Using matching distance in Size Theory: a survey
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Abstract

In this survey we illustrate how the matching distance between reduced
size functions can be applied for shape comparison.

We assume that each shape can be thought of as a compact connected
manifold with a real continuous function defined on it, that is a pair
(M, : M — R), called size pair. In some sense, the function ¢ fo-
cuses on the properties and the invariance of the problem at hand. In
this context, matching two size pairs (M, ) and (N,) means looking
for a homeomorphism between M and N that minimizes the difference
of values taken by ¢ and 1 on the two manifolds. Measuring the dissimi-
larity between two shapes amounts to the difficult task of computing the
value § = infy maxpenm |p(P) — (f(P))| where f varies among all the
homeomorphisms from M to N.

From another point of view, shapes can be described by reduced size
functions associated with size pairs. The matching distance between re-
duced size functions allows for a robust to perturbations comparison of
shapes.

The link between reduced size functions and the dissimilarity measure
0 is established by a theorem stating that the matching distance provides
an easily computable lower bound for J.

Throughout this paper we illustrate this approach to shape comparison
by means of examples and experiments.
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1 Introduction

Shape matching plays an important role in a number of Computer Vision prob-
lems, such as, e.g., shape retrieval, shape recognition and shape classification.
Various techniques have been proposed to deal with the shape matching problem
(see, e.g., (Veltkamp and Hagedoorn 2001)). A possible approach to this subject
is to compare shapes by solving some minimization problem (see, e.g., (Hancock
and Pelillo 1999)). This research line includes the natural pseudo-distance.

We assume that shapes can be described by pairs (M, ¢), where M is a
compact connected manifold, and ¢ : M — R is a continuous function focusing
on the properties and the invariance of the matching problem at hand. In
our setting, comparing two shapes represented by (M, ) and (N, 1)), with
M and N homeomorphic, means considering all the possible homeomorphisms
f: M — N and computing the number inf; maxpepq |(P) — ¢(f(P))|. The
latter is a measure of the dissimilarity between the shapes represented by (M, ¢)
and (N, 1), called natural pseudo-distance (see, e.g. (Frosini and Landi 1999),
(Donatini and Frosini 2004b)).

In order to compute this dissimilarity measure, one must deal with an opti-
mization problem and look for the transformation that minimizes the difference
between two pairs (M, @), (N, 1) (in case it exists). This optimization problem
is intrinsically difficult. In order to obviate this difficulty we rather estimate the
dissimilarity by looking for a lower bound for the natural pseudo-distance.

A result recently proved in (d’Amico et al. 2003) states that a lower bound
for the natural pseudo-distance is provided by a suitable matching distance
between reduced size functions. These are (easily computable) functions, defined
to describe shapes: the reduced size function €7, : {(z,y) eR?: 2z <y} — N
is defined by setting 62‘ M) (z,y) equal to the number of connected components
of the lower level set {P € M : ¢(P) < y} which contain at least a point of
{PeM:pP) <z}

A matching distance d,,q.tcn between reduced size functions can be easily
introduced. When M and N are homeomorphic, the following inequality holds:

f:/gliN max lp(P) = (f(P)| = dmaten (€ a0y Cin )

where f varies among all possible homeomorphisms. This yields an easily com-
putable lower bound for the dissimilarity measure problem. This and other
related results are examined in detail in (d’Amico et al. 2005).

This paper is devoted to illustrate all the previous concepts and related
properties, and to point out the usefulness of this approach to shape comparison.



In Section 2 we shall recall the definitions of natural pseudo-distance between
size pairs and of reduced size function. In Section 3 the definition of match-
ing distance between reduced size functions will be given together with some
theoretical results, and exemplified. Section 4 and Section 5 will be devoted to
experiments and conclusions, respectively.

2 Natural pseudo-distance and reduced size func-
tions

We begin with the definition of a pseudo-distance that allows us to measure the
extent to which two shapes are similar to each other.

We stress the fact that when we think to the concept of shape, we have in
mind a compact connected n-manifold M with a continuous real-valued func-
tion ¢ defined on it (no assumption is made about the regularity of M). The
manifold represents the object whose shape we are interested in (e.g., a silhou-
ette), whereas the continuous function is chosen arbitrarily, usually according
to the properties and the invariance of interest for the problem at hand (see,
e.g., (Kaczynski et al. 2004), (Verri and Uras 1994), (Landi and Frosini 2002)).
The pair (M, ) is called an n-dimensional size pair.

Hereafter, M and AN will denote compact connected n-manifolds, and ¢ :
M — R, ¢ : N — R will be continuous functions, called measuring functions.

We point out that there is no limitation on the dimension of M. Therefore,
although so far most of the experiments in this field have been carried out for
2-D objects, the theory holds in general for any dimension.

The assumption on the connectedness of M can easily be weakened to any
finite number of connected components, without much affecting the following
results. More serious problems would derive from considering an infinite number
of connected components.

Definition 2.1 Let (M, ), (N,%) be two size pairs and let H (M, N') be the
set of all the homeomorphisms from M onto N. If H(M,N) # 0, let us
consider the function © that takes each homeomorphism f € H (M, N) to the
real number O(f) = maxpea [0(P) — ¢ (f(P))|. We shall call © the natural
measure in H (M, N) with respect to the measuring functions ¢ and 1.

In plain words ©® measures how much f changes the values taken by the
measuring functions.

Definition 2.2 We define the natural pseudo-distance between (M, p) and
N, 9) as inf e gy O(f) if H(M,N) # 0 and 00 otherwise.

It is not difficult to see that Def. 2.2 really gives a pseudo-distance. We
point out that it is not a distance, but just a pseudo-distance, since it can be
vanishing for size pairs which are not equal. However it is symmetric, satisfies
the triangular inequality and vanishes for equal size pairs.



As an example of the natural pseudo-distance between two size pairs, con-
sider the two tori 7,7’ C R? of Figure 1, generated by the rotation around
the y-axis of the circles lying in the plane yz and with centres A = (0,0, 3)
and B = (0,0,4), and radii 2 and 1, respectively (see, e.g., (Donatini and
Frosini 2004b)). As measuring function ¢ (resp. ¢’) on 7 (resp. on 7') we take
the restriction to 7 (resp. to 7’) of the function ¢ : R® — R, ((z,y, 2) = 2. We
point out that, for both 7 and 77, the image of the measuring function is the
closed interval [—5,5]. It is intuitive and not difficult to prove that the natural
pseudo-distance between (7, ) and (77, ¢’) is 2 (for a proof see (Frosini and
Mulazzani 1999)).

T T’

Figure 1: The size pairs (7, ) and (77, ¢’), with ¢ and ¢’ equal to the height
function, have natural pseudo-distance equal to 2.

It must be noted that the computation of the natural pseudo-distance is
feasible just in few cases, as it involves the study of all homeomorphisms between
two manifolds. On the other hand, using the natural pseudo-distance we can
compare compact manifolds with respect to given measuring functions in a very
powerful manner, and quantify the difference. Thus we need a tool to easily
obtain information about the natural pseudo-distance without computing it
directly: the concept of reduced size function is such a tool.

Remark 2.3 We point out that an alternative definition of dissimilarity mea-
sure between size pairs based on the integral of the change of the measuring
functions rather than on the max may present some drawbacks.

For example, let us consider the following size pairs (M, ¢), (N,v), (N, x),
where M is a circle of radius 2, N is a circle of radius 1, and the measuring
functions are constant functions given by o = 1, v =1, x = 2. Let u and
v denote the 1-dimensional measures induced by the usual embeddings of M
and N respectively in the Euclidean plane. By setting, for any homeomorphism

fM—=N,
@(f)=/ o — o fldu,
M



we have O(f) = 0. For any homeomorphism g : N'— N, we have

@(g)—/le—xogldv—%

On the other hand,

®(g<>f)=/M\<p—xogof|du:47r.

Hence, the inequality ©(go f) < O(f) + O(g) does not hold. This fact prevents
the function inf e g aq,n) é)(f) from being a pseudo-distance, since we do not
get the triangular inequality. Furthermore this function is not symmetric on all
couples of size pairs.

It could be interesting to explore other dissimilarity measures based on some
integral of the change of the measuring functions.

In what follows, A denotes the diagonal of R?, that is A = {(z,y) € R? : . =
y}; moreover, AT denotes the open half-plane above A, that is AT = {(z,y) €
R?:z < y}.

Definition 2.4 For every size pair (M, p), the reduced size function EE‘M#}) :
AT — N is defined by setting K?M#P) (z,y) equal to the number of equivalence
classes into which the lower level set {P € M : o(P) < x} is divided by the
equivalence relation of (¢ < y)-connectedness, where P and @ are (¢ < y)-

connected if they belong to the same connected component of the lower level set
{PeM:o(P)<y}.

As an example of reduced size function, consider the size pair (M, ¢) where
M is the curve depicted in Fig. 2(left), and ¢ is the measuring function that
takes each point of M to its distance from the barycenter of M. In Fig. 2(right),
we show the reduced size function £ M) AT — N. The number given in every
region of the domain is the constant value taken by the reduced size function in
that part of the domain. For instance, for b < x < ¢ the set {P € M : p(P) <
x} has three connected components, two of which are contained in the same
connected component of {P € M : ¢(P) < y} when ¢ < y < d. Therefore,
€2‘M,(p)(x,y):2f0rb§x<candc§y<d. When b <z < cand y > d
all of the three connected components of {P € M : ¢(P) < z} belong to the
same connected component of {P € M : ¢(P) < y}, implying that in this case
U@, y) = 1. Fora < 2 < b the set {P € M : o(P) <z} has only two
connected components, which are contained in different connected components
of {P € M: ¢(P) <y} when v <y < d. Therefore, (7, (z,y) = 2 for
a<zx<band x <y <d.

The reason for introducing reduced size functions instead of working with
classical size functions ((Verri et al. 1993), (Frosini and Landi 1999)) is that,
while maintaining all the fundamental properties of size functions, reduced size
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Figure 2: Left: A size pair (M, ), where M is the curve depicted by a solid line,
and ¢ is the distance from the barycenter of the curve. Right: the corresponding
reduced size function.

functions allow us to avoid some technicalities and simplify a number of proofs.
From the mathematical viewpoint, the difference between the two concepts lies
in the use of connectedness instead of arcwise connectedness and the restriction
of the domain from R? to A™.

It is important to remark that classical and reduced size functions are easily
computable, (cf. (Frosini 1992), (Frosini and Pittore 1999) and (d’Amico 2000)).

3 Estimating the natural pseudo-distance via the
matching distance

3.1 Matching distance for reduced size functions

Size functions and reduced size functions are useful for comparison of shapes
even independently of the natural pseudo-distance. Indeed they can be consid-
ered as shape descriptors (see, e.g., (Dibos et al. 2004), (Donatini et al. 1998),
(Collina et al. 1998), (Ferri et al. 1998), (Handouyaya et al. 1999), (Ferri et
al. 1994)). Therefore, they allow to translate the problem of comparing shapes
to the problem of comparing functions, that is a much simpler task. In order to
perform the comparison between reduced size functions we can measure the cost
necessary to deform reduced size functions into each other. Minimizing such a
cost allows for a measure of the similarity between shapes.

In order to do so, reduced size functions are firstly transformed into simpler
objects, precisely into sequences of points. This representation by means of
sequences of points contains the same amount of information about the shape
under study as the original reduced size function does but it is much easier to



handle. Then we define a suitable matching distance between these sequences
of points. This way we can measure the extent to which two shapes resemble
each other by computing this matching distance.

We begin by describing how reduced size functions can be transformed into
sequences of points.

We introduce cornerpoints, that are particular points in R x (RU{oo}) with
reference to a reduced size function. The reader is referred to (Frosini and
Landi 2001) for more details concerning cornerpoints.

Definition 3.1 For every point p = (z,y) € A™, let us define the number p(p)
as the minimum, over all the positive real numbers € with x + € < y — €, of

E?‘MW)(JJ—FG,y—e)—ﬁz‘MW)(:E—e, y—e)—ﬁz‘Mﬁw) (x+e, y+€)+£?/\/l,¢) (x—e,y+e).

The finite number p(p) will be called multiplicity of p for EE‘M o) Moreover, we
shall call proper cornerpoint for E’(*M o) oy point p € AT such that the number
w(p) is strictly positive.

Definition 3.2 For every vertical line r, with equation x = k, let us define
the number p(r) as the minimum, over all the positive real numbers € with
k+e<1/e, of

?Myw)(k +e1/e)— ’fM7¢)(k —¢1/e).

When this finite number, called multiplicity of r for {7, o) 18 strictly positive,
we call the line r a cornerpoint at infinity for the reduced size function, and we
identify r with the pair (k,c0).

Under our assumption on the connectedness of M, p(r) can take just the val-
ues 0 and 1, but the definition can be easily extended to disconnected manifolds
so that p(r) can equal any natural number.

The open (resp. closed) half-plane AT (resp. AT) extended by the points
at infinity of the kind (k, o0), with |k| < oo, will be denoted by A* (resp. A*).

As an example of cornerpoints in reduced size functions, in Fig. 3 we see
that the proper cornerpoints are the points A, B and C (with multiplicity 3, 2
and 1, respectively). The line m is the only cornerpoint at infinity.

In the framework of Size Theory, cornerpoints and their multiplicities are
fundamental features, since they completely determine reduced size functions.
Indeed, the following representation theorem can be proved (cf. (Frosini and
Landi 2001) and (d’Amico et al. 2003)):

Theorem 3.3 For every (z,y) € AT we have

limep @) = Y nl@y).

(z,y)eA™*
T<ZT,Y>Y
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Figure 3: Cornerpoints of a reduced size function: A, B and C are the only
proper cornerpoints, and have multiplicity equal to 3 (A4), 2 (B), and 1 (C).
The line m is the only cornerpoint at infinity.
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This can be verified in the example of Fig. 3. For instance, let us take a point
P in the region of the domain where the reduced size function takes value equal
to 6. According to the above theorem, the value of the reduced size function at
P must be equal to p(m) + pu(A) +pu(B)=1+3+2=6.

We underline that even an infinity, though countable, of cornerpoints may
occur in a reduced size function. Nevertheless, these cornerpoints necessarily
accumulate onto the diagonal A. On the contrary, the connectedness of M
implies that each reduced size function has exactly one cornerpoint at infinity.

Moreover, it can be observed that, roughly speaking, the further a corner-
point is to A, the coarser is the shape feature that generates it; the closer a
cornerpoint is to A, the finer is the shape detail it represents.

These observations provide the rationale for introducing the following no-
tions.

Definition 3.4 Let {* be a reduced size function. We shall call representative
sequence for £* any sequence of points a : N — A*  (briefly denoted by (a;)),
with the following properties:

1. ag is the cornerpoint at infinity for £*;

2. For each i > 0, either a; is a proper cornerpoint for £*, or a; belongs to

A:

3. If p is a proper cornerpoint for ¢* with multiplicity u(p), then the cardi-
nality of the set {i € N: a; = p} is equal to pu(p);

4. The set of indexes for which a; belongs to A is countably infinite.

In the example of Fig. 3, one obtains a representative sequence by taking,

for instance, ag = m, ay = A, as = A, a3 = A, ay = B, a5 = B, ag = C, and
a; € A for every i > 6.



We now define a pseudo-metric in A* that will give rise to a distance between
reduced size functions, based on the matching of two representative sequences.

Definition 3.5 Throughout the rest of the paper, d will denote the pseudo-
distance on A* defined by setting, for any (x,y), (z',y’) in A*,

_ r
(@) ') = min fana (o = oy =/ e { 255, ST

with the convention about co that co —y =y — 00 = 0o for y # oo, oo — oo = 0,
>

F = 00, |oo| = oo, min{oo, c} = ¢, max{oo, c} = oc.
In other words, the pseudo-distance d between two points p and p’ above the
diagonal measures the smaller between the cost of moving p to p’, and the cost
of moving p and p’ onto the diagonal, where costs are computed by using the
distance induced by the max-norm. The pseudo-distance d between two points p
and p’ on the diagonal is always 0. The pseudo-distance d between two points p
and p’, with p above the diagonal and p’ on the diagonal is equal to the distance,
induced by the max-norm, between p and the diagonal. Points at infinity have
a finite distance only to other points at infinity and their distance depends on
their abscissas.

Definition 3.6 If (a;) and (b;) are two representative sequences for €5 and €3
respectively, then the matching distance between €5 and €5 is the number

dmatch( 1 é;) = H;f sup d(ai, bo’(i))7

(3

where 1 varies in N and o varies among all the bijections from N to N.

It is easy to see that this definition is independent from the choice of the
representative sequences of points for the reduced size functions ¢7 and 3.

Moreover, the inf and the sup in the definition of matching distance are actu-
ally attained, that is to say dmaten (7, £5) = ming max; d(aq, by (;)) (cf. (d’Amico
et al. 2003), (d’Amico et al. 2005)).

We point out that d,,qich is actually a distance and not just a pseudo-distance
between reduced size functions.

This kind of metric based on the matching between two point sets is known in
the literature also with the name of bottleneck distance (see, e.g., (Veltkamp and
Hagedoorn 2001)). Algorithms for its computation are discussed for example in
(Efrat et al. 2001). The computational complexity for the matching distance is
polynomial (O(n*?®), where n is the maximum number of cornerpoints allowed
in the reduced size functions).

Although not thoroughly studied from a theoretical viewpoint until (d’Amico
et al. 2003), applications of the dqten distance have already proved to be
successful in the implementation of an image retrieval system ((Brucale et
al. 2002)). Indeed, a discrete counterpart of the size function theory based
on graphs has been developed.
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Figure 4: Left: Two curves. Center: Their reduced size functions with respect
to the measuring function distance from the center of the image. Right: The
superimposition of the two reduced size functions.

Experiments showing the effective capability of the d;,qtcn distance in com-
paring shapes are postponed until Sect. 4. Here we confine ourselves to furnish
an example of how the matching distance works. Consider Fig. 4. Given two
curves, their reduced size functions with respect to the measuring function dis-
tance from the center of the image are calculated. One sees that the top reduced
size function has many cornerpoints close to the diagonal in addition to the cor-
nerpoints r, a, b, ¢, d, e. Analogously, the bottom reduced size function has
many cornerpoints close to the diagonal in addition to the cornerpoints '/, a’, ¥’,
¢’. Cornerpoints close to the diagonal are generated by noise and discretization.
The superimposition of the two reduced size functions shows that an optimal
matching is given by r - ', a —d, b=V, c—,d — A, e — A, and all the
other cornerpoints sent to A. Sending cornerpoints to points of A corresponds
to the annihilation of cornerpoints. Since the matching ¢ — ¢’ is the one that
achieves the maximum cost in the max-norm, the matching distance is equal to
the distance between ¢ and ¢ (with respect to the max-norm).

3.2 A lower bound for the natural pseudo-distance

A useful result holds, concerning an estimate for the natural pseudo-distance
given in terms of the matching distance between reduced size functions. It can be



seen as a consequence of the stability of the matching distance: small changes
of the measuring functions produce small changes in the matching distance
between reduced size functions. More precisely, if ¢ and i are two measuring
functions on M whose difference on the points of M is controlled by e (namely
maxpepm |p(P) — ¥(P)] <€), then the matching distance between i,y and
eEFM,w) is also controlled by € (namely dmatCh(E?M,cp)’e?M,w)) <e).

Theorem 3.7 Let (M, p) be a size pair. For every real number ¢ > 0 and for
every measuring function ¥ : M — R such that maxpeam |@(P) — ¥(P)] < e,
the matching distance between EZ‘M ) and KE‘M ) is smaller than or equal to €.

As a consequence of Thm. 3.7, the following result can be deduced, providing
a lower bound for the natural pseudo-distance between size pairs (cf. (d’Amico
et al. 2003)).

Theorem 3.8 Let (M, ) and (N,1)) be two size pairs, with M and N home-
omorphic. Then

Mi?i/v max lp(P) = (f(P)| = dmaten(E{pm, o) Cin )

where f varies among all possible homeomorphisms from M to N

3.3 Comparison with an earlier result

Theorem 3.8 is not the only link between reduced size functions and the natural
pseudo-distance. Indeed, the following result can been proved (cf. (Donatini
and Frosini 2004a)):

Theorem 3.9 If there exist (z,y) and (§,m) in AT such that Ui (@,y) >
Cin gy (&5m) then

. B > mi B B
inf max |o(P) — 9 (h(P))| = min{§ - 2,y —n},
where h varies among all possible homeomorphisms from M to N.

However, the estimate for the natural pseudo-distance stated in Thm. 3.8

improves this earlier result. The following theorem can be proved (cf. (d’Amico
et al. 2003), (d’Amico et al. 2005)):

Theorem 3.10 Assume that
A={((z.y) (€ m) € AT X AY €2 2,m <y, ) (@) > G ()}

s non-empty, and let

s=  sup  {min{{ —z,y —n}}
((z,y),(&m))€A

(in other words, s is the best lower bound we can get for the natural pseudo-
distance infp maxpepa |p(P) — ©(h(P))| by applying Thm. 8.9). Then

maten (C{pa, ) Lin ) 2 8-



4 Experiments

We have used the matching distance between reduced size functions to perform
some queries in a dataset of 59 images (shown in Fig. 5, by courtesy of Siddiqi
and Pelillo, cf. (Pelillo et al. 1999)), representing the silhouettes of various
objects.

For each image in the dataset the outer boundary is considered. Five reduced
size functions have been computed, corresponding to five different measuring
functions, that are the distances of a point from the five points of coordinates
(0,0), (0,1), (1,0), (—=1,0) and (0, —1), respectively. Coordinates are taken in a
reference frame with origin in the barycenter B of the curve and axes with fixed
direction and unit length equal to the average distance of the curve from B.

Tests have been performed by comparing the family of the five reduced size
functions of the query image with those of each image in the dataset, using the
matching distance. Then, the final ranking is obtained by summing up these
distances.

We report some examples in Fig. 6. The query images are represented in the
first column. The first six results are displayed in the next columns, ordered by
ranking, and their distance from the query image is displayed.

We point out that the chosen measuring functions are invariant by transla-
tions and scale, but not by rotations. For this reason, objects obtained from each
other by means of rotations may not give rise to similar reduced size functions,
and their matching distance may be great.

The time needed for computing each matching distance in Fig. 6 is below
50 milliseconds on an ordinary PC at the time we are writing. In this case
the maximum number of cornerpoints that we consider for each reduced size
function is 15.

5 Conclusions

In this survey we have described the approach to comparison of shapes by means
of the matching distance between reduced size functions. One of the main
properties of this distance, as shown in (d’Amico et al. 2003) and (d’Amico
et al. 2005), is to be robust with respect to small changes of the measuring
functions. This stability also allows to obtain a lower bound for the natural
pseudo-distance between size pairs, yielding an estimate for their dissimilarity
measure. Experiments have been carried out, illustrating the capability of the
matching distance to compare shapes.

This approach to shape comparison profits from its modularity. In fact,
the reduced size functions inherit the invariance of the measuring functions,
and hence changing the invariance group simply means changing the measuring
functions, without any other change in the mathematical model.

Moreover, matching distances can be computed in polynomial time when
the number of cornerpoints taken into account is bounded.
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Query

Top 6 matches

shape ] 2 3 | 4 5 6
N Noooo | No2oa | Nosiz | 2 0350 | N oses | A 037
NN o000 | No245 | Noasr | No201 | Noseo |\ 0377
! Y o000 | ¥oasi | Foeir | Noeso | Nosos | N osis
#0000 | ™ 0307 | ™ 0375 | ™ 0406 | 0472 | * 0519
000 | a2 | ¥ ouos | € ouas | *oar1 | ¥ 0us3
N Noooo | £ oossa | L oas0 | Nosas | A osmr |\ 0589
Z | 0000 | £ 040 | Woa17 | Noaso | N osso | N 0565
Z | Z o000 | Nossa | o400 | L ooaso | N osie |\ 0580
W | Woooo | Wo2i| Wosis | *o06st | S oris | ™ 072
W | Woooo | *os0s| Woeis | A oeo| Woes | * o6
W | Woooo | Wooou| Woeas | 0673 | ~ 008 | ™ 0720
o | o000 | ™ o521 | Moste | 0643 | * 0679 | * 0.697
B A o000 | o505 | Moo | o609 | o773 | * 0779
W | M oo000 | ™ ossa | ™ ose | M oeir | 0659 | ** 0680
N | Y0000 | No3m | S o062 | #0633 | < o7 | ¥ os2
Yo Moo | Mos2 | Woes2 | Nogos | Vore | Woras
NN 0000 | No204 | Nosos | Nos2s | 2 0350 | N 0366
< | <0000 | < 0405 | S 0766 | o83 | Toos2 | Woon
X | Y0000 | Nosma | Soema | o0 | ®ozer | ¥ 0760
NN 0000 | Noaro | Woroa | > o07aa | Worss | > 0766
> | > 0000 | =034 | No7es | 7 ose3 | N\ oss2 | S 0.887
® | 80000 ®oiss | €®oo3 | Boos | ®o33 | % 0600
® €. B | €00 | R0 B33 ¢ o6
N Noooo | Noa2r | Noas2 | N o239 | No2ss | N 0366

Figure 6: The result of some queries in our dataset.




The properties and examples shown in this paper provide justification for the
use of the proposed theoretical framework for shape matching and comparison.
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Figure 1: The size pairs (7, ) and (77, ¢’), with ¢ and ¢’ equal to the height
function, have natural pseudo-distance equal to 2.

Figure 2: Left: A size pair (M, ), where M is the curve depicted by a solid line,
and ¢ is the distance from the barycenter of the curve. Right: the corresponding
reduced size function.

Figure 3: Cornerpoints of a reduced size function: A, B and C are the only
proper cornerpoints, and have multiplicity equal to 3 (4), 2 (B), and 1 (C).
The line m is the only cornerpoint at infinity.

Figure 4: Left: Two curves. Center: Their reduced size functions with respect
to the measuring function distance from the center of the image. Right: The
superimposition of the two reduced size functions.

Figure 5: Our dataset.

Figure 6: The result of some queries in our dataset.



