order derivative of Uv to 0, and get

the best response function B∗
v for VMU v, which is given by

B∗
v =

αv

P
−

Dvλ

log2
(

1 + ρh0d−ε

N0

)
. (22)

2) RSU coalition’s optimal strategy as equilibrium in Stage

I: To analyze the existence and uniqueness of the equilibrium

of the Stackelberg game, we study the concavity of the utility

function of the RSU coalition. By predicting the strategies of

VMUs, the RSU coalition plays as the leader to maximize its

utility in Stage I.

Theorem 3. The uniqueness of the proposed Stackelberg game

equilibrium can be guaranteed.

Proof. Based on the optimal bandwidth demand strategies of

VMUs, the utility function of the RSU coalition is given by

Ur =
V
∑

v=1

(P − C)

(

αv

P
−

Dvλ

log2
(

1 + ρh0d−ε

N0

)

)

. (23)

Taking the first-order derivative and second-order derivative of

Ur with respect to P , we have

∂Ur

∂P
=

V
∑

v=1

(

αvC

P 2
−

Dvλ

log2
(

1 + ρh0d−ε

N0

)

)

,

∂2Ur

∂P 2
= −

V
∑

v=1

2αvC

P 3
< 0.

(24)

Similarly, since the first-order derivative of Ur has a unique

zero point and the second-order derivative of Ur is negative,

the utility function of the RSU coalition is concave, indicat-

ing that the RSU coalition has a unique optimal solution.

Therefore, the RSU coalition has a unique optimal strategy

and the uniqueness of the Stackelberg game’s equilibrium is

proved.

Motivated by the above analyses, we propose an iterative

algorithm to find the Stackelberg equilibrium, as shown in

Algorithm 2. The computational complexity of Algorithm 2

is O
(

V
(

Pmax−C
ϕ

)

)

. At first, we initialize the basic parame-

ters. Especially, the optimal strategy P ∗ and the highest utility

of the RSU coalition U∗
r are both initialized as 0. Then, the

selling price of unit bandwidth P is increased by ϕ iteratively

and the amount of bandwidth requested by VMUs is calculated

in each iteration. If the total amount of bandwidth requested by

all VMUs
∑V

v=1Bv does not exceed the maximum amount of

bandwidth Bmax, the utilities of VMUs and the RSU coalition

can be calculated based on (18) and (19). When a new optimal

value of Ur is found and the utilities of all VMUs are greater

than 0, the value of Ur and the corresponding pricing strategy

P of the RSU coalition are recorded. Finally, each VMU can



Algorithm 2 Iterative Algorithm for Seeking Stackelberg

Equilibrium

Input: C,Pmax, Bmax, αv, Dv, ∀v ∈ V.

Output: The optimal pricing strategy P ∗ and the optimal

bandwidth demand strategies B
∗.

Initialize U∗
r = 0, P ∗ = 0;

for P = C to Pmax do

Calculate Bv based on (22);

if
∑V

v=1Bv ≤ Bmax then

CALCULATE(Ur, Uv);
if Ur > U∗

r and Uv > 0 then

Replace U∗
r with Ur;

Replace P ∗ with P ;

end if

end if

end for

Calculate B
∗ based on (22);

function CALCULATE(Ur, Uv)

Calculate the utility of the RSU coalition Ur based on

(19);

Calculate the utility of the VMU Uv based on (18);

end function

TABLE I
KEY PARAMETERS IN THE SIMULATION.

Parameters Values

Positive interaction frequency/(min) [0, 100]
Negative interaction frequency/(min) [0, 200]
The weight of positive interactions δ1 0.5
The attenuation coefficient θ 0.5

Reputation threshold T
fin
th

0.5
Data compression ratio λ 0.5
Path-loss exponent ε 2
Transmitter power of the premigration RSU ρ 40dBm
Unit channel power gain h0

−20dB
The average distance between RSUs d 500m
Average noise power N0 −150dB
The VT data size of the VMU Dv 500MB
The maximum price of unit bandwidth Pmax 100

determine its optimal strategy B∗
v , v ∈ V after knowing the

final pricing strategy of the RSU coalition.

VI. NUMERICAL RESULTS

In this section, we present numerical results for blockchain-

assisted RSU selection based on the coalition game and the

Stackelberg game between the selected RSU coalition and

VMUs. Similar to [2], [6], the major parameters are listed

in Table I.

A. Performance of the Proposed Reputation Scheme

In our proposed reputation scheme, VMUs calculate the

reputation of RSUs based on local opinions and recommended

opinions. We consider that an unreliable RSU performs well

at first to obtain an initialized reputation value of 0.7, which

maintains a good performance within a certain period. Then,

the RSU continues to perform well on some VMUs, but poorly
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Fig. 3. Reputation value variation of an unreliable RSU.

Fig. 4. The distribution of the final coalitions under different numbers of
RSU nodes.

on other VMUs with a probability of 90% [6]. Notably, posi-

tive interactions from VMUs enhance the reputation value of

the RSU, whereas negative interactions from VMUs diminish

the RSU’s reputation value.

Figure 3 shows the reputation value changes of an un-

reliable RSU over time. When the interaction time t = 3,

the RSU begins to misbehave with certain VMUs and gets

progressively worse. Note that the effective interaction period

τ is counted from t = 3. From Fig. 3, we can observe that

as the unreliable RSU misbehaves over time, the reputation

value with interaction freshness and recommended opinions

declines quickly below the trusted reputation threshold, which

indicates that our proposed reputation scheme can effectively

identify unreliable RSUs. Besides, the reputation value decays

more rapidly when considering interaction freshness compared

to when not considering it. Therefore, our proposed reputa-

tion scheme with interaction freshness can identify unreliable

RSUs more efficiently than that without interaction freshness.

For the baseline scheme without reputation protection and

the reputation scheme without recommended opinions, the

reputation value of the unreliable RSU both increases over

time [27]. The reason is that an unreliable RSU only performs



well on several VMUs and performs maliciously on other

VMUs. If VMUs interacting with the RSU positively only

consider the local opinions without considering the recom-

mended opinions of other VMUs with negative interactions,

the RSU will naturally obtain a high reputation value.

B. Numerical Analysis for the Coalition Game

Figure 4 shows the distribution of the final RSU coalitions

under different numbers of RSU nodes. We consider that the

total number of RSUs is R = 200. When the final coalitions

are certain, the RSU coalition with the highest utility will be

selected. From Fig. 4, we can see that the number of RSUs in

each coalition is different when the number of RSU nodes is

different. When the number of RSU nodes is N = 20, there

are 6 final RSU coalitions formed. Similarly, when the number

of RSU nodes is N = 10, there are 4 final RSU coalitions

established. To be specific, the first RSU coalition consists

of 156 RSUs, while the fourth RSU coalition is comprised

of 19 RSUs. Note that regardless of the number of RSU

nodes, the total number of RSUs for all coalitions may exceed

200. The reason is that the composition of RSU nodes has a

certain degree of randomness and each RSU can join multiple

coalitions, i.e., an RSU can be in more than one coalition.

Figure 5 shows the spent time constructing the final RSU

coalitions corresponding to the number of RSU nodes under

different total numbers of RSUs. From Fig. 5, we can see that

as the number of RSU nodes grows, the time to form the final

coalitions through the coalition game increases. In addition,

it can be seen that the more the number of RSUs, the larger

the time required for constructing the final coalitions in the

case of the same number of RSU nodes. When the number

of RSU nodes exceeds 20, the time needed to form the final

coalitions with 200 RSUs is significantly greater compared

to the case of 100 RSUs. To avoid a long time of coalition

formation that may affect the quality of vehicular metaverse

services to VMUs, machine learning models can be utilized

to predict the driving route of vehicles so that RSUs can form

coalitions in advance to provide bandwidth resources for VT

migration timely.

Figure 6 shows the average reputation value corresponding

to different misbehavior ratios under different numbers of RSU

nodes. The misbehavior ratio is the percentage of RSUs that

have negative interactions with VMUs of the total number of

RSUs [6]. From Fig. 6, we can see that with the increase of the

misbehavior ratio, the average reputation value of RSUs does

not change greatly regardless of the number of RSU nodes.

The reason is that with the help of the proposed reputation

scheme, the RSUs with low reputation values are excluded

from the coalition game. Therefore, RSU nodes can select

the RSUs with high reputation values to form coalitions in

the coalition game, i.e., our proposed scheme can construct

trustworthy RSU coalitions. Then, the RSU coalition with the

highest utility will be selected and the maximum amount of

bandwidth of the selected RSU coalition will be obtained.
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Fig. 5. Spent time for coalition formation under different numbers of RSUs.
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C. Performance of Secure Block Verification

Figure 7 shows the security performance of the PBFT

consensus algorithm in the proposed blockchain system. We

consider that the A-level RSU group performs well and model

the security performance of the B-level RSU group (i.e., a

delegate group) as a random sampling problem with two

possible results, namely malicious delegates and well-behaved

delegates [42], [43]. According to [28], [42], when the number

of malicious delegates is not higher than (N−1)/3, whereN is

the total number of delegates, a block can be verified correctly

and truly by the delegates. Therefore, the security probability

of a delegate group is Psafety =
∑⌊N

3
⌋

z=0

(

N
z

)

pzm(1 − pm)N−z ,

where pm is the probability of a delegate being malicious [28].

From Fig. 7, we can see that regardless of the probability that

malicious delegates exist, the security probability increases

as the size of the B-level RSU group grows. The reason is

that a larger size of the delegate group indicates the increased

number of well-behaved delegates participating in the block

verification, thereby ensuring security in the consensus process

[43]. Therefore, the proposed blockchain system with the

PBFT consensus algorithm can ensure reliable VT migration

by providing reliable and secure block verification.
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Fig. 7. Security probability under the different malicious probability of
miners.

D. Numerical Analysis for the Stackelberg Game

Figure 8 shows the impacts of the user-centric parameter

α on the optimal strategies of the single VMU and the RSU

coalition. Figure 8(a) shows the optimal bandwidth demand

strategy of the VMU under different α and P when the cost

of unit bandwidth C = 5. Based on (18), we can see that

the amount of bandwidth purchased by the VMU is mainly

affected by the user-centric parameter α and the selling price

of unit bandwidth P that the RSU coalition determines. With

the increase of α, the amount of bandwidth purchased by the

VMU is increasing. The reason is that the larger α means

that the VMU is more sensitive to the VT migration latency,

so more bandwidth is requested to ensure the immersion of

vehicular metaverse services. Besides, the higher the selling

price of unit bandwidth P , the less amount of bandwidth that

the VMU would purchase. For instance, when α = 0.5 and

P increase from 10 to 30, approximately 76% reduction in

bandwidth purchased by the VMU.

Figure 8(b) shows the optimal pricing strategy of the RSU

coalition under different α and C. The selling price of unit

bandwidth determined by the RSU coalition is affected by the

transmission cost of unit bandwidth C and the user-centric

parameter α based on (19). The reason is that more bandwidth

will be purchased by VMUs to ensure immersive metaverse

experiences if α is larger. From Fig. 8(b), we can see that no

matter how much the cost of unit bandwidth C is, the selling

price of unit bandwidth P increases with the increase of α,

and the higher the cost of unit bandwidth C, the higher the

selling price of unit bandwidth P to ensure the utility of the

RSU coalition. For example, when the user-centric parameter

α = 0.5 and the cost of unit bandwidth C = 5, the RSU

coalition sets the selling price of unit bandwidth P at 19.6 to

incentivize VMUs to perform VT migration. When the cost

of unit bandwidth C = 10, the RSU coalition sets the selling

price of unit bandwidth P at 27.8.

Figure 9 shows the impacts of α and C on the utility of the

RSU coalition. we can see that when the cost of unit bandwidth

C is fixed, the utility of the RSU coalition rises with the

0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) Impacts of α and P on the optimal bandwidth demand strategy
of the VMU.
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(b) Impacts of α and C on the optimal bandwidth pricing
strategy of the RSU coalition.

Fig. 8. Impacts of key parameters on the optimal strategies of the VMU and
RSU coalition.

increase of the user-centric parameter α, which is because the

amount of bandwidth requested by VMUs increases. However,

when α is held constant, the utility of the RSU coalition

decreases as the cost of unit bandwidth C increases, even

though the selling price of unit bandwidth P set by the RSU

coalition also increases. This can be attributed to the impact of

cost C and the bandwidth demands of VMUs on the utility of

the RSU coalition as defined by equation (19). Thus, it is clear

that while the increase in the cost of unit bandwidth C leads

to a higher selling price of unit bandwidth P , the reduction in

bandwidth requests from VMUs has a greater negative effect

on the utility of the RSU coalition.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a blockchain-assisted game

approach framework for VT migration in vehicular metaverses.

To quantify the reliability of RSUs, we calculated the repu-

tation values of RSUs based on the subjective logic model.

Especially, we added a time attenuation factor by considering

the interaction freshness. Besides, to manage reputation values

securely, we proposed a blockchain-assisted reputation rating

system, where RSUs as miners are divided into different

levels according to their reputation values for lightweight
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Fig. 9. Impacts of α and C on the utility of the RSU coalition.

consensus. Based on the reputation values of RSUs, we

formulated a coalition game and formed RSU coalitions for

reliable and large-scale VT migration. To incentivize VMUs

for VT migration, we proposed a single-leader and multi-

follower Stackelberg model between the RSU coalition with

the highest utility and VMUs. Numerical results demonstrated

the reliability and effectiveness of the proposed schemes.

The algorithm used to solve Stackelberg equilibrium can

be further improved. Therefore, we will use AI technologies

such as deep reinforcement learning to find the Stackelberg

equilibrium in the future. Besides, we may construct a new

immersion metric to optimize the utility of VMUs based on

the characteristics of metaverse and link its computation to the

field of psychology, e.g., by taking into account the enjoyment

and engagement of VMUs with the services of the metaverse in

the computation of immersion. Additionally, we recognize that

the calculation formula for service latency can also be further

improved, so we plan to enhance the calculation of service

latency by utilizing communication-focused formulas for more

accurate evaluations. This involves taking into account both

the volume of data being transferred by VTs and the statistical

distribution of data as it reaches the RSUs.
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