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ABSTRACT: A vector processing based framework suitable for

cDNA microarray image segmentation is introduced and analyzed in

this paper. By using nonlinear, generalized selection vector filters the
framework proposed here classifies the cDNA image data as either

microarray spots or image background. The solution converges to a

root signal that represents the segmented cDNA microarray image

with the regular spots ideally separated from the background and
with their coloration uniquely described by dominant color vectors. It

will be demonstrated that the framework readily unifies image denois-

ing, enhancement, data normalization, irregular spot rejection, and
spot segmentation in one processing step delivering excellent per-

formance at reasonable computational cost. VVC 2006 Wiley Periodicals,

Inc. Int J Imaging Syst Technol, 16, 51–64, 2006; Published online in Wiley

InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20067
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I. INTRODUCTION

Recent technological advances have allowed for the combination of

various biological, medical, and computational approaches and their

application to the field of computational biology, genomic en-

gineering, and bioinformatics. Complementary deoxyribonucleic

acid (cDNA) microarray imaging (Fig. 1) is considered one of the

most important and powerful technologies used to extract and inter-

pret genomic information (Arena et al., 2002; Whitchurch, 2002;

Zhang et al., 2002). Analysis of cDNA microarray data helps in

monitoring the expression levels of thousands of genes simultane-

ously (Eisen and Brown, 1999; Nagarajan and Upreti, 2006) and

provides information relevant to cell activity (Damiance et al.,

2004). Because of the parallel processing feature and effectiveness

of their analysis, cDNA microarrays have found applications in gene

and drug discovery, toxicological research, and (cancer, diabetes,

and genetic) disease diagnosis (Zhang et al., 2002; Istepanian, 2003).

The cDNA microarray experiment (Fig. 2) requires first to iso-

late ribonucleic acid (RNA) from both control and experimental

sample. In the sequence, the extracted RNAs are converted into

cDNAs by the so-called reverse transcription process (Whitchurch,

2002). Using a Cy3/Cy5 system (Nagarajan, 2003), the procedure

continues by labeling the cDNAs with fluorescent probes, usually

Cy3 for the control and Cy5 for the experimental channel. The fluo-

rescent targets are hybridized to the microarray1, heated at 658C,
and washed for 16–24 h. Using a specialized laser confocal micro-

scope and a photomultipler tube detector, cDNA microarrays are

scanned (Fig. 3) at the e540 nm (green) for the control (Cy3) ande630 nm (red) for the experimental channel (Cy5). The scanning

procedure produces two monochromatic images, which are further

registered into a two-channel, Red–Green image similar to the one

depicted in Figure 2. The generated cDNA microarray image is a

multichannel vector signal, which can be represented, for storage or

visualization purposes, as the RGB color image with a zero blue

component (Lukac et al., 2004b).

The image spots’ coloration represents the abundance of hybri-

dized RNA in the array (Whitchurch, 2002; Lukac et al., 2004b).

The presence of RNA from the experimental (test) or control (refer-

ence) population of cells is determined by the red or green spots,

respectively. The occurrence of yellow spots suggests that RNAs

from both experimental and control population contribute to the

abundance while nonfluorescent (black) spots denote no binding of

RNA. Based on this simple coloration concept, cDNA microarray

based gene expression analysis uses the measurement of the hybrid-

ized RNA abundance as a measure of gene expression activity

(Katzer et al., 2003). The vast amount of data and calculations

needed to obtain the relative expression levels of the genes from the

fluorescence intensity at each spot necessitates the development of

automated data processing solutions (Filkov et al., 2002; Whitch-

urch, 2002). Since a number of impairments2 may affect the cDNA

1 cDNAs are spotted on a substrate (mostly glass slide) by an automated robot.
Arrays of cDNA spots, usually up to 80 000 probes per 2 � 4 cm2 area, are commonly
referred to as microarrays (Arena et al., 2002).

2 Microarray images exhibit variations in intensity due to noise impairments which
can be attributed to (Wang et al., 2003; Lukac et al., 2005a) (i) variations in the image
background, (ii) variations in the spot sizes and positions, (iii) artifacts caused by laser
light reflection and dust on the glass slide, and (iv) photon and electronic noise intro-
duced during scanning.
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microarray image formation, image processing is necessary in order

to eliminate processing errors from propagating further down the

processing pipeline to the gene expression analysis tasks (Zhang

et al., 2002; Istepanian, 2003; Lukac et al., 2004b).

Most cDNA image processing applications deal with the noise

removal and the enhancement of the cDNA microarray images. A

number of filtering and enhancement techniques, such as the wavelet-

based approach (Wang et al., 2003) and the vector processing

approaches (Lukac et al., 2004b, 2005a,b) have been proposed

recently. The multichannel nature of the cDNA microarray images

led to the introduction of vector processing techniques based on

fuzzy logic principles (Lukac et al., 2005a), which remove noise

while preserving the structural cDNA image information. The edge-

detector schemes (Kim et al., 2001; Lukac and Plataniotis, 2006)

can be used to localize the spots in microarray images, while

another approach (Lukac et al., 2004b) unifies low-level and high-

level image processing operations to form a solution capable of

removing noise and localizing spots in a single processing cycle.

Other recently proposed microarray imaging solutions focus on data

normalization (Kim et al., 2002; Wang et al., 2002; Park et al.,

2003), background separation (O’Neill and Magoulas, 2003), and

grid adjustment (Bajcsy, 2004).

Image processing techniques such as those mentioned above are

usually used before the image segmentation step, which is consid-

ered the most important processing operation to be performed prior

the determination of the gene expressions. A multitude of cDNA

image segmentation solutions are available. The cellular neural net-

work scheme (Arena et al., 2002; Zhang et al., 2002) segments the

spots by performing a number of operations such as background

clean-up, grid analysis, irregular spot elimination, and intensity anal-

ysis. The dynamical system modeling based approach (Damiance

et al., 2004) performs pixel clustering operations in a parallel

manner to speed-up the segmentation process. The combination of

Markov random field based grid segmentation and active contour

modeling constitutes an approach suitable for spot detection and

segmentation (Katzer et al., 2003). The morphology based approach

(Hirata et al., 2002) uses a series of optional (correction of rotation)

and mandatory (subarray gridding, spot gridding, correction of spot

gridding, spot segmentation) steps to segment the microarray

image. The two-stage clustering based approach (Nagarajan, 2003)

is comprised of spots’ boundaries adjusting and intensity-based par-

titioning operations. The use of adaptive thresholding and statistical

intensity modeling is the base for some segmentation schemes

(Liew et al., 2003), whereas another approach (Yang et al., 2002)

uses a seeded region growing algorithm to identify spots of differ-

ent shapes and sizes. Histogram and thresholding operations were

used to classify microarray image samples into either foreground

(spots) or background pixels (Cheng et al., 1997). Finally, correla-

tion of the pixels comprising a microarray spot was used as the seg-

mentation criterion in Nagarajan and Upreti (2006).

In this paper, a unique cDNA image segmentation framework is

introduced. The paper extends the preliminary results presented in

the conference publication (Lukac and Plataniotis, 2005). The seg-

mentation is performed using root signals obtained through the uti-

lization of a nonlinear filtering operator. Following the multichan-

nel nature of the cDNA image data, the framework uses a new class

of generalized selection vector filters (Lukac et al., 2004a) to pro-

cess the cDNA pixels. For the first time ever in cDNA microarray

imaging both the magnitude and directional characteristics of the

cDNA vectorial inputs are simultaneously used during processing.

Because of the selective nature3 of the operator the filtering process

converges within a few iterations to a root signal, which is not fur-

ther affected by the processing filter. The repetitive use of an opera-

tor capable of normalizing the data population emphasizes the most

dominant cDNA vectors in localized neighborhoods. Thus, the

3 Selection vector filters operate by outputting one of the vectorial inputs inside a
supporting window as the result of the filtering operation (Lukac et al., 2004a). In this
way, they preserve structural and spectral information in the image and avoid outliers
and artifacts in the localized image area.

Figure 2. cDNA microarray technology. [Color figure can be viewed

in the online issue, which is available at www.interscience.wiley.com]

Figure 3. Microarray image scanning: (a) a scanning pipeline is

constructed using the laser, photomultipler tube (PMT) detector, and
A/D convertor; (b) the scanning procedure is performed for both Cy3

and Cy5 dyes to obtain Red–Green (RG) cDNA microarray image.

Figure 1. Block diagram representation of the cDNA microarray

experiment.
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generated root signal represents the segmented microarray image

with the regular spots ideally separated from the background. More-

over, during its convergence phase the proposed solution simultane-

ously denoises, enhances, normalizes data, rejects irregular spots,

and automatically segments spots from the background. Combined

with an additional module which thresholds the magnitude of the

root signal, the framework can remove residual, irregular fore-

ground information and enhanced perceived and measured differen-

ces between foreground and background information in the seg-

mented image. It will be demonstrated that the uniqueness of the

root signals, the unification of a number of cDNA microarray image

processing operations, and the computational efficiency of the pro-

cedure make the proposed framework an attractive proposition for

the microarray image processing pipeline.

The rest of the paper is organized as follows. In Section II, the

cDNA microarray imaging basics are discussed. Both the image

formation and the noise corrupting process are investigated from a

microarray image processing point of view. A root signal based

vector processing paradigm suitable for cDNA microarray image

segmentation is introduced in Section III. Motivation and design

characteristics are discussed in detail. Selected solutions designed

within the proposed framework are tested using a variety of cDNA

microarray images in Section IV. Comparisons, in terms of per-

formance, with the prior art in cDNA image segmentation are also

provided. Finally, conclusions are drawn in Section V.

II. cDNA MICROARRAY IMAGING

Let us consider a K1 � K2 image x : Z2 ? Z2 representing a two-

dimensional matrix of two-component samples x(r,s) ¼ [x(r,s)1,
x(r,s)2], with r ¼ 1,2,. . .,K1 and s ¼ 1,2,. . .,K2 denoting the image

rows and columns, respectively. Using cDNA microarray technol-

ogy (Fig. 2), the microarray data form a two-channel, Red–Green

(RG) image. The component x(r,s)1 indicates the R channel while

x(r,s)2 indicates the G channel. The two channels are combined to

form the cDNA vector x(r,s) in a two-dimensional vector space

(Lukac et al., 2004b, 2005b).

To visualize or store cDNA image data in the familiar RGB

color format, the introduction of a zero B component is needed

(Lukac et al., 2004b). According to the trichromatic theory of color

vision, an arbitrary color is matched by superimposing appropriate

amounts of three primary colors (Plataniotis and Venetsanopoulos,

2000) and thus, the cDNA vector x(r,s) can be considered as point

[x(r,s)1, x(r,s)2, 0] in a three-dimensional RGB vector space (Lukac

et al., 2004b). Since cDNA microarray technology employs the two

(R and G) color base, the two-channel representation of cDNA

microarray data should be used in both image processing and gene

expression analysis.

Following the modeling scenario shown in Figure 4, the vector

o(r,s) ¼ [o(r,s)1, o(r,s)2] represents the original, noise-free cDNA signal

while v(r,s) ¼ [v(r,s)1, v(r,s)2] is used to denote the various image

impairments introduced during processing. The vectorial samples

v(r,s) are considered random in nature and can be modeled through

the additive noise model (Nagarajan, 2003). In this paper, the noise

signal v(r,s) is considered either impulsive in nature or it can be mod-

eled as mixed noise—i.e., white additive Gaussian noise followed by

impulsive noise (Lukac et al., 2004b). Therefore, the acquired cDNA

signal x(r,s) ¼ [x(r,s)1, x(r,s)2] can be expressed as follows:

xðr;sÞ ¼ oðr;sÞ þ vðr;sÞ ð1Þ

where (r, s) indicates the spatial position of the samples in the

image array. In conclusion, based on the microarray imaging basics

demonstrated in Figures 2–4 it can be claimed that the microarray

image formation is a complicated, nonlinear process influenced by

many factors.

As with any vectorial signal, each acquired cDNA sample x(r,s)

is uniquely determined by its magnitude Mðr;sÞ ¼ xðr;sÞ
�� ��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðr;sÞ1Þ2þðxðr;sÞ2Þ2

q
and direction Dðr;sÞ ¼ 1

kxðr;sÞk xðr;sÞ ¼ 1
Mðr;sÞ

xðr;sÞ
in the vector space (Lukac et al., 2005b). Because of the various

image impairments listed in Figure 4, the cDNA vector fields ex-

hibit considerable variations in intensity. As shown in Figure 5, the

data variations affect both the magnitude and directionality of the

cDNA vectors. Since the noisy samples deviate from other samples

in a given data population, the determination of the outlying cDNA
vectors is of a paramount importance in the proposed here cDNA
image segmentation framework, which uses uniformity in the
characteristics of the cDNA vectors as the base for segmentation.
To effectively quantify differences among cDNA vectors the micro-
array image processing operator should take into consideration both
the magnitude and the orientation of the cDNA samples. Although a
number of measures can be used to complete the task, the magni-
tude difference between two vectorial inputs x(i,j) ¼ [x(i,j)1, x(i,j)2]
and x(g,h) ¼ [x(g,h)1, x(g,h)2], for x(i,j) [ x and x(g,h) [ x, is usually eval-
uated through the Euclidean metric as follows (Lukac et al., 2005b):

dðxði;jÞ; xðg;hÞÞ ¼
X2
k¼1

ðxði;jÞk � xðg;hÞkÞ2
 !1

2

ð2Þ

The difference in orientation (vector directionality) is usually quan-

tified through the utilization of the angular measure (Lukac et al.,

2005b):

Aðxði;jÞ; xðg;hÞÞ ¼ arc cos
xði;jÞ � xðg;hÞ
xði;jÞ
�� �� xðg;hÞ

�� ��
 !

ð3Þ

It should be noted that the determination of the similarity (or differ-

ence) between two vectorial signals depends critically on the

Figure 4. Block diagram representation of the noise process for-

mation in cDNA imaging. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com]
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measure used to evaluate it. The interested reader should refer to

Lukac et al. (2005b), Lukac and Plataniotis (2006), and Plataniotis

and Venetsanopoulos (2000) for a more comprehensive treatment of

the topic. In the sequel, both Eqs. (2) and (3) will be used to quantify

differences between cDNA vectorial inputs and will form the base

for the construction of a new cDNA image segmentation framework.

III. PROPOSED cDNA IMAGE SEGMENTATION
FRAMEWORK

Image segmentation refers to partitioning an image into different

regions that are homogeneous with respect to some image feature

(Plataniotis and Venetsanopoulos, 2000; Yang et al., 2002; Nagarajan,

2003). Assuming that the pixels with the same feature characteris-

tics constitute meaningful regions, and certainly this is the case

with the spots present in a cDNA microarray image, the problem

reduces to pixel classification. Under the ideal conditions depicted

in Figures 5a–5c, with the original, noise-free cDNA image samples

o(r,s) of Eq. (1) shown in Figure 5a, each spot has its own unique

magnitude (Fig. 5b) and directional (Fig. 5c) characteristics. There-

fore, based on the definitions given in Eqs. (2) and (3), we may con-

sider uniformity in vector magnitude and directionality as the crite-

rion for partitioning the cDNA vector field into disjoint regions cor-

responding to distinguishable spots.

Hence, the cDNA microarray image segmentation process can

be defined as follows (Lukac and Plataniotis, 2005):

xðr;sÞ 2 x ! fF;Bg ð4Þ

where disjoint sets F and B denote the foreground and background

cDNA vectors x(r,s) in the microarray image x, respectively. As

shown in Figure 6, the foreground is constituted by microarray

spots. A typical spot in a microarray image has a circular shape and

contains e150–200 cDNA vectors x(r,s) (Wang et al., 2001). A gap

between spots or alternatively the presence of cDNA vectors resid-

ing outside spots areas constitute the background. By extracting the

Figure 5. cDNA image characteristics: (a–c) before and (d–f) after the interference of the cDNA microarray image data with noise. (a, d) Image

area of interest, (b, e) magnitude characteristics M(r,s), (c, f) directional characteristics D(r,s). The figure follows the scenario shown in Fig. 4. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

Figure 6. Localized area of the cDNA microarray image formed by

(a) pixels inside the circular objects denoting the microarray spots, (b)
other nonspotted pixels that belong to the image background. Further

inspection reveals basic image signal structures most commonly

present in the cDNA microarray images: (c) multichannel constant

region, (d) multichannel step edge, (e) multichannel impulse, (f) multi-
channel oscillation. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com]
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spots from the microarray image x, the background can be viewed

as a homogeneous region, while the essential foreground should

remain heterogonous as a result of the variable spots’ coloration.

To develop an effective and automated segmentation solution,

we introduce a new framework, which uses root signals obtained

via filtering to segment the cDNA image into disjoint areas. The root

signal of the cDNA microarray image is an image obtained from the

input by repeatedly filtering it until no more changes occur (Burian

and Kuosmanen, 2002). Equivalently, root signals can be defined as

signals invariant to further processing by the same filtering operator

(Astola et al., 1987). The utilization of vector selection filters in the

framework eliminates redundant information such as impulses and

noise-like variations in the sample population, and converges to a

root signal that retains the spatial and spectral characteristics of the

input cDNA image. Since root signals consist solely of edges and

sequences of identical samples (Astola et al., 1987), the generated fil-

ter roots represent a segmented cDNA image.

A. Image Filtering Basics and Root Signals. The filters use a

supporting window to process information in a localized area of the

microarray image. The window, defined as C(r,s) ¼ {x(i,j); (i,j) [ �},
for r ¼ 1,2,. . .,K1 and s ¼ 1,2,. . .,K2, slides over the entire image x,
placing, successively, every pixel at the center of a local neighbor-

hood denoted by �. The procedure replaces the cDNA vector x(r,s)
located at the window center (r, s) with the output y(r,s) ¼ f(C(r,s))

of a filter function f (�) operating over the samples listed in C(r,s).

As shown in Figure 7, the processing window may vary in shape.

The type of window determines both the area of support and the

overall performance of the procedure. The concept and the proper-

ties of the sliding (running) window are discussed in detail in Lukac

et al. (2005b). Because of its versatility and demonstrated good per-

formance, the 3 � 3 rectangular shape window (Fig. 7b) is the most

commonly used in image processing and the one to be utilized

throughout this paper.

It is well-known that any processing filter can be implemented

either in a non-recursive (conventional) or recursive format. For a

3 � 3 non-recursive operator (Fig. 7b) the localized neighborhood

C(r,s) is constituted from the input cDNA vectors x(i,j) for (i,j) [ � as
defined earlier. In the case of a 3 � 3 recursive operator (Fig. 8b),

the set �0 denotes locations in the output (filtered) image y whereas

other set �, with �0 \ � ¼ Ø, denotes the locations in the input

(being processed) image x. Thus, C(r,s) ¼ {y(g,h), x(i,j); (g,h) [ �0,
(i,j) [ �} consists of the input cDNA vectors x(i,j) and vectors y(g,h)
outputted by the processing filter in the previous centers of the slid-

ing window. Recursive filters have usually provided better smooth-

ing compared to non-recursive filters at the expense of increased

distortion (Burian and Kuosmanen, 2002). To keep the subsequent

discussion simple, the conventional, non-recursive filtering formu-

lation is adopted in the paper.

The proposed framework generates the segmented cDNA micro-

array images by producing root signals. Such a situation occurs if

and only if y(r,s) ¼ x(r,s), i.e., the filter output y(r,s) is identical to a

multichannel signal located at the reference window position (r, s).
Because of the localized nature of cDNA image features, the analy-

sis of the root signals necessitates the definition of a basic cDNA

image structure, which can be observed in the processing window

C(r,s). Adopting concepts routinely used in conventional color

image processing (Tang et al., 1994), the following basic cDNA

multichannel signal structures are defined:

� A multichannel constant region (Fig. 6c) is a neighborhood

formed by identical, in terms of both magnitude and direc-

tion, cDNA image vectors.

� A multichannel, cDNA step edge (Fig. 6d) is a multichannel con-

stant region followed by another multichannel constant region.

� A multichannel impulse (Fig. 6e) is a cDNA image vector

that significantly deviates from a surrounding multichannel

constant region.

� Multichannel oscillation4 (Fig. 6f) is a sequence of cDNA

vectors that is not part of a constant region, an edge, or an

impulse.

The consideration of the structures defined earlier is essential in

the proposed segmentation framework, since the root signals consist

solely of constant neighborhoods and edges (Astola et al., 1987).

An ideal root signal, defined over a cDNA microarray image, must

have the few different forms listed in Figure 9. To obtain such a

root, the elimination of impulses and oscillations (data variations) is

an essential step. Finally, the presence of the above multichannel

structures in C(r,s) determines the speed with which the processing

filter converges to a root signal. In this work, we normalize both the

magnitude and directional characteristics of the cDNA vectorial

inputs and generate root signals by employing a class of nonlinear

selection vector operators. Thus, generalized vector filters are

described in the next few paragraphs prior to introducing the root

signal generation procedure.

4 The multichannel oscillation consists of diverse data variations and cDNA image
vectors which deviate from each other within the local neighborhood.

Figure 7. Popular processing windows with the symbol ‘þ’ denot-

ing the window center (r, s). The 3 � 3 square processing window is

depicted in (b), with the area of support defined as � ¼ {(r � 1, s � 1),

(r � 1, s), (r � 1, s þ 1), (r, s � 1), (r, s), (r, s þ 1), (r þ 1, s � 1) (r þ 1, s),
(r þ 1, s þ 1)}. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com]

Figure 8. Recursive filtering concept demonstrated for the same
processing windows as used in the conventional, non-recursive

approach in Fig. 7. The textured locations, such as �0 ¼ {(r � 1, s � 1),

(r � 1, s), (r � 1, s þ 1), (r, s � 1)} in (b) denote the samples taken from

the filtered image y, while the filled locations such as � ¼ {(r, s), (r, s þ
1), (r þ 1, s � 1) (r þ 1, s), (r þ 1, s þ 1)} in (b) denote the samples

taken from the input image x. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com]
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B. A Generalized Class of Vector Filters. The structural ele-

ments of the cDNA image such as the spots and their edges, as well

as the corrupting noise processes are nonlinear in nature. Moreover,

the spots vary in the shapes, sizes, and coloration. Therefore, the

processing technique should have strong nonlinear characteristics in

order to effectively deal with the cDNA image data. The selection

weighted vector filters (SWVF)5 (Lukac et al., 2004a) employed

here constitute a generalized and unique class of nonlinear, vector

processing operators which are suitable for such a task.

The SWVF structure is characterized by a design parameter p
ranging from 0 to 1, and a set of nonnegative real weights w ¼
[w(i,j); (i,j) [ �]. For each input sample x(i,j), (i,j) [ �, the weights

w(i,j) are used to form a SWVF processing function fSWVF (�) defined
as follows:

yðr;sÞ ¼ argmin
xðg;hÞ

" X
ði;jÞ2�

wði;jÞdðxðg;hÞ; xði;jÞÞ
!1�p

 X
ði;jÞ2�

wði;jÞAðxðg;hÞ; xði;jÞÞ
!p# ð5Þ

where y(r,s) ¼ fSWVF (C(r,s), w, p) represents the filter output. The

filtering structure considered here outputs the input cDNA vector

x(g,h) [ C(r,s), which minimizes an aggregated distance criterion

defined over the cDNA samples inside the processing window

C(r,s). The selective nature of the SWVF operator and the use of the

minimization concept ensure (i) the outputting of the cDNA vector

which is the most similar, under the specific setting of w, to other

cDNA samples inC(r,s), (ii) the low-pass nature of the filter, making

it capable to denoise and normalize the cDNA data, and (iii) that

the SWVF output is restricted to the dynamic range of the input

samples and thus, it never introduces new samples.

The weighting coefficient w(i,j) signifies the importance of x(i,j)
in C(r,s). Through the weight vector w and the design parameter p
the SWVF scheme tunes the overall filter’s detail-preserving and

noise attenuating characteristics and uses both the spatial and spec-

tral characteristics of the cDNA image x during processing.

Depending on the value of parameter 0 � p � 1 in Eq. (5), data nor-

malization can be performed in the magnitude (p ¼ 0) or directional

(p ¼ 1) domain. The framework allows for data normalization using

equally the magnitude and directional information when p ¼ 0.5.

Any deviation from p ¼ 0.5 to a lower or larger p value places more

emphasis on the magnitude or directional characteristics, respec-

tively, and tilts the overall performance of the proposed normaliza-

tion process towards one or the other extreme.

Visual inspection of the cDNA microarray image (Fig. 5d) and

its filtered version (Fig. 10a) suggests that the employed here

SWVF operator is robust and excellently preserves edges of the

spots. The noise attenuation capability of the proposed framework

further increases (Fig. 10d) when the root signal based concept is

employed in the processing pipeline. Figures 10a–10c show that the

proposed framework, although used in a noniterative manner, mini-

mizes variations in the cDNA image measurements. However, by

repeating the SWVF operation until a root signal is obtained, the

proposed framework produces normalized image data with charac-

teristics (Figs. 10d–10f) much closer to those of an ideal, noise-free,

cDNA microarray image (Figs. 5a–5c).

Since each setting of the filter parameters represents a specific

filter that can be used for a specific task, SWVF filters constitute a

wide class of vector operators. For example, the use of the unity

weight vector w ¼ 1 in Eq. (5) with p ¼ 0 denotes a SWVF operator

equivalent to the well-known vector median filter (VMF) (Astola

et al., 1990) while w ¼ 1 and p ¼ 1 denote a SWVF operator with

characteristics identical to those of the basic vector directional filter

(BVDF) (Trahanias et al., 1996). The complete list of vector filter-

ing operators generalized within the SWVF class is provided in

Lukac et al. (2004a).

C. SWVF Weight Vector Adaptation. The use of the SWVF

scheme (5) requires the determination of the weight vector w by the

end-user. Since the resolution of a scanned cDNA microarray image

is usually determined by processing requirements, the acquisition

speed and the calibration of the scanner (Chen et al., 1997) which

vary depending on the laboratory procedures and may influence

the accuracy of any microarray image processing algorithm, the

automated setting of the SWVF parameters is of a great interest. To

provide a more comfortable—in terms of the exclusion of the man-

ually justified w—approach, an automated alternative to the user-

driven method of Eq. (5) is obtained by employing a multichannel

weights’ adaptation algorithm of Lukac et al. (2004a). Since the

original signal o(r,s) of Eq. (1) is not available in cDNA microarray

applications, the weights w(i,j) in Eq. (5) can be adapted using the

approaches depicted in Figure 11. The considered adaptation

scheme leads to a number of SWVF filters with different design

characteristics. Namely,

� The use of the acquired signal x(r,s) in Figure 11a is useful,

when the corrupting noise power is low and strong detail-pre-

serving characteristics are expected from the SWVF operators.

� The robustness of the SWVF operator and its noise attenuation

capability is ensured using a robust, easy to calculate estimate

such as the component-wise median y*(r,s) ¼ [y*(r,s)1, y*(r,s)2] used
in Figure 11b.

� The approach shown in Figure 11c allows for a filter that bal-

ances the noise attenuating and detail-preserving characteris-

tics of the solutions depicted in Figures 11a and 11b.

Since microarray images are usually corrupted by strong

noise (Eisen and Brown, 1999; Wang et al., 2003), the approach

of Figure 11b is used in the sequel. The weighting coefficients

5 Although the SWVF operators have been developed to be used primarily for color
image filtering (Lukac et al., 2004a), they constitute universal class of processing oper-
ators which can process scalar signals such as gray-scale images or multichannel sig-
nals such as cDNA microarray images.

Figure 9. Root signal representation of cDNA vectorial data: (a–d)

multichannel constant region, (e–j) multichannel step edge.
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w(i,j) [ w are adapted using the cDNA image vectors x(i,j) as

follows:

wði;jÞ ¼ P wði;jÞ þ 2�Rðy�ðr;sÞ; yðr;sÞÞsgn Rðxði;jÞ; yðr;sÞÞ
� �h i

ð6Þ

where � is a regulation factor and y*(r,s) ¼ [y*(r,s)1, y
*
(r,s)2] is the

component-wise median of C(r,s) defined as

y�ðr;sÞk ¼ arg min
xðg;hÞk

X
ði;jÞ2�

jxðg;hÞk � xði;jÞkj; for k ¼ 1; 2 ð7Þ

Each weight w(i,j) is adjusted by adding the contributions of the

corresponding cDNA vector x(i,j) and the SWVF output y(r,s). These
contributions are measured as the distances to the feature signal

y*(r,s), which is used to guide the adaptation process. To minimize

the influence of the initial setting6 of the SWVF parameters the ad-

aptation formula should allow for the adjustment of w(i,j) using both

positive and negative contributions. Therefore, Eq. (6) is con-

structed using the sign sigmoidal function sgn(a) ¼ 2/(1 + exp(�a))
�1 and the vectorial sign function

Rðxði;jÞ; xðg;hÞÞ ¼ Sðxði;jÞ; xðg;hÞÞ dðxði;jÞ; xðg;hÞÞ
� �1�p

Aðxði;jÞ; xðg;hÞÞ
� �p

ð8Þ

which considers contributions using both Eqs. (2) and (3) with the

polarity S(�) [ {�1, 1} defined as follows:

Sðxði;jÞ; xðg;hÞÞ ¼
þ 1 for xði;jÞ

�� ��� xðg;hÞ
�� �� � 0

� 1 for xði;jÞ
�� ��� xðg;hÞ

�� �� < 0

(
ð9Þ

The use of R(�) is essential in sgn(�) since the positive (or nega-

tive) values of R(x(i,j), y(r,s)) allow for the corresponding adjustment

of w(i,j) in Eq. (6) by adding the negative (or positive) value of

2�R(y*(r,s), y(r,s))sgn(R(x(i,j), y(r,s))). If the sample under considera-

tion x(i,j) and the actual SWVF output y(r,s) are identical (i.e. R(x(i,j),

y(r,s)) ¼ 0), then sgn(�) ¼ 0, which suggests that w(i,j) is kept

unchanged at the moment. In all other cases, w(i,j) is adjusted based

on the difference between the SWVF output y(r,s) and the feature

signal y*(r,s) because the value of sgn(�) is usually very close to –1 or

1. To keep the aggregated distances in Eq. (5) positive, and thus to

ensure the unbiased low-pass characteristics of the SWVF filters, a

projection function P(�), defined as P(w(i,j)) ¼ 0 for w(i,j) < 0 and

P(w(i,j)) ¼ w(i,j) for w(i,j) � 0, is used to project the updated weight

w(i,j) onto the constraint space of w during the adaptation process in

Eq. (6).

The algorithmic steps performed during the optimization of w
are summarized, in pseudo-code format, in Figure 12. The weight

adaptation in Eq. (6) is performed in all spatial locations (r, s) of
the microarray image x, i.e., for r ¼ 1,2,. . .,K1 and s ¼ 1,2,. . .,K2.

When the optimization of w is completed, the constructed SWVF

filter can be used to generate root signals by repeating the procedure

summarized in Figure 13, and thus segment the cDNA microarray

6 The initial weight vector can be set to any arbitrary positive value, but equally
aligned weighting coefficients such as w(i,j) ¼ 1, for (i,j) [ �, corresponding to the
robust smoothing functions and � << 0.5 are the values recommended in (Lukac et al.,
2004a) for conventional color image processing applications.

Figure 10. cDNA image characteristics corresponding to (a–c) a single pass through the SWVF operator and (d–f) root signal of the SWVF op-

erator: (a, d) image area of interest, (b, e) magnitude characteristics M(r,s), (c, f) directional characteristics D(r,s). [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com]
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image. To demonstrate the suitability of the proposed framework,

the robust straightforward solutions obtained through the end-user’s

choice of the parameters in Eq. (5) and the adaptive solutions in Eq.

(6) are used for comparison purposes in the sequel. Studies on

determining the optimal SWVF structure and the enumeration of

the various adaptation solutions have been addressed in Lukac et al.

(2004a) and are beyond the scope of this paper.

D. SWVF Root Signals. The proposed framework generates the

segmented cDNA microarray images by producing SWVF root

signals. The SWVF response to any input signal is uniquely defined

in Eq. (5) with the SWVF output y(r,s) [ C(r,s). Therefore, the root

signal

xðr;sÞ ¼ fSWVFðCðr;sÞ;w; pÞ ð10Þ

can be obtained by filtering repeatedly with a SWVF operator any

finite-length cDNA signal.

It should be emphasized that not all SWVF operators are suita-

ble for cDNA image segmentation. For example, the SWVF filter-

ing class includes two special subclasses of the so-called identity

and idempotent operators, respectively, which have an extremely

fast convergence to a root signal. Any SWVF operator with w(r,s) �P
w(i,j), for (i,j) [ � and (i,j) = (r,s), reduces to the identity filter,

which leaves the central sample x(r,s) unchanged (Lukac et al.,

2004a). Using an identity operator any input signal is always invari-

ant to filtering, with the output y(r,s) ¼ x(r,s). The second subclass of

operators, the so-called idempotent filters, produce a signal, which

is invariant to a second pass from the same filtering operator (Zeng,

1994). Both special cases as well as other SWVF operators with

inefficient smoothing capability preserve structural information and

noise in cDNA microarray image and thus, are neither capable of

normalizing the variations in the cDNA vector field nor separating

spots from the background. It is commonly accepted that both the

robustness and the smoothing capability of the selection type filters

increase with the degree of uniformity in the entries of w, and that

the most robust SWVF operators are those with the unity weight

vector7. The use of the SWVF operators with robust smoothing

characteristics makes the spots uniform and removes noisy fore-

ground information. Thus, these operators repeatedly used to pro-

cess the microarray image emphasize both the measured and per-

ceptual differences between foreground and background, and meet

the objective in Eq. (4).

Assuming that yn(r,s) is a vector in the image yn obtained after fil-

tering n times the input cDNA image x, the convergence rate

expressed as a function of the difference between two successive fil-

tering results can be defined as follow (Lukac and Plataniotis, 2005):

� ¼ Rðyn; yn�1Þ� �2 ð11Þ

where y0 ¼ x denotes the (input) cDNA microarray image that

undergoes segmentation. The proposed segmentation procedure is

completed when � ¼ 0, indicating that there are no changes in the

filtered signal and that the root signal has been reached. If real-time

processing aspects are of paramount interest, the segmentation pro-

cess can be stopped for � smaller than a user defined threshold.

When the stopping condition is satisfied, the value of n � 1 denotes

the iteration for which the root signal has been reached.

The root signal convergence process performs morphological

operations such as various compositions of erosion and dilatation

operations defined over C(r,s), which is considered as the structuring

element. The impairments present in background have magnitude

larger than the desired background samples and thus, they can be

considered \positive" noise, which can be efficiently removed by

either multichannel morphological erosion or opening (Magaros

and Schafer, 1987). In addition to positive noise, a number of spots

7 The multiplication of the weights in w by a positive constant does not affect the
performance of the SWVF operator defined in Eq. (5).

Figure 11. SWVF adaptation schemes adjusting the weights using: (a) the central sample x(r,s), (b) the robust estimate y*(r,s), (c) both the central

sample x(r,s) and the robust estimate y*(r,s).

Figure 12. Pseudo-code format of the SWVF weight vector adapta-

tion algorithm operating within the area of support �.
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contain (i) cDNA vectors that are, in terms of amplitude of their

components, smaller than neighboring vectors, and (ii) holes that

have been created by cDNA vectors of zero-like magnitude. These

impairments can be viewed as \negative" noise which can be effi-

ciently handled using dilatation or closing morphological operators.

Figure 14 shows that any high-frequency impairments such as out-

liers in the cDNA image data population (Fig. 14a) are smoothed in

a single pass using the robust SWVF operator (Fig. 14b). As shown

in Figures 14c and 14d, the framework completes morphological

processing like operations by repeatedly filtering the acquired

image. In this case, any small signal structures contained in C(r,s),

such as irregular spots or holes present in the microarray spots

are removed from the segmented image using root signals, which

can be seen as performing erosion/opening or dilatation/closing

operations.

The replacement of the window center yn�1
(r,s) with the statisti-

cally, under the setting of SWVF parameters, most similar, to the

cDNA samples within C(r,s), vector y
n
(r,s) produces a spot which is

uniquely described by dominant color vectors. The generated seg-

mented images have normalized intensity in both the background

and the spot locations. Furthermore, the difference, both visually

perceived and objectively measured between foreground and back-

ground information, has been enhanced. This difference can be fur-

ther increased by root signal post-processing operations. By per-

forming thresholding operations over the magnitude of the root sig-

nal, the framework removes residual irregular spots and idealizes

the background in the segmented microarray image (Fig. 14d).

A pipeline architecture of the proposed cDNA microarray image

segmentation framework is depicted in Figure 15b. As it can be

seen, the proposed segmentation approach should be considered as

a replacement of the conventional microarray image process-

ing pipeline (Fig. 15a) operating in a cascaded processing mode.

Furthermore, visual inspection of the block diagram representation

given in Figure 16 reveals that by (i) setting the filter parameters,

(ii) choosing the window shape, (iii) determining the SWVF

processing mode, and (iv) employing the proper weights’ adapta-

tion mechanism, the framework can offer solutions which differ in

their design philosophy, characteristics, computational complexity,

and performance. The enumeration of all available options or the

determination of the best configuration of construction elements,

according to specified criteria, is beyond the scope of the paper. To

Figure 15. cDNA microarray image segmentation pipeline architec-

tures: (a) the conventional pipeline, (b) the proposed framework.
Employing the root signal concept, the proposed vectorial processing

based segmentation approach replaces the set of four processing

operations used in the conventional processing pipeline.

Figure 14. Comparison of the images produced at the different

stages in the proposed segmentation framework: (a) input cDNA

microarray image, (b) SWVF output, (c) SWVF root signal, (d) SWVF
root signal after postprocessing. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com]

Figure 16. Block diagram representation of the proposed cDNA

microarray image segmentation framework.

Figure 13. Pseudo-code format of the SWVF image processing

algorithm (one pass only) operating within the area of support �.

Vol. 16, 51–64 (2006) 59



demonstrate the suitability of the proposed framework, the most

typical solutions obtained in Eqs. (5) and (6) are used in the sequel

for comparison purposes.

IV. EXPERIMENTAL RESULTS

A number of microarray images has been used to test and evaluate

the performance of the proposed framework. Examples of 200

� 200 patterns (eight bits per component) cropped from the images

captured using laser microscope scanners are shown in Figures 17a

and 18a. The test images vary in both complexity and noise appear-

ance. Therefore, they can be used to test the robustness of the pro-

posed framework. In addition to the real cDNA microarray images

depicted in Figures 17a and 18a, phantom images (Figs. 19a and

20a) with a spatial resolution of 200 � 200 pixels are used so that

an objective evaluation of the proposed framework via the compar-

ative evaluation of the produced output images and the original

phantom images is possible.

For the comparisons three robust SWVF operators, defined in

Eq. (5) using the unity weight vector w are considered. Namely, we

choose those which operate in the magnitude domain (p ¼ 0), direc-

tional domain (p ¼ 1), and the SWVF operator which uses both the

magnitude and the directional characteristics of the cDNA vectors

simultaneously (p ¼ 0.5). An SWVF operator (p ¼ 0.5) using a

weight vector w determined adaptively from the microarray image

via Eq. (6) is considered, as well. In all proposed solutions, a 3 � 3

square window, and a non-recursive processing mode are em-

ployed. The proposed solutions are compared, in terms of perform-

ance, against other segmentation techniques, such as the morpho-

logical approach and clustering based segmentation technique

which were shown to be quite appropriate for cDNA image

segmentation.

A. Examination of the Performance Using Real cDNA
Microarray Images. Figures 17 and 18 allow for the visual com-

parison of the input cDNA microarray images and the correspond-

ing segmented images. The results are evaluated subjectively since

for realistic applications ground-truth (original) images are usually

not available. Therefore, image quality is evaluated in terms of spot

Figure 17. cDNA microarray images

corresponding to (a) input cDNA

microarray image and (b–g) its seg-

mented versions obtained using (b)
morphological approach, (c) clustering

technique, (d) proposed nonadaptive

approach with p ¼ 0, (e) proposed
nonadaptive approach with p ¼ 1, (f)

proposed nonadaptive approach with

p ¼ 0.5, (g) proposed adaptive ap-

proach with p ¼ 0.5. [Color figure can
be viewed in the online issue, which

is available at www.interscience.wiley.

com]

Figure 18. Another example of cDNA
microarray images corresponding to (a)

input cDNA microarray image and (b–g)

its segmented versions obtained using
(b) morphological approach, (c) cluster-

ing technique, (d) proposed nonadap-

tive approach with p ¼ 0, (e) proposed

nonadaptive approach with p ¼ 1, (f)
proposed nonadaptive approach with p

¼ 0.5, (g) proposed adaptive approach

with p ¼ 0.5. [Color figure can be

viewed in the online issue, which is
available at www.interscience.wiley.

com]
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preservation and the presence of residual noise which can be

viewed as the result of faulty processing.

Visual inspection of Figure 17 indicates that the input cDNA

image (Fig. 17a) contains various foreground and background im-

pairments. Moreover, a number of spots have holes and varying col-

orations. Morphological processing (Fig. 17b) removes the back-

ground noise present in the input cDNA image and normalizes the

variations of the spots’ intensities. However, it does not completely

eliminate the holes presents in the spots while at the same time

enhances irregular spots in various image locations, thus introduc-

ing additional errors that will affect the accuracy of the subsequent

processing tasks such as gene expression analysis. Figure 17c

depicts the image produced by a clustering based segmentation

technique subsequently followed by component-wise median filter-

ing. Although the clustering approach is usually sensitive to noise,

the cascade of clustering and median filtering operations overcomes

Figure 19. Results obtained using

the artificially corrupted phantom

images: (a) original image, (b) noisy

image, (c) morphological approach,
(d) clustering technique, (e) proposed

nonadaptive approach with p ¼ 0,

(f) proposed adaptive approach with
p ¼ 0. [Color figure can be viewed in

the online issue, which is available at

www.interscience.wiley.com]

Figure 20. Another set of results
obtained using the artificially cor-

rupted phantom images: (a) original

image, (b) noisy image, (c) morphologi-

cal approach, (d) clustering technique,
(e) proposed nonadaptive approach

with p ¼ 0, (f) proposed adaptive

approach with p ¼ 0. [Color figure can

be viewed in the online issue, which is
available at www.interscience.wiley.

com]
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this limitation and often outperforms the morphological approach in

terms of spot intensity/color normalization. However, as it can be

seen, the segmentation performance is still rather insufficient, espe-

cially in the heavily noise-corrupted areas. This is not the case when

the proposed segmentation framework is used. By employing a so-

lution that operates in the magnitude domain, the proposed frame-

work produces the output image shown in Figure 17d. Visual

inspection of the result reveals that noise pixels have been elimi-

nated, the coloration of the spots is normalized, and the foreground

information is readily separated from the background. Figure 17e

displays the result obtained when the input cDNA image was pro-

cessed with a SWVF operator operating solely in the directional do-

main. The result indicates that directional processing based opera-

tors have worse smoothing characteristics compared to the magni-

tude processing based approaches (Lukac et al., 2004a) and may

not be suitable for processing two-component vectorial signals such

as cDNA microarray images. Better results are obtained when the

proposed solutions simultaneously utilize both magnitude and ori-

entation of cDNA vectors to segment the image (Figs. 17f and 17g).

However, the performance of such SWVF solutions seems to be

worse compared to their variants operating mainly in the magnitude

domain (i.e. 0.5 > p � 0). Note that the above discussion on the

suitability of directional processing operators in cDNA microarray

imaging coincides with the discussion in Lukac et al. (2004b).

The robust behavior of the proposed cDNA microarray image

segmentation solution is confirmed by the results depicted in Figure

18. Although in this case the acquired cDNA image (Fig. 18a) con-

tains a smaller amount of impairments compared to the input image

of Figure 17a, neither the morphological (Fig. 18b) nor the cluster-

ing (Fig. 18c) methods are capable of producing a segmented image

of higher quality compared to the images generated using the pro-

posed framework (Figs. 18d–18g).

B. Examination of the Performance Using Phantom
Images. To allow for the objective comparisons of all solutions

considered here, phantom images are used in the sequel. The

ground-truth (original) images shown in Figures 19a and 20a have

been corrupted using mixed noise, comprised of additive Gaussian

noise with the standard deviation equal to 30 and impulsive noise

with the impulse probability equal to 0.02 in order to generate the

noisy images shown in Figures 19b and 20b. These noisy images

have been subsequently processed and the segmented outputs are

shown in Figures 19c–19f and 20c–20f. Differences between the

segmented results and the original ground-truth images have been

calculated using the mean absolute error (MAE) and the peak sig-

nal-to-noise ratio (PSNR), which are commonly used in the image

processing community. The interested reader may find additional

information on the employed noise model and definitions of the

objective criteria in Lukac and Plataniotis (2006).

Results reported in Table I demonstrate that the proposed frame-

work clearly outperforms the competition in terms of both MAE

and PSNR. Note that the images obtained using clustering were

subsequently enhanced via component-wise median smoothing. A

parameter value of p ¼ 0 was used in the proposed framework. As

it can be seen, the best results (lowest MAE values and highest

PSNR values) were obtained using the proposed framework.

Inspection of the MAE values corresponding to the proposed frame-

work reveals a performance improvement due to weight adaptation

in the adaptive SWVF solution, which allows for better spot preser-

vation compared to its nonadaptive variant. On the other hand, ro-

bust nonadaptive solutions such as one employed in the experiment

usually produce images with higher PSNR values due to their

extensive smoothing characteristics.

Detailed inspection of the images shown in Figures 19 and 20

confirm the performance evaluation summarized in Table I. Com-

paring the segmented images, in terms of the spot preservation, the

presence of residual noise, and the similarity to the ground-truth

images, reveals that the proposed framework produced better results

than the morphological and clustering segmentation approaches.

Namely, Figures 19e and 19f and Figures 20e and 20f depict images

with properly extracted and smoothed spots, whereas Figures 19c

and 19d and Figures 20c and 20d list images which suffer from re-

sidual noise and spot intensity variations. Moreover, among the

considered solutions, images segmented by the proposed framework

exhibit the highest similarity to the original images. This suggests

that the proposed framework allows for simultaneous high-quality

image enhancement and spot segmentation.

C. Computational Complexity Analysis. Apart from the nu-

merical behavior (actual performance) of any algorithm, its compu-

tational complexity is a realistic measure of its practicality and use-

fulness. Therefore, solutions designed within the proposed cDNA

microarray segmentation framework are analyzed here in terms of

normalized operations, such as additions (ADDs), subtractions

(SUBs), multiplications (MULTs), divisions (DIVs), square roots

(SQRTs), comparisons (COMPs), and arc cosines (ARCCOSs).

Table II summarizes the total number of operations for the most

important solutions designed within the SWVF framework. Note

that the use of non-recursive or recursive processing mode keeps

the computational complexity of the operators unchanged (Burian

and Kuosmanen, 2002). The cost of the implementation of the

Table I. Objective comparison of the considered solutions.

Solution/Criterion

Fig. 19 Fig. 20

MAE PSNR MAE PSNR

Identity (noisy image) 17.2 18.6 17.4 18.6

Morphological 10.8 21.6 11.6 21.1

Clustering 11.5 20.5 12.1 19.8

Proposed non-adaptive 5.4 26.4 5.7 26.2

Proposed adaptive 5.2 26.3 5.5 26.1

Table II. Cost of the SWVF solutions in Eq. (5) for a 3 � 3 supporting window.

Filter/Operation ADDs SUBs MULTs DIVs SQRTs COMPs ARCCOSs

w ¼ 1; p ¼ 0 108 72 72 – 36 8 –

w ¼ 1; p ¼ 1 180 – 162 36 36 8 36

w ¼ 1; p ¼ 0.5 288 72 243 36 90 8 36

Arbitrary w; p ¼ 0 108 72 144 – 36 8 –

Arbitrary w; p ¼ 1 180 – 234 36 36 8 36

Arbitrary w; p ¼ 0.5 288 72 387 36 90 8 36
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SWVF operators increases with the level of the generalization. The

most attractive solution, from a computational point of view, is

obtained when a SWVF operator with p ¼ 0 and w ¼ 1 is

considered.

Since the cDNA image processing is commonly performed

using a PC, the efficiency of the SWVF operators can also be mea-

sured, in terms of the execution time in a typical computing plat-

form. When implemented in software, on a PC equipped with an

Intel Pentium IV 2.40 GHz CPU, 512 MB RAM, Windows XP

operating system, and MS Visual Cþþ 5.0 programming environ-

ment, the proposed SWVF operator with p ¼ 0 and w ¼ 1 process-

ing a 200 � 200 cDNA microarray image requires (on average)

0.43 s per single pass. Using the SWVF weights’ adaptation tool

requires an additional processing time of 0.92 s.

Note that the objective of this analysis is to provide qualitative

benchmark information regarding implementation issues and not to

exhaustively cover all possible implementations. The development

of software-optimized realizations of the algorithms under consider-

ation is beyond the scope of this paper.

D. Discussion. Summarizing the findings obtained from the ex-

perimental analysis, the following claims can be made:

� The root-signal based solutions constitute a powerful cDNA

microarray segmentation framework. The proposed frame-

work excellently extracts spots while preserving both spatial

and spectral characteristics of the cDNA vectors.

� The repetitive use of the robust SWVF operators eliminates

noise, rejects irregularities present in the cDNA microarray

images, and extracts perfectly the desired spots.

� The proposed framework is robust and outperforms other

commonly used cDNA image segmentation solutions.

It should be also noted that the use of the proposed framework

necessitates the division of large cDNA microarray image into

smaller patterns, such as those shown in Figures 17a and 18a, which

are comprised of *10 � 10 microarray spots, so that faster conver-

gence to root signals and better spot segmentation are obtained.

Therefore, the use of the proposed framework in practice will most

probably require high-power processor arrays and parallel process-

ing of scanned high-resolution cDNA images. Note that our frame-

work can be applied to images of any spatial resolution. However,

the use of cDNA microarrays with a resolution of at least 80 pixels

per spot (in average) is recommended for high-quality results to be

obtained.

In addition, as the recorded processing time suggests, repetitive

filtering of input images may be time consuming. Our experimenta-

tion showed that sufficiently good results are produced by the intro-

duced framework within 10–15 iterations. Since this number of iter-

ations requires e6 s per 200 � 200 pixel pattern, the development

of fast SWVF algorithms will be of interest. One possible way of

speeding up the process is to search for root signals such as multi-

channel constant regions and multichannel step edges inside a filter

window. Knowing the root signals of a given filter allows for the

elimination of extensive calculations due to the fact that local root

signals are invariant to filtering, and thus their presence in the filter

window directly determines the filter output. Alternatively, as the

numbers listed in Table II indicate, magnitude processing based

SWVF operators (i.e. p ¼ 0) should be used. This choice provides

the best trade-off between performance and computational effi-

ciency. Finally, visual inspection of the SWVF weights listed in

Table III suggests that although the suboptimal weight vector

obtained in Eq. (6) varies depending on the image complexity and

the noise characteristics, the proposed SWVF weight adaptation

usually results in the center-weighted structures (i.e., structures with

the highest value of the central weight w(r,s) and lower, approxi-

mately equal values of the remaining weights w(i,j), for (i,j) =
(r,s)). The contribution of the neighboring cDNA vectors located in

(i,j) [ �, for (i,j) = (r,s), increases with the noise corruption to

achieve the balance between spot preservation and noise attenua-

tion. Tuning only the center weight w(r,s) instead of the complete

weight vector w will allow for the additional boosting of the com-

putational efficiency.

V. CONCLUSION

This paper introduced a unique, root-signal based cDNA microarray

image segmentation framework. The proposed framework employs

generalized vector filtering operators to utilize essential spatial

(edges, structural information) and spectral (magnitude and direc-

tion of cDNA vectorial inputs) image characteristic to track the

changes in the structural content of the microarray image. By

repeating the robust filtering process over the input image the

framework produces a root signal which is invariant to further proc-

essing with the same type of the filtering operator. The achieved

root signal represents a segmented microarray image with normal-

ized data and enhanced spot information, thus suggesting that the

roots are perfectly suitable for subsequent analysis and gene expres-

sion determination related tasks.
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