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Abstract

This paper presents a method to recover the full-motion (3 rotations and 3 translations) of the head 

from an input video using a cylindrical head model. Given an initial reference template of the head 

image and the corresponding head pose, the head model is created and full head motion is 

recovered automatically. The robustness of the approach is achieved by a combination of three 

techniques. First, we use the iteratively re-weighted least squares (IRLS) technique in conjunction 

with the image gradient to accommodate non-rigid motion and occlusion. Second, while tracking, 

the templates are dynamically updated to diminish the effects of self-occlusion and gradual 

lighting changes and to maintain accurate tracking even when the face moves out of view of the 

camera. Third, to minimize error accumulation inherent in the use of dynamic templates, we re-

register images to a reference template whenever head pose is close to that in the template. The 

performance of the method, which runs in real time, was evaluated in three separate experiments 

using image sequences (both synthetic and real) for which ground truth head motion was known. 

The real sequences included pitch and yaw as large as 40° and 75°, respectively. The average 

recovery accuracy of the 3D rotations was about 3°. In a further test, the method was used as part 

of a facial expression analysis system intended for use with spontaneous facial behavior in which 

moderate head motion is common. Image data consisted of 1-minute of video from each of 10 

subjects while engaged in a 2-person interview. The method successfully stabilized face and eye 

images allowing for 98% accuracy in automatic blink recognition.

1. Introduction

Three-dimensional head motion recovery is an important task for many applications, such as 

human-computer interaction and visual surveillance. An aligned image according to the 

recovered head motion would facilitate facial expression analysis and face recognition.
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Many approaches have been proposed to recover 3D head motion. One is to use distinct 

image features [Liu, 2000; Lowe, 1992; Gennery, 1992; Jebara, 1997], which work well 

when the features may be reliably tracked over the image sequence. When good feature 

correspondences are not possible, tracking the entire head region using a 3D head model is 

more reliable. Both generic and user-specific 3D geometric models have been used for head 

motion recovery [DeCarlo, 1996; Essa, 1997]. With precise initialization, such models 

introduce minimal error and perform well. When initialization is not perfect (i.e., the initial 

estimate of head orientation deviates from ground truth), model error will increase 

substantially and degrade motion recovery (Figure 1a).

Use of a much simpler geometric head model often is effective and robust against 

initialization errors. Various planar model-based methods have been presented [Black, 1992; 

Hager, 1998]. They model the face (not the entire head) as a plane and use a single face 

texture (static template) to recover head motion. The approximation of a planar face model 

introduces small model error, which is insensitive to small initialization errors (Figure 1c). 

When the head orientation is not far from the frontal view, (i.e., the static face template can 

be fit to the visible head image), planar models work well. To represent the geometry of the 

entire head, a more complete 3D model is necessary. In [Bregler, 1998; Basu, 1996], an 

ellipsoidal model was used with good results on 3D head tracking. Cascia et al. [Cascia, 

1999] developed a fast 3D head tracker that models a head as a texture-mapped cylinder. 

The head image is treated as a linear combination of a set of bases that is generated by 

changing the pose of a single head image (template). The head pose of the input image then 

is estimated by computing coefficients of the linear combination. While simple and 

effective, use of a single, static template appears unable to accommodate cases in which 

large out-of-plane rotation turns the face away from the camera.

The relative error between the cylindrical model and the real geometry of a head is small 

and is invariant to the initialization error on head orientation (Figure 1b). In practice, precise 

initialization is usually not available. Therefore, in this paper, we utilize the cylindrical head 

model and present a robust method to recover full motion of the head under perspective 

projection. Given an initial reference template of the head image and the corresponding head 

pose, the cylindrical head model is created and the full head motion is recovered from the 

input video automatically. Three main techniques contribute to the robustness of the 

approach. First, to accommodate non-rigid motion and occlusion, we use the iteratively re-

weighted least squares (IRLS) technique [Black, 1992]. The unintended side effect of IRLS, 

however, is to discount some useful information, such as edges. We compensate for this 

effect with use of image gradients. Second, we update the templates dynamically in order to 

accommodate gradual changes in lighting and self-occlusion. This enables recovery of head 

motion even when most of the face is invisible. As the templates are updated as the motions 

are recovered, the errors of motion recovery accumulate over time. The third technique, re-

registration, is used to rectify the accumulated errors. We prepare images of certain 

reference poses, and re-register the head image with a reference image when the estimated 

head pose is close to that in the reference. Based on this approach, we built a real-time 3D 

head tracking system. As part of a facial expression analysis system intended for use with 

spontaneous facial behavior in which moderate head motion is common, it successfully 

stabilized face and eye images allowing for 98% accuracy in automatic blink recognition.
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2. Motion Recovery Using a Template

Suppose we observe an image I (u, t) at time t, where u=(u, v) is a pixel in the image. At t

+1, u moves to u’=F(u,μ), where μ is the motion parameter vector and F(u,μ) is the 

parametric motion model (such as the affine motion), which maps u to the new location u’. 
If we assume that the illumination condition does not change, then,

(1)

One of the standard ways to obtain the motion vector μ is by minimization of the following 

objective function,

(2)

where Ω is the region of the template at t, i.e., only the pixels within Ω are taken into 

account for motion recovery. For simplicity of notation, we omit u and t in some of the 

following equations.

In general, this class of problems can be solved by the Lucas-Kanade method [Lucas, 1981],

(3)

where It and Iu respectively are the temporal and spatial image gradient. Fμ means the 

partial differential of F with respect to μ, which depends on the motion model and is 

computed at μ = 0.

Since (3) comes from the linear approximation of (2) by the first-order Taylor expansion, 

this process has to be iterated. At each iteration, the incremental motion parameters are 

computed. Then the template is warped using the incremental transformation and the warped 

template is used for the next iteration. When the process converges, the motion is recovered 

from the composition of the incremental transformations instead of adding up the 

incremental parameters directly.

If we want to assign different weights to pixels in the template due to outliers and non-

uniform density, (3) can be modified as:

(4)

We describe how to determine the weights w(u)∈[0,1] in Section 4.

3. Full-Motion Recovery under Perspective Projection

The rigid motion of a head point X = [x,y,z,1]T between time t and t+1 is:
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(5)

R3×3 is the rotation matrix with 3 degrees of freedom and T3×1 is the 3D translation vector. 

The full head motion has 6 degrees of freedom.

We follow [Bregler, 1998] and use the twist representation [Murray, 1994]. The 

transformation M can be represented as [Bregler, 1998; Murray, 1994]:

(6)

where [ωx, ωy, ωz] represents the rotations relative to the three axes, and [tx, ty, tz] the 3D 

translation T.

Under perspective projection (assuming the camera projection matrix depends only on the 

focal length.), the image projection u of X (=[x,y,z,1]T) at t+1 is:

(7)

where fL is the focal length. (7) is the parametric motion model F(•) in (1) with the 6D full-

motion parameter vector μ = [ωx, ωy, ωz, tx, ty, tz]. Note that tz is included in (7), so the 

translation in the depths can be recovered.

If we compute Fμ at μ = 0,

(8)

After each iteration, we compute the incremental transformation using μ and compose all the 

incremental transformations to get the final transformation matrix. The full head motion is 

recovered from this matrix [Meriam, 1987]. The new head pose is also computed from the 

composition of the previous pose and the current transformation.

4. Weights of Pixel Contribution

4.1 Compensated IRLS Technique

Because of the presence of noise, non-rigid motion, and occlusion, some pixels in the 

template may disappear or may have been changed in the processed image. Those pixels 

should contribute less to motion estimation than others.
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To take this factor into account, we apply a robust technique, called iteratively re-weighted 

least squares (IRLS) [Black, 1992]. Recall at each iteration of using (4), we warp the 

template by the incremental transformation and use the warped template to compute the new 

incremental parameters. The warped template is also used for computing the weights. For a 

pixel u in the template, its IRLS weight wI is:

(9)

where Î is the warped template and σI is:

(10)

where the factor 1.4826 is a correction term that makes the median equal to the standard 

deviation of a normal distribution [Rousseeuw, 1987]. cI is a scalar. Ω is the region of the 

warped template.

For the pixels with large residuals, wI is small so that those pixels only have little 

contribution to motion recovery. However, large residuals don’t necessarily mean outliers 

(with little contribution). Sometimes those pixels may give us useful information, such as 

the edges in Figure 2(a). To compensate for this side effect, we apply another weight wG by 

using the gradient of the processed image:

(11)

where σG is set as 128 and cG is a scalar. cG decreases at each iteration so that wG has less 

influence while the recovered motion is getting more accurate. This weight prefers to large 

gradients and only affects the pixels on strong edges for several iterations. So the side effect 

of wI will be reduced and its good effect is still preserved since the weights of most pixels 

within the outlier areas are very small. Figure 2(b) and (c) respectively show the result of 

tracking a white cylinder with the IRLS and compensated IRLS. The cylinder translates 

horizontally in the black background. The compensated IRLS can recover the motion pretty 

well but the pure IRLS almost loses the object.

4.2 Non-Uniform Density of Template Pixels

The template pixels are projected from the 3D object. According to the surface geometry, 

they will not have a uniform density in the image. This will also affect their contribution and 

should be represented in the weights. A pixel with high density should have small weight, 

since it is projected from the side of the object surface.

Suppose u is the projection of a head point X. θ is the angle between the surface normal at X 
and the direction from the head center to the camera center, as shown in Figure 3. We 

compute the pixel density weight by a quadratic function (because we use a quadratic 

surface (cylinder) as the model):
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(12)

where cD is a scalar. When θ≥π/2, wD is 0, which represents u is not visible. Smaller θ 

means u is closer to the template center and has lower density, so wD is larger accordingly.

Finally we get the total weight w for each pixel as:

(13)

From (4), it is not necessary to normalize the weights since the normalization term will be 

same to each pixel.

5. Dynamic Templates & Re-registration

To achieve long-term robustness, it is not good to use a single template through the entire 

image sequence, because a template from one image cannot cover the entire head, but only 

part of the head. When most of that part is not visible, the approach using this template only 

may fail. In addition, it is difficult for a single template to deal with the problems like 

gradual lighting changes and self-occlusion. Therefore, we dynamically update the template 

while tracking.

At each frame (except the initial one), once the head pose is recovered, the head region 

facing the camera is extracted as the template for the following frame. When occlusion 

occurs, there might be some outliers in the template region. They should be removed from 

the template before the next tracking. Robust statistics are used again for this purpose. We 

detect the outliers by comparing the common region of the current template and the warped 

image of the last template, using the estimated motion between them. A pixel u in the 

common region will be removed from the new template as an outlier if,

(14)

where c∈[2.5,3.5] is a scalar that represents the strictness of judgment on outliers. σI is 

computed using (10) with Ω as the common region.

Because of the usage of dynamic templates, errors might be accumulated through the 

sequence. To prevent this from occurring, certain frames and associated head poses (usually 

including the initial frame and pose) are stored as references. Whenever the estimated head 

pose at a frame is close to that of one reference frame, we re-register this frame to the 

reference so that the accumulated error can be rectified.

After recovering the head pose in the current frame, the system calculates the tracking error 

by warping the template into the estimated pose and computing the difference between the 

current head image and the warped one. If the error is larger than a pre-set threshold, the 

system will re-register it to the reference frame with the closest pose. If the error after this 

step is still large, we re-register it to the initial reference frame and use the initial reference 

as the template to track the following frames. This initial template will not be updated until 
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the tracking error is smaller than the threshold. This process enables the approach to recover 

from errors, especially when the head is momentarily lost, such as occurs when the head 

moves temporarily out of the camera’s view.

6. Regularization

The aperture problem will cause the singularity of the Hessian matrix 

. This will make the approach ill-conditioned (with high condition 

number). To reduce the condition number and improve the robustness, the regularization 

technique is applied and a regularization term is incorporated into the objective function (2):

(15)

where λ>0 is a scalar that controls how strong the regularization term is. The larger λ means 

the stronger regularization. This term tends to limit the amount of the optic flows so that in 

the cases of ill-conditioning, the estimated motion parameters will not be exploded and can 

be possibly recovered in the following iterations. It thus improves the robustness of the 

approach. We decrease λ after each iteration so that the regularization has less influence 

while the motion recovery is getting better.

The solution of (15) is:

(16)

where  is the new Hessian matrix. In the experiments, 

when the amount of the condition number of the previous Hessian has the order of O(106), 

that of the new Hessian has the order of O(104).

7. A Real-Time System

Based on the above formulations, we built a real-time full head motion recovery system on a 

desktop (PIII-500). A low quality CCD camera positioned atop the computer monitor 

captures images in a typically illuminated office with a desk lamp also atop the monitor. The 

pixel resolution of the captured images is 320×240 with 24-bit color resolution. In each 

frame, the head occupies roughly between 5 and 30 percent of the total area. Tracking speed 

averages about 15 frames per second.

We applied the progressive Gaussian pyramid (three levels) to speed up the system and 

accommodate large motions. At the top level of the pyramid, we simplify the motion to only 

consist of three translations and roll (in-plane rotation). Then at the other two levels, the full 

motion is considered. To avoid the loss of information when filtering, according to the 

Sampling Theorem, we set the standard deviation of the Gaussian filter at each level as the 

corresponding scalar (2i for the ith level from the bottom in our system.)
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To delimit the reference frame and achieve the cylindrical head model, the user presents a 

frontal face to the camera in the initial frame or identifies an appropriate frame if using a 

pre-recorded image sequence. The face image then is extracted as the reference either 

manually or automatically using a face detector [Rowley, 1998]. Using the position and size 

of the face image, the head model is generated automatically. Unless the physical face size 

or the distance between the face and camera are known, the head model and its initial 

location will be up to a scale. In the experiments, the approach appears insensitive to small 

variations in the initial fit.

In further pre-processing, histogram matching reduces the effect of global lighting changes, 

and a 2D color-blob face tracker roughly estimates the 2D head translations as an initial 

guess for the recovery of the full head motion.

8. Performance Evaluation

We evaluate the system in three experiments. In the first, we use synthetic image sequences 

with known ground truth and specified error source. In the second, we use real image 

sequences from Boston University (www.cs.bu.edu/groups/ivc/HeadTracking) whose 

ground truth head motion had been measure by “Flock of Birds” 3D tracker, and those from 

our own university whose ground truth was measured by Optotrak. In the third, we use real 

image sequences that contain large pitch and yaw motions (up to 50° and 90°, respectively) 

and occlusion.

8.1 Synthetic case

Figure 4 and 5 show an example of a synthetic image sequence. A texture-mapped cylinder 

with Gaussian noise moves (mostly with rolls and yaws) on the black background. The 

meshes represent the estimated positions of the frontal area (the initial template) of the 

cylinder in the images. The region covered with red meshes is visible and that with yellow 

meshes is invisible (self-occluded) in that frame. The first row consists of the original 

images, the second row shows the tracking results with the pure IRLS and without 

regularization, and the third row shows the results using the compensated IRLS and 

regularization. In most cases, the system works well in both situations. When the motion 

between two contiguous frames is very large, however, as shown in Figure 4(c) and 4(d), 

compensated IRLS with regularization works much better.

Figure 5 shows the estimated pitches and yaws by the system, with and without the 

compensated IRLS and regularization, compared with the ground truth. Their colors are red, 

blue and black respectively. The horizontal axis means the frame numbers and the vertical 

axis means the pitch or yaw angles (degrees). Note that in most cases the compensated IRLS 

and regularization don’t improve the recovery, but it helps when the motion is very large.

8.2 Real sequences with ground truth

We used for evaluation over 45 image sequences with associated ground truth from Boston 

University. A typical example is shown in Figure 6 and 7. In this sequence, large yaws (up 

to 31°) are present. We compared our method with a planar model-based method in this 

experiment. The first row of Figure 6 shows the original images. The second row shows the 
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results of the planar model-based method, where the quadrangles show the positions of the 

frontal face. The third row shows the results of our system, where the meshes show the 

frontal faces and the white arrows show the face orientations. In addition, the positions of 

several feature points are shown as the crossings. The user specifies these features in the 

initial frame and their positions in the following frames are computed according to the 

estimated motion. Whether they are well tracked shows the accuracy of the system. Figure 7 

shows the estimated rolls and yaws using our system and the planar model-based method, 

compared with the ground truth. The colors are red, blue and black respectively, which 

demonstrate that better performance was achieved using the cylindrical model.

Five sequences were obtained using an Optotrak. Lighting conditions were poor. There are 

apparent shadows, which are not invariant, on the faces. Figure 8 shows an example of two 

image sequences. One of the sequences involves large yaws (up to 75°) and another one 

includes large pitches (up to 40°). Estimated pitches and yaws, compared with the ground 

truth, are shown in Figure 8. The curve for estimated pose is highly consistent with that for 

ground truth, even after larger out-of-plane rotations.

For both databases, the system achieved high precision, e.g., in average, the recovery 

accuracy of rolls, pitches, and yaws are about 1.4°, 3.2°, and 3.8° respectively.

8.3 Real sequences with large motion and occlusion

We tested the system in hundreds of image sequences in an office environment. Two of 

them are shown in Figure 9. One sequence was taken and tracked online. It is over 20 

minutes in duration and involves large rotations and translations, occlusion, and changes in 

facial expression. The other one includes large yaws (close to 90°). By visual inspection, 

estimated and actual pose were consistent (Figure 9). Even after the head is momentarily lost 

from view, the system can still recover 3D pose after re-registering to the initial reference 

frame, as shown in Figure 9(e) and (f). This result suggests that the system could work 

robustly for an indefinite period of time. The rough initial fits in all the experiments suggest 

the system is not sensitive to small initialization errors.

9. Application: Automatic Eye-Blinking Recognition in Spontaneously 

Occurring Behavior

We tested the method as part of a facial expression recognition system for use with 

spontaneous facial actions. In spontaneous facial actions, moderate to large head motion is 

common. As examples, Kraut and Johnson [Kraut, 1979] found that smiling typically occurs 

while the head is turning toward another person. Camras, Lambrecht, and Michel [Camras, 

1996] found that infant surprise expressions occur as the infant pitches her head back. With 

out-of-plane head motion, accurate registration between frames becomes a particular 

challenge. Previous literature has been limited to deliberate facial actions in which head 

motion is either absent [Bartlett, 1999; Donato, 1999] or predominantly parallel to the image 

plane of the camera [Tian, 2001]. By recovering 3D head motion, we were able to 

automatically align face images of spontaneous facial actions into a canonical view for facial 
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expression analysis. The system recognized 98% of eye actions (blinking) in spontaneous 

behavior during a 2-person interview.

9.1 Eye image stabilization

Figure 10 shows the flow of eye image stabilization for blink recognition. The face region is 

delimited in the initial frame either manually or using a face detector [Rowley, 1998]. Head 

motion (6 dof) is recovered automatically as described above. Using the recovered motion 

parameters, the face region is stabilized; that is, warped to a standard or canonical view. 

Facial features are extracted in the image sequence, and eye blinking is recognized.

9.2 Blink recognition

For now we treat only the right eye (image left). The classification categories of eye actions 

are blink, multiple blink (eyelid ‘flutter’), and non-blink. For this classification, the average 

intensity is calculated for the upper and for the lower half of the eye region. When mean 

intensities for the upper and lower halves are plotted over time (Figure 11), they cross as the 

eye changes between closed and open. When the eye is open, mean intensity in the upper 

half is smaller than that in the lower half, and reverses when closed. By computing the 

number and timing of crossings and peaks, we can detect eye actions (Figure 11).

9.3 Performance on eye-blinking recognition

We used video data from a study of deception by Frank and Ekman [Frank, 1997]. Subjects 

were 20 young adult men. Data from 10 were available for analysis. Seven of the 10 were 

Euro-American, 2 African-American, and 1 Asian. Two wore glasses. Subjects either lied or 

told the truth about whether they had stolen a large sum of money. They were video 

recorded using a single S-Video camera. Head orientation to the camera was oblique and 

out-of-plane head motion was common. The tapes were digitized into 640x480 pixel arrays 

with 16-bit color resolution. A certified FACS coder at Rutgers University under the 

supervision of Dr. Frank manually FACS-coded start and stop times for all action units 

[Ekman, 1978] in 1 minute of facial behavior in the first 10 subjects. Certified FACS coders 

from the University of Pittsburgh confirmed all coding.

Table 1 shows recognition results for blink detection in all image data in comparison with 

the manual FACS coding. The algorithm achieved an overall accuracy of 98% in analysis of 

335 eye actions. Six of 14 multiple blinks were incorrectly recognized as single blinks. 

Rapid transitions from eye closure to partial eye closure to closure again, in which eye 

closure remains nearly complete, were occasionally recognized as a single blink. The 

measure we used (crossing of average intensities) was not consistently sensitive to the slight 

change between complete closure and partial closure. If blink and flutter are combined into a 

single category (which is common practice among FACS coders), classification accuracy of 

eye closure and opening was 100%. The 3D motion recovery was sufficiently accurate in 

this image database of spontaneous facial behavior to afford 98-100% accuracy for blink 

detection in 10 minutes of video from 10 subjects of diverse ethnic background.
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10. Conclusions and Future Work

We developed a cylindrical model-based method for full head motion recovery in both pre-

recorded video and real-time camera input. Three main components are compensated IRLS, 

dynamic templates, and re-registration techniques. The system is robust to full-head 

occlusion and video sequences as long as 20 minutes in duration. For pitch and yaw as large 

as 40° and 75°, respectively, the system is accurate within 3° in average. We tested the 

method as part of a facial expression recognition system in spontaneous facial behavior with 

moderate head motion. The 3D motion recovery was sufficiently accurate in this image 

database of spontaneous facial behavior to afford 98-100% accuracy for blink recognition in 

10 minutes of video from subjects of diverse ethnic backgrounds.

In current work, we are integrating the motion recovery method with feature extraction and 

facial action unit recognition [Lien, 2000; Tian, 2001]. With the recovered 3D head poses 

and the tracked features, more detailed geometry of the head can be reconstructed, including 

the non-rigid portions, such as mouth. To accommodate sudden and large changes of local 

lighting conditions, the illumination bases need to be incorporated efficiently.
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Figure 1. 
The cross section of a head (simplified for clarity) and the corresponding head models: 

precise model (black), cylindrical model (blue), and planar model (red). The solid curves 

show the correct initial fit of the models to the head and the dashed curves show the cases 

when initialization is not prefect.

Xiao et al. Page 13

Int J Imaging Syst Technol. Author manuscript; available in PMC 2016 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A white cylinder translates horizontally in the black background: (a) the template (within the 

red square); (b) the tracked region (red square) with IRLS; (c) the tracked region with 

compensated IRLS.
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Figure 3. 
Angle θ between the surface normal and the direction from the head center to the camera 

center, which is used to determine the pixel density weight wD.
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Figure 4. 
A synthetic sequence with Gaussian noise: (a) Frame 1; (b) Frame 31; (c) Frame 122; (d) 

Frame 123. Row 1: the original images; Row 2: the results with IRLS and without 

regularization; Row 3: the results with compensated IRLS and regularization.
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Figure 5. 
Comparison between estimated poses and the ground truth. Red Star: The estimates with 

compensated IRLS and regularization; Blue Crossing: the estimates with pure IRLS and 

without regularization; Black Curve: the ground truth.
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Figure 6. 
A real sequence: Column 1 to 4: Frame 1, 32, 100, 133. Row 1: the original images; Row 2: 

the results using the planar model-based method; Row 3: the results using our system.
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Figure 7. 
Comparison among the estimated poses and the ground truth. Red: our system; Blue: the 

planar model-based method; Black: the ground truth.
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Figure 8. 
Comparison between the estimated poses and the ground truth. Red: estimated poses using 

our system; Black: the ground truth.
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Figure 9. 
More examples, including re-registration after losing the head. (a~f): Sequence 1; (g~h): 

Sequence 2.
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Figure 10. 
Automatic eye image stabilization: A) Frame 1, 10, and 26 from original image sequence; 

B) Tracked head in corresponding frames; C) Stabilized face images; D) Stabilized eye 

images.
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Figure 11. 
Examples of intensity curves for blink, multiple blink (flutter), and non-blink.
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Table 1

Comparison of Manual FACS Coding with Automatic Recognition

Manual
FACS
Coding

Automatic Recognition

Blink Flutter Non-Blink

Blink 153 0 0

Flutter 6 8 0

Non-Blink 0 0 168

Overall agreement = 98% (kappa = .97). Combining blink and flutter, agreement = 100%.
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