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ABSTRACT: In this paper, we propose an analytical low-level repre-

sentation of images, obtained by a decomposition process, namely

the matching pursuit (MP) algorithm, as a new way of describing
objects through a general continuous description using an affine

invariant dictionary of basis function (BFs). This description is used to

recognize multiple objects in images. In the learning phase, a tem-

plate object is decomposed, and the extracted subset of BFs, called
meta-atom, gives the description of the object. This description is

then naturally extended into the linear scale-space using the defini-

tion of our BFs, and thus providing a more general representation of
the object. We use this enhanced description as a predefined diction-

ary of the object to conduct an MP-based shape recognition task into

the linear scale-space. The introduction of the scale-space approach

improves the robustness of our method: we avoid local minima issues
encountered when minimizing a nonconvex energy function. We

show results for the detection of complex synthetic shapes, as well

as real world (aerial and medical) images. VVC 2007 Wiley Periodicals,

Inc. Int J Imaging Syst Technol, 16, 162–180, 2006; Published online in Wiley

InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20078
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I. INTRODUCTION

Shape modeling and recognition is one of the basic operations in

image analysis, and represents a great deal of interest. These meth-

ods are used in many applications fields, such as face recognition,

retrieval of images in databases (content-based image retrieval

(CBIR)), satellite image analysis, or medical imaging.

Relevant regions, extracted from a previous segmentation pro-

cess, have to be coded/represented in some way, so that a further

analysis of their shape is possible. Numerous methods have been

presented, but all of them are linked by the same need: the shape

has to be coded in some way to be described efficiently. Styner sum-

marizes it as ‘‘A shape description is said to be efficient if shapes

are described by concise sets of parameters or features’’ (Styner and

Gerig, 2000). Moreover, this description has to be unique: we want

to get the same descriptor from the same object as a basis to perform

a correct shape recognition task. These descriptions have to be in

both cases invariant to translation, rotation, and scale, as these trans-

formations do not change their intrinsic shape characterization. The

shape recognition process is then realized, based on their descrip-

tion, usually in a one-to-one correspondence framework.

Many authors have presented different ways to produce a so-

called shape descriptor or shape representation, depending on

whether they give quantitative or qualitative measures (Pavlidis,

1980; Loncaric, 1998). The reader is referred to the works by Pavli-

dis (1980), Mehtre et al. (1997), Loncaric (1998), Veltkamp and

Hagedoorn (1999), Kindratenko (2003), Safar and Shahabi (2003),

and Zhang and Lu (2004) for further references on classical methods.

Different classifications of these methods were proposed accord-

ing to general description criteria. Among all, Pavlidis (1980) has

proposed three different classifications for the shape analysis meth-

ods (Pavlidis, 1980): the first one distinguishes between boundary-

based (local) and region-based (global) methods. The second one

takes into account the result of the analysis as numerical or not,

bringing respectively scalar transform or spatial transform domain

techniques. The third one relies on the information preserving prop-

erty or not, of each methods. In this work, we are interested in

methods related to spatial sparse representation models, with both

local and global features.

Many of these shape description techniques can be seen as

decomposition methods into fundamental elements/parts: many

terms have been used to name them, such as shape primitives (Sha-

piro, 1980), atoms (Pavlidis, 1980), geons (Biederman, 1985; Ull-

man, 1989), codons (Hoffman and Richards, 1983), etc., depending

of the features considered in each case. We use here shape primi-
tives as a general naming convention for all these terms. This

expression is normally dedicated to a structural model of shape

(see, e.g., Shapiro, 1980). Shapiro (1980) defined them as follows:

The primitives are the simple parts and intrusions of the shape

which can be derived through the graph-theoretic clustering

procedure.

Nevertheless, this generic term of shape primitives can be inter-

preted in other ways: let us look at the chain code method

(Freeman, 1974), consisting in assigning a direction to eachCorrespondence to: Dr. François Mendels; e-mail: fmendels@cognoscens.com
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segment composing a digitized contour, or its version with critical

points (e.g. Freeman, 1978). We can extend the shape primitives

concept and consider in this case the direction vectors adjoint to the

shape variation in orientation as the shape primitives.

Of course, shape decomposition techniques, such as Fourier

descriptors (Arbter et al., 1990; Kauppinen et al., 1995), iconic rep-

resentation (Rao and Ballard, 1995a,b; Ben-Arie et al., 1996a,b),

medial shape descriptors (Symmetric Axis Transform (SAT) (Blum,

1967; Blum and Nagel, 1978), and Spherical Harmonics functions

(SPHARM (Styner and Gerig, 2000; Brechbühler et al., 1995; Gerig

et al., 2001)), lead naturally to this vision of shape primitives, as

each of them uses simple elements to describe a complex shape:

this group of elements can be interpreted as the specific basis of the

shape. Pavlidis (1980) made the following statement for global

shape analysis:

Among the boundary points find sets of points which are closely

related. Such sets may be used to assign labels to corresponding

parts of the object.

In Ullman (1989), Ullman joins Pavlidis’s view in linking object

description to the recognition process: he describes the decomposi-

tion approach in constituent parts as a natural basis for object recog-

nition, where all objects are defined by a combination of these

components. He pointed out basic components such as line, points,

and corners as low-level representation opposed to more complex

components, such as group of basic ones linked with a spatial rela-

tionship, as high-level representation.

The full shape is then described by the set of constituent frag-

ments, overlapping each other or not: Ullman and Soloviev (1999)

present an example of a face summarization with a description

based on a set of overlapping parts of a face fragments training set,

containing structures as eyes, mouth, border of the face, hairs, etc.,

taken at different level of resolution.

All these descriptors are linked by the same need: getting a con-

cise description of a shape (Styner and Gerig, 2000), that may be

useful for shape recognition purposes. Depending on the targeted

recognition process, the shape descriptor benefits from invariance

properties to transformations, such as rotation, translation, or

scaling.

The image-coding domain has the same needs: representing a signal

in a compact way, in order to get a sparse representation, used, e.g., to

diminish transmission costs. Low-level representations are commonly

used for this purpose to have a concise and unique, if possible, descrip-

tion of a signal. Mallat and Zhang (1993) define their role as

Low level representations must also provide explicit information

on very different properties, while giving simple cues to differ-

entiate close patterns.

These representations reflects the signal structures to be ana-

lyzed, by isolating them when they are coherent with the reference

basis. Linear expansions of waveforms selected from a redundant

dictionary have been recently used to represent the signal, as they

allow to model adaptive signal representations (Mallat and Zhang,

1993). Such expansions lead to sparse codes (Pece, 2002). Iterative

greedy strategies were designed to obtain such descriptions by

decomposing signals into an overcomplete set of basis functions

(BFs). Many methods, such as the Method of Frames (MOF) (Dau-

bechies, 1988), the Best Orthogonal Basis (BOB) (Coifman and

Wickerhauser, 1992), the Matching Pursuit (MP) (Mallat and

Zhang, 1993; Bergeaud and Mallat, 1995), as some of its variations,

the Orthogonal Matching Pursuit (OMP) (Pati et al., 1993; Gharavi-

Alkhansari and Huang, 1998; Rebollo-Neira and Lowe, 2002), the

Basis Pursuit (BP) (Chen et al., 1998), the Stochastic Matching Pur-

suit (Wang and Goblirsch, 1997), the Statistical Matching Pursuit

(Wang et al., 1997), the weighted Lp Matching Pursuit (Donahue

et al., 1996), the Multiresolution Matching Pursuit (Figueras i Ven-

tura and Vandergheynst, 2002), the Inhibition method (Pece and

Petkov, 2000), the High-Resolution Pursuit (HRP) (Jaggi et al.,

1995, 1998, 1999), the Evolutionary Pursuit (Ferreira da Silva,

2003), were proposed to achieve these so-called atomic decomposi-
tions. The term atom is originated from designing BFs as atoms.

In this paper, an analytical low-level representation of images,

obtained by a decomposition process, namely, the matching pursuit

(MP) algorithm, is proposed as a new way of describing objects

through a general continuous description using an overcomplete

dictionary of basis functions, that is invariant to rotation, scale, and

translation transformations. We choose to characterize the objects

by their boundaries. Other decompositions methods may be applied

as well; nevertheless, we choose MP, as it is the basis of a class of

algorithms for linear approximations of functions.

Let us consider an overcomplete dictionary D of parametric BFs

gg that ensures a possible perfect reconstruction of the object image.

The set of parameters defining each function gg represents the shape
vectors of the object.

The shape description method introduced has the following

steps:

� From a template image of the object O to recognize, we

operate a decomposition using MP with the redundant dic-

tionary D.

� We obtain a set of parameters indicating the position, scale,

orientation, and amplitude of a subset of basis functions,

extracted from D, that best represents the template image O.

This group of atoms, that have a spatial relationship, is inter-

preted as a meta-atom gMg . This gives a description with both

local and global features.

� Using this template description, we generate a new redundant

dictionary DM, containing all variations of the previous deter-

mined meta-atom. We obtain a pseudo-affine invariant object

dictionary by introducing a shearing parameter, in addition to

a translation, isotropic dilation, and rotation parameters.

� We then perform the recognition process through an MP

decomposition of the target image T (where we want to find

the object) using this predefined dictionary DM. Setting up a

minimal error threshold, we find as many objects as T con-

tains that are similar up to an affine transformation to the

template object.

� We increase the robustness of the recognition process using

a coarse-to-fine scale-space recognition approach where the

implicit scale-space representation of the object is used.

� The implicit extension of the object dictionary into a linear

scale-space is given, using the scale parameter s as an iso-

tropic dilation of our basis functions.

Figure 1 presents the general scheme for shape recognition using

an MP-based object description.

The paper structure is as follows: in Section II, we briefly intro-

duce sparse representation methods whose general idea is related to

the method we introduce hereafter. A more detailed description of

Matching Pursuit is given in Section III, where some important
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properties related to shape description purposes are presented. Sec-

tion IV presents the shape descriptor, that uses anisotropic refine-

ment (AR) atoms, and some examples are discussed in IV-B.

Section IV-C discusses the possibility to choose another dictionary

to describe the shape.

The natural extension of the model to a linear scale-space fol-

lows in Section V: this extension will find its complete justification

in the next sections dealing with the recognition process.

Section VI first presents the object dictionary, based on the

meta-atom extracted previously. A shearing parameter is added to

obtain a pseudo-affine invariant dictionary. In section VII, we pres-

ent the shape recognition process based on a MP process. The dic-

tionary is extended into a linear scale-space by implicitly dilating

the meta-atom (see section VIII-A). The shape recognition process

is described at a given scale s in the linear scale-space (see section

VIII-B), and a multiscale scheme is proposed, based on a coarse-to-

fine approach (see section VIII-C).

Section IX shows some results of shape recognition on different

types of images, using different types of models, and also demon-

strates the model capacity to contain more than one object into a

single description.

II. RELATED APPROACHES

We are interested in methods related to spatial sparse representation

models, with both local and global features, whose general idea is

close to the iconic representation, first presented by Rao and Ballard

(1995), later improved by Ben-Arie et al. (1996a,b) by reaching

affine invariance property. In those works, the authors extract a

localized affine invariant version of image patches using Gaussian

kernels. The authors then use this shape signature in a one-to-one

comparison framework to perform recognition.

Some authors have looked into local spatial representation to

conduct recognition using local features: the banana wavelet

decomposition scheme, introduced by Krüger and coworkers (1997)

consists in extracting landmarks from images, in order to describe

common features in the chosen set of images. The authors first pro-

duced a set of banana wavelets Ba,c: �
2 ? �, by realizing the prod-

uct of a curved Gaussian and a curved wave function as defined in

Eq. (1):

Ba;cðx; yÞ ¼ exp � k2

2

xc
rx

� �2

þ yc
ry

� �2
 ! !

expði kxcÞ

with
xc

yc

� �
¼ Cc

cosðaÞ sinðaÞ
� sinðaÞ cosðaÞ

� �
x

y

� �� �
;

and Cc

x0

y0

� �
¼ x0 � cy2

y0

� �
; ð1Þ

where a, c, k [ �, Cc is the curving function, and k determines the

frequency of the wavelet.

By varying the parameters a and c, they produce a so-called ba-

nana plant, with the real part of Ba,c, shown in Figure 2.

By convolving the image with the banana plant, Krüger and

Peters obtain the banana wavelet response for a given landmark.

Finally, the landmarks joined with the best responses of each ba-

nana wavelet give a rough description of the surroundings bounda-

ries of the object considered: this can be viewed as a set of atoms

placed accurately along the most relevant edges.

Application-based attempts were drawn to look at special fea-

tures such as nose localization in face recognition process, based on

MP decomposition (Mallat and Zhang, 1993; Bergeaud and Mallat,

1995). In this face recognition application, Phillips (1994, 1998)

introduces matching pursuit filters (MPFs) as an adapted wavelet

expansion build from a training set of the object. This brings an ad-

aptation to data, and to the pattern recognition problem to solve.

Moreover, the provided description is able to capture both local and

global features, as it consists in the sum of spatial features, repre-

sented here by the chosen set of wavelets.

Philips uses this description to describe a nose with Gabor wave-

lets, called proto-nose. By filtering the complete face image with

the set of wavelets extracted, Phillips obtained the nose localization

and performed face identification.

Matching pursuit filters have been used by Huang and Hsu

(2000, 2001) to perform direct road sign recognition in a two-step

approach: first, they perform a detection of a region of interest

through template matching, and then the recognition part is con-

ducted using MPF method based on a trained set of possible atoms

combination to produce a template of a model, called proto-sign,
highlighting its geometrical features.

Zhao and Nandhakumar (1998) combine a holistic template model

with geometrical local features to perform face recognition. MPFs are

used to give a set of geometrical features representing a training set

of faces, while the linear discriminant analysis acts as a pattern classi-

fier. The faces are then recognized based on a set of discriminant fea-

tures, such as the nose and the eyes, identified with MPF parameters.

Other applications, such as voiced/unvoiced speech discrimina-

tion in noise, require the extraction of discriminant features to per-

form a classification process: Lobo and Loizou (2003) choose to

represent the speech signal using Gabor functions, and conducts the

decomposition of the signal using matching pursuit.

In Runkle et al. (1999), matching pursuit have also been used

for target characterization purpose in synthetic aperture radar

images, as wave-based features, extracted from multiple views with

different orientations. The target discrimination step is then realized

based on a Hidden Markov Model (Bharadwaj et al., 1999, 2001;

Carin et al., 1999; Runkle et al., 1999; Runkle and Carin, 1999).

Figure 1. General scheme for shape description and recognition.

Figure 2. Banana plant for c [ [�0.25, 0.25] and a ¼ p/4. [Color
figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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In this section, we have seen that matching pursuit algorithm, or

more generally, sparse representation methods based on a linear

decomposition process can be useful for extracting characteristics of a

signal and subsequently for using them as features in a recognition

process. We now focus in the next section on the MP algorithm itself.

III. DESCRIBING IMAGES WITH MATCHING PURSUIT

The goal of this section is to point out the basic concepts and the

interesting properties of the MP process for the purpose of shape

description, rather than describing it and its properties completely.

We refer the reader to, e.g., Mallat and Zhang (1993), Bergeaud

and Mallat (1995), Mallat (1998), Frossard (2000), and Vander-

gheynst and Frossard (2001) for more details.

The matching pursuit algorithm, first introduced for monodi-

mensional signals by Mallat and Zhang (1993), is an iterative

greedy process (Davis et al., 1997) that decomposes a function f in
a Hilbert space H, using a redundant dictionary D ¼ fgggg2C,
where gg, are continuous BFs of unit norm usually called atoms
(Mallat and Zhang, 1993), and G is the set of possible indexes. We

will consider here bidimensional functions f.
Each step n of the algorithm consists in finding the atom ggn�1

that minimizes the residues of nth order Rnf, when projecting

orthogonally ggn�1
on Rn�1 f. Thus we have, with R0f ¼ f,

Rnf ¼ Rn�1f � hRn�1f ; gcn�1
igcn�1

; ð2Þ

where h�,�i is the scalar product, and

jhRn�1f ; gcn�1
ij ¼ sup

c2C
jhRn�1f ; gcij: ð3Þ

When Rnf is minimized for a given ggn�1
, the projection between

the previous residue and the actual atom hRn�1f, ggn�1
i is maxi-

mized. Iteratively, we obtain for N atoms

RNf ¼ f �
XN�1

n¼0

hRnf ; gcnigcn ; ð4Þ

where RNf ? 0 when N ? ? (L.K., 1987). This corresponds to the

decomposition process.

From Eq. (4), we easily deduce the reconstruction process which

corresponds to the MP invertibility property (Figueras i Ventura and

Vandergheynst, 2002). Perfect reconstruction of f is possible if N??:

f ¼
X1
n¼0

hRnf ; gcnigcn : ð5Þ

We can easily deduce f from Eq. (4) for a finite number of

atoms N:

f ¼
XN�1

n¼0

hRnf ; gcnigcn þ RNf : ð6Þ

When neglecting the residue RNf that tends to zero when N is big,

we obtain an approximation f̂ of f:

f̂ ¼
XN�1

n¼0

hRnf ; gcnigcn : ð7Þ

The effects of this incomplete set of atoms can be seen in Figure 3,

wherein we reconstruct Mona Lisa’s face using a finite number of

atoms. The result is refined as we consider more atoms, but note that the

general structure of the image appears at very early stages when few

atoms are considered. The hair structure can already be identified in Fig-

ure 3b, and the face components, such as mouth and eyes, appear in (c).

It is also interesting to note the sketchy behavior of the process:

the original image contains some noise, and the reconstruction is

built up like a painting with strokes overlapping each other, to get

to the final result. This follows Mallat’s (1993) statement:

A matching pursuit decomposition provides an interpretation of

the signal structures.

If we get back to the first step of the decomposition from Eq.

(2), the function f is composed of the contribution of the first atom

extracted gg0, and the residue R
1 f such that

f ¼ hf ; gc0igc0 þ R1f : ð8Þ

From this equation, we can see that the residue R1 f is orthogonal
to gg0 (Bergeaud and Mallat, 1995), and as gg0 is of unit norm, this

leads to

kfk2 ¼ jhf ; gc0ij
2 þ kR1fk2: ð9Þ

Thus, following Eq. (6), we obtain the energy conservation prop-

erty of MP (Mallat and Zhang, 1993; Bergeaud and Mallat, 1995):

kfk2 ¼
XN�1

n¼0

jhRnf ; gcnij
2 þ kRNfk2: ð10Þ

By looking at Eqs. (4) and (3), we can give a more intuitive look at

this process: at each step, we choose the atom that will remove the

biggest energy of the image. Note that we did not make any

assumption on the shape of the atoms gg, apart from setting their

norm to one, for energy conservation purposes.

Recent developments in the MP algorithms family were brought

by Pece and Petkov (2000): they introduce a new fast atomic de-

composition, the inhibition method, which is related to matching

pursuit but allows updating of more than one coding coefficient per

iteration, thus bringing a speed up in the decomposition process.

The updated coefficients correspond to mutually orthogonal ele-

ments of the dictionary, and so avoiding a double contribution of

the atoms in the function representation.

IV. OBJECT/SHAPE DESCRIPTION USING MP

A. Object Model. While describing the MP process, and follow-

ing the iconic representation idea of analyzing shapes (Ben-Arie

et al., 1996a,b), we already pointed out the framework for decom-

posing a shape in its principal ‘‘shape vectors,’’ which are our

atoms. Our shape model follows the idea of having a patches-like

structures to describe a shape, such as in Ullman and Basri (1991),

Figure 3. Face reconstruction of the Mona Lisa from a matching

pursuit decomposition process using anisotropic refinement (AR)

atoms (Vandergheynst and Frossard, 2001): (a) original Mona Lisa’s
face, (b) reconstruction with 20 AR atoms, and (c) reconstruction with

200 atoms.
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where they represent each view of an object by a linear combination

of prototypical views.

This is also somewhat close to the textons concept: they are

defined by Zhu et al. (2002) as a mini-template that consists of a
number of bases at some geometric and photometric configurations,
i.e., they are a clustering of basis functions that have a spatial

relationship.

As we said in Section I, this first decomposition step can be

achieved in many different ways: MP algorithm represents a

possibility to achieve it, but other similar approaches linked to

the sparse representation domain, such as e.g., BP (Chen et al.,

1998), the inhibition method presented briefly previously (Pece

and Petkov, 2000). However, e.g., BP is used to extract an exact

representation of a signal: in our case, we will see that this con-

dition is not automatically required. A controlled error may be

admissible.

Phillips (1998) has also introduced the notion of describing a

model, called proto-object, using only a few 2D directional wave-

lets with MPFs, as he did not required his description to be very

accurate, but rather to fit an average description extracted from a

subset of image models (see Section II).

On the contrary, we make here the choice of describing the tem-

plate image of the object by characterizing its boundaries, following

ideas that we introduced in Mendels et al. (2002).

Obviously, the choice of the dictionary to analyze the image has

a big influence on the number of atoms needed to describe the shape

accurately. This choice is intimately linked to the following ques-

tion: What is an optimal representation for an image given a library
of templates functions and how to select it? (Geiger et al., 1999).

Vandergheynst and Frossard (2001) have proven that AR atoms

are more suitable to describe images and boundaries than, e.g., the

original Gabor wavelet dictionary initially proposed in Bergeaud

and Mallat (1995). Other families of atoms have been investigated

as well, like, e.g., banana wavelets (see II) (Krüger and Peters,

1997) or the combination of Gaussian function with a triangular

function (Moschetti et al., 2002), and show good results for the tar-

geted applications (respectively face description and coding the

displaced frame difference). Authors interested in the sparse repre-

sentation of a signal have also produced different dictionaries: for

example, Donoho and Huo (2001) introduced the beamlet diction-

ary as a dyadically organized library of line segments at a range of

locations, orientations, and scales, thus enabling a multiscale analy-

sis approach. Recently, Peotta et al. (2003) have also introduced

another curved function, incorporating a bending parameter, that

shows significant improvement in very low bit rate image coding

applications, using sparse representation of the signal.

Considering that the overall shape we are looking for corre-

sponds to a high variation in the gradient (step edge), and as their

description remains quite simple, we will use here the anisotropic

refinement atoms (Vandergheynst and Frossard, 2001):

gck ðx; yÞ ¼ ð4x2 � 2Þe�ðx2þy2Þ; ð11Þ

with
x
y

� �
¼ cosðhkÞ sinðhkÞ

�sinðhkÞ cosðhkÞ

� �
ðx� pxk Þ=rxk
ðy� pyk Þ=ryk

� �
;

where (�x, �y) are the original pixel coordinates, [pxk, pyk] are the hori-
zontal and vertical translation, [sxk, syk] the horizontal and vertical

scaling factors, and yk the orientation.
An example of an anisotropic refinement atom is shown in

Figure 4.

The following set of parameters completely define ggk:

ck � ½pxk pyk rxk ryk hk�: ð12Þ

In the proposed method, we describe the object O as a given subset
of basis functions ggk chosen during the greedy MP process: these

are the first atoms extracted, each one of them containing at each

step the biggest energy part of the model to fit. Thus, we obtain a

compact representation of the object. We now consider this subset

of functions as a meta-atom gMg , which we normalize. Thus we

have

O : gMc ¼
PK

k¼0hRkf ; gck igck
k
PK

k¼0hRkf ; gck igckk
; ð13Þ

where K is the number of atoms chosen for the description, Cggk
¼

hRkf, ggki is the coefficient factor, and f is the image of the template

object.

Figure 4. Anisotropic refinement atom example,

with its 3D view.
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So O can be represented as a set of those vectors:

gMc :

Cgc0
px0 py0 rx0 ry0 h0

..

.

Cgci
pxi pyi rxi ryi hi

..

.

CgcK
pxK pyK rxK ryK hK

2
66666664

3
77777775
: ð14Þ

Because of the nature of the initial anisotropic refinement dictionary

D, the description of the template object is invariant to similitude

transformations, i.e., rotation, translation, and isotropic scaling.

These properties follow the general statement given for shape

descriptors in Section I: an object has the same shape when submit-

ted to rotation, translation, and isotropic scaling, thus its description

should remain the same. Of course, in the case of recognition and

localization process, these invariance properties, such as, e.g., trans-

lation invariance, may not be needed.

Phillips, and Hsu and Huang (1998, 2001) use a full search pro-

cedure to obtain their atoms, as they need a rough description with

few atoms. We prefer using genetic algorithms (GA) in our imple-

mentation for speeding up the search process, but this implies that

we choose the best atom up to an insurance interval (Figueras i

Ventura and Vandergheynst, 2001, 2002). So we obtain a subopti-

mal solution at each step, but the overall convergence of MP in the

reconstruction process (see Eq. (5)) ensures to get a complete

description of the object. At each step of the GA, we extract a set of

possible solutions and test them against the current best solution

found. Details on the implementation and procedure of the GA are

given in Figueras i Ventura and Vandergheynst (2001). Note that

the numerical complexity of the implementation can be reduced

because of the structure of the dictionary and the structure of the

atoms that are well localized; thus, calculation is performed only in

the areas containing the biggest energetic part of each atom com-

posing the meta-atom.

As the decomposition process removes at each step the biggest

energy part of the residue, this implies naturally that the subset of

the chosen basis functions is unique: consequently, the object repre-
sentation is unique. The optimization algorithm selected to do the

matching pursuit has an influence on this uniqueness property: in

the case of genetic algorithms, the uniqueness is not guaranteed as

we choose atoms up to a confidence interval. The uniqueness is

guaranteed in the case of a full search procedure, that may be com-

putationally intensive. Nevertheless, the choice of genetic algo-

rithms remains consistent as the overall convergence is guaranteed

by the MP process.

B. Template Example. Figures 5b–5e show the example of the

first four atoms extracted to model a square template (64 3 64

image) using a dictionary D of anisotropic refinement atoms, and

illustrate that they accurately model straight edges. As all square

boundaries have an identical strength, the order of the extraction of

the first four atoms (see Figs. 5b–5e) is not unique and depends on

the optimization algorithm chosen, here the GA. Note that this does

not change the overall description of the object.

If we look at the reconstruction in Figure 6, we clearly see that

the error between the reconstruction and the model gets lower as we

consider more atoms. So the sensitivity of our shape model will

depend on the number of atoms we consider, linked with the com-

plexity of the object to represent: Figures 6d–6f show that the

‘‘dude’’ model contains more variations than the square one. Conse-

quently, we will require a higher number of atoms to get a descrip-

tion that reaches a minimal threshold of resemblance we choose.

This threshold is set depending on the energetic part of the residue:

e.g., we can state that we reach a good shape description when the

residue contains less than 5% of the total energy of the model.

Other adaptive criteria may of course be applied to set this threshold

of resemblance.

As we do not give any restriction concerning possible symme-

tries that the template may present, the description obtained may

not respect these symmetries. This is a direct consequence of the

atom shape.

Note that adding more atoms when we have already reached the

threshold of resemblance is not necessary. Moreover, we will intro-

duce ‘‘nonfeature’’ elements, i.e., elements that are not here to model

the shape, but to correct small deformations introduced in previous

steps (Jaggi et al., 1995). In Figure 7, we can observe this effect

when zooming on, e.g., the right arm: the reconstruction with 1000

atoms is better than the one with 100 atoms, i.e., the boundaries are

Figure 5. Original model and first four anisotropic refinement

atoms.

Figure 6. Variations in the reconstruction using different number of
atoms: (a)–(c) square model and its reconstructions; (d)–(f) dude

model and its reconstruction.
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refined but also surrounded by a small local noise, that can be

described as ringing artifacts.

Jaggi et al. (1995, 1998, 1999) propose a framework called High

Resolution Pursuit to overcome such drawbacks, by changing the

function that measures the correlation between the atom and the

image, i.e., they do not minimize the L2 norm of the residual, or

measuring the atom contribution in terms of scalar products. The

contribution is measured using the sum of a weighted scalar product

between the image and the atom given at different scales.

C. Curved Atoms?. We have chosen here anisotropic refinement

atoms that are not curved, but the question ‘‘what are the best

atoms?’’ remains. As we have shown in Figure 6 a shape (dude

model) with curved parts in its boundaries, we can think that a

curved atom will behave in a better way than a noncurved (straight)

one. We have chosen here to describe the ‘dude’ model using curved

basis functions atom(tx,ty,y,r,sx,sy)
of unit norm from Peotta et al.

(2003) described hereafter in Eqs. 15–17, as shown in Figure 8:

atomðtx;ty;h;r;rx;ryÞðx; yÞ ¼ T ðtx ;tyÞRhBrSðsx ;syÞgpðx; yÞ; ð15Þ

where

gpðx; yÞ ¼ x e�ðjxjrx
þy2Þ; ð16Þ

and

Brgpðx; yÞ

¼
gp r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� rÞ2 þ y2

q
; r arctan

y

r � x

� �� �
; if x < r

gp r � jxj; x� r þ rp
2

� �
; if x � r

8>><
>>:

ð17Þ

with r radius of the bending function, and the transformation T ðtx;tyÞ
is a translation of (tx, ty), Ry is a rotation of y, and Sðsx;syÞ is an ani-

sotropic scaling of (sx,sy) respectively in the x- and y-direction.
The artifacts due to the atom shape are present in both cases,

even though they are not of the same nature and they seem to be

diminished in the case of curved atoms for a perfect model. The

conclusion we can draw from this comparison is that a representa-

tion with noncurved atoms needs more elements to model the shape

in presence of a high number of curved parts. Nevertheless, as the

description remains simple and as the anisotropic refinement atoms

fit our needs, we do not need in a first place to extend our overcom-

plete dictionary to curved functions, or to consider both dictionaries

at the same time.

Moreover, in this case, it is necessary to ensure that straight

parts will be modeled with straight atoms and not with a sum of

curved ones. A good compromise may be to keep straight atoms for

the beginning of the model and curved ones for small refinements.

V. MP-BASED SHAPE REPRESENTATION
AND SCALE-SPACE

A. Extending the MP-Based Model in a Linear Scale-
Space. In order to produce a more general description, we now

extend the MP-based object representation in a linear scale-space:

this will be very useful in the next sections for recognition pur-

poses, if we want to be less sensitive to small deformations that can

occur in presence of noise, or just when considering an object that

is close to the model but not identical.

Using the MP-based shape model given in Eq. (13), we extend

naturally the description in a linear scale-space, obtained by con-

volving the object with a Gaussian function Gs, namely the normal-

ized Gaussian kernel (Lindeberg, 1994), given for a bidimensional

signal by

Grðx; y; rÞ ¼
1

2pr2
e �x2þy2

2r2

� 	
; ðx; yÞ 2 �2; r 2 �þ; r 6¼ 0:

ð18Þ

As our atoms satisfy the linear heat equation (they result from the

combination of a Gaussian function in the first direction and the

second derivative of a Gaussian in the direction normal to the first

one (Figueras i Ventura and Vandergheynst, 2001, 2002)), their

dilated version is given by the product of each scale parameter with

s for all atoms (sxk,s ¼ sxk s and syk,s¼ syk s). Thus the explicit

Figure 7. Reconstruction artifacts with raising the number of atoms

considered: (a) dude model and its reconstruction with (b) 50 atoms

and (c) 1000 atoms; the first line gives the complete model, and the

second line is a zoom on the right arm.

Figure 8. Variations in the reconstruction using different number of

atoms using straight anisotropic refinement atoms and curved atoms

(model courtesy of Ph.Jost): (a) original model, (a)–(c) reconstructions
with straight anisotropic refinement atoms, and (d)–(f) reconstructions

with curved atoms.
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convolution is not required to build a scale-space representation of

the object. Note that this dilation does not imply a modification of

the atom location.

By following this property, the object O modeled by gMg can be

expressed at scale s as

½gMc �r ¼
XK
k¼0

hRkf ; gck igck � Gr ¼
XK
k¼0

Cgck
gck ;r; ð19Þ

with Cgck
¼ hRk f,ggki, and ggk ;s ¼ g½pxk; pyk ;sxk s; syk s; yk �.

Figure 9 illustrates the construction of a linear scale of the object

‘‘dude’’. The model at original scale is first shown (see (a)) and then

its respective scale pyramid (see (b–c)), construct following Eq.

(19). We clearly see here the classical scale-space implications: the

loss of small details as scale increases, and the variations in the

object boundaries locations.

B. Residual Error in Scale-Space Reconstruction. Figure 10

shows the difference between the reconstruction based on the MP

description, through the scales, and the linear convolution of our

original model with the normalized Gaussian kernel.

The MP-based representation in the scale-space follows what is

obtained via the classical convolution method, but the reconstruc-

tion suffers from the incomplete form of the representation, as an

infinite number of atoms is required to get a perfect reconstruction

(see Eq. (5)). This confirms that we fit the model and its dilated ver-

sion up to an insurance interval, and the influence of each atoms is

more visible in the scale-space extension.

In order to reduce the residual error of reconstruction, we per-

form the MP-decomposition over all scales that are considered at

the same time: we have to choose each atom while maximizing its

Figure 9. Linear scale-space of the ‘‘dude’’ object O with s ¼ 1..64, where level 0 represents the original model.

Figure 10. Pyramidal scale-space of the MP-based object and its

linear scale-space obtained by convolution.
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influence over all scales. We have to minimize at step i the follow-
ing system for each residue Ri fsk

with k ¼ 0..K:

Rif ¼ f �
Xi�1

n¼0
hRnf ; gcnigcn ;

Rifr1 ¼ f � Gr1 �
Xi�1

n¼0
hRnfr1 ; gcn ;r1igcn ;r1 ;

Rifr2 ¼ f � Gr2 �
Xi�1

n¼0
hRnfr2 ; gcn ;r2igcn ;r2 ;

..

.

RifrK ¼ f � GrK �
Xi�1

n¼0
hRnfrK ; gcn ;rK igcn;rK :

8>>>>>>>>>>><
>>>>>>>>>>>:

ð20Þ

Figure 11 shows the results of this approach. A qualitative visual

estimation illustrates that this representation is more coherent with

respect to the convolution process at higher scales than the one pre-

sented in Figure 10, but it requires more atoms as well: the recon-

struction in Figure 11 needed n times the number of scale consid-
ered, compared to n atoms in Figure 10.

Moreover, by considering higher and lower scales in the minimi-

zation process, the choice of each atom may induce perturbation

between the scales, as we use the same atom dilated with respect to

its scale, and that boundaries move in a linear scale-space. This

could lead to consider a nonlinear scale-space extension, or to con-

sider atoms with centers [p0xk p
0
yk
] contained in an inverse pyramid,

taking into account the scale factor s (see Fig. 12).

But, as we will see later in section IX, it appears that the residual

error induced by the model will be compensated in the recognition

process by the scale-space coarse-to-fine extraction approach, and

so, a finer model, requiring more atoms, is not needed in this case.

VI. OBJECT DICTIONARY

The extracted subset of basis functions gg
M, i.e., the representation

of the object O, is invariant with respect to similitude transforma-

tions, because of the atom properties ((Vandergheynst and Frossard,

2001; Frossard, 2000; Peotta et al., 2003); and section IV-A for

details). Here, we increase our range of variability by introducing a

shearing parameter, thus leading to pseudo-affine invariance, as we

consider isotropic dilations to maintain the coherence of the object

model. We obtain a new redundant dictionary DM ¼ f½gMg �g0 gg02C0 ,

where G0 ¼ [px
0, py

0, sx0, sy0, y0, Sm] is the set of possible indexes, that
represents the possible variations of the meta-atom.

The affine transformation of the basis functions ggk gives, for

any translation [px
0, py

0], any isotropic scaling sx0 ¼ sy0, any orienta-

tion y0, and any shearing Sm:

gck ; c0 ðx
0; y0Þ ¼ ð4x02 � 2Þe�ðx02þy02Þ; ð21Þ

with
x0

y0

� �
¼ cosðh0kÞ sinðh0kÞ

� sinðh0kÞ cosðh0kÞ

� �
1 �Sm
0 1

� � ðx� p0xk Þ=r
0
xk

ðy� p0yk Þ=r0yk

" #
;

where (~x, ~y) are the original pixel coordinates, and the new para-

meters of the atoms ½p0xp0ykr
0
xk
r0xkh

0
k�, k ¼ 0..K submitted to this affine

transformation are obtained using the following relations:

C0
gck

¼ C0
gck
;

p0xk
p0yk

" #
¼

1 Sm

0 1

� �
r0x 0

0 r0y

" #
cosðh0Þ sinðh0Þ
� sinðh0Þ cosðh0Þ

� �
pxk
pyk

� �
þ

p0x
p0y

" #
;

r0xk ¼ rxk r
0
x;

r0yk ¼ ryk r
0
y;

h0k¼ hk � h0:

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

Figure 11. Pyramidal scale-space of the MP-based object with two

different solutions and its linear scale-space obtained by convolution.

Figure 12. Atom dilated over the scales (s ¼ 0..8) and the inverse
pyramid showing possible variations in the position of the center that

could be introduced.
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The modified shape is then fully described by the subset of atoms

with respect to its general affine transformation g0, given by [px
0, py

0,
sx0, sy0, y0, Sm]:

c0 � ½p0x p0y r0x r0y h0 Sm� ð23Þ

We call the modified shape [gMg ]g0 ¼ gg
M
½p0x;p0y ;s0x;s0y;y0;Sm �. The modified

object O0 submitted to the affine transformation g0 can be repre-

sented as a set of those vectors:

½gMc �c0 :

C0
gc0

p0x0 p0y0 r0x0 r0y0 h00

..

.

C0
gci

p0xi p0yi r0xi r0yi h0i

..

.

C0
gcK

p0xK p0yK r0xK r0yK h0K

2
66666664

3
77777775
: ð24Þ

So we can express the original model O as [gg
M]origin ¼

gg
M
[0,0,1,1,0,0].

We show in Figure 13 some examples of the ‘‘dude’’ model sub-

ject to given affine variations.

Figure 14 shows one column of the previous figure with y0 ¼ 0,

and Sm ¼ 0.5, to see the variations of the model when the scales

sx0 ¼ sy0 vary from [0.7, 1.1].

Note that the spatial relationship between the atoms that com-

pose the meta-atom evolves in function of sx0 and sy0: for sx0 ¼ sy0,
the isotropic dilation does not modify the object as when submitted

to a linear scale-space, as we have seen in the previous sections.

VII. MP-BASED SHAPE RECOGNITION

Shape recognition methods are closely related to the nature of the

shape descriptor chosen. They are usually based on a one-to-one

comparison framework, using a tree-based approach or a metric-

based approach (Veltkamp and Hagedoorn, 1999; Zhang and Lu,

2004). In this paper, we aim to realize a shape recognition process

based on an energetic measure as a similarity measure between two

objects, that extracts and localizes as many objects similar to the

chosen template, as present in the target image, with respect to

invariance properties.

We join the views of Pavlidis (1980), van Tonder (2000), and

Ullman (1989, 1991, 1999), by extending the concept of object

description into its constituent parts to the MP-based description

where the atoms are considered as shape fragments. We now extend

this concept to shape recognition by considering the object itself as

a constituent part of the image: the assumption we make relies on

describing the target image in the template shape basis.

We use again the Matching Pursuit algorithm as a decomposi-

tion process for the recognition process.

A. Performing Shape Recognition Using a Matching
Pursuit Algorithm. The recognition task follows directly the idea

of describing the object O using a redundant dictionary: in order to

find the object in the target image T , we will now decompose this

image using the predefined dictionary composed by all affine varia-

tions of gg
M given by DM ¼ f½gMg �g0 gg02C0 ¼ f½gMg �g0a;n with g0a,n :

½p0xa;n ; p
0
ya;n

; s0xa;ns
0
ya;n

; y0a;n; Sma;n
�g for any translation [p0xa,n, p0ya,n],

isotropic dilation s0xa;n ¼ s0ya;n , rotation y0a,n, and shearing Sma,n
,

where the index stand for the current affine transformation, and n to

design the nth meta-atom.

Figure 15 presents a graphical explanation of the different set of

indices that compose the affine variations of the object, where the

simulated template is a square.

For the first decomposition step, we want to minimize the resi-

due R1T given by

R1T ¼ T � hT ; ½gMc �c0a;0i½g
M
c �c0a;0 ; ð25Þ

with [gg
M]

g0a;0
¼ [gg

M]½p0xa;0 ; p
0
ya;0

; s0xa;0s
0
ya;0

; y0a;0; Sma;0 �.

Following MP principles, the best match (here [gg
M]

g0
a;0

) will give

the first object location in T .

In order to find all the solutions present in the target image, we

re-iterate the MP algorithm to find the next solution designed by

[gg
M]g0a,n�1

for the (n�1)th object, until no match is found considering

a minimal error threshold a fixing the tolerance of the difference

between the object detected and the model. As we have a meta-

atom of unit norm, the process stops when, for the step n, the ener-
getic contribution of the solution found is lower than the maximal

(ideal) contribution of a meta-atom in the target image times the

threshold:




hRn�1T ; ½gMc �c0
a;n�1

i



 < ajhT ; ½gMc �ij: ð26Þ

Iteratively, we obtain the Nth object from

RNT ¼ RN�1T � hRN�1T ; ½gMc �c0a;N�1
i½gMc �c0a;N�1

ð27Þ

The residue RNT after the extraction of each object is given by the

substraction of the sum of the objects contributions to the target

image:

Figure 13. Examples of affine variations for the model ‘‘dude’’ using

the following parameters [px
0 ¼ 0, py

0 ¼ 0, sx0, sy0, y0, Sm].

Figure 14. Detailed example of one affine variation for the model
‘‘dude’’ using the following parameters [px

0 ¼ 0, py
0 ¼ 0, sx0 ¼ sy0 ¼

[0.7, 1, 1.1], y0 ¼ 0, Sm ¼ 0.5].
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RNT ¼ T �
XN�1

n¼0

hRnT ; ½gMc �c0a;ni½g
M
c �c0a;n ; ð28Þ

where each [gg
M] is a solution of the minimization problem (see Eq.

(27)) for the template O. Following the shape description step, we

also use here genetic algorithms for the minimization process

described in Eqs. (25) and (27).

B. Square Template Example. Using the square template

model previously introduced and described (see Figs. 5 and 6), we

perform the shape recognition task on the target image presented in

Figure 16a, that contains two squares, a circle, and a triangle. Figure

16 shows the complete decomposition process. The first row corre-

sponds to the first decomposition step using the Matching Pursuit

algorithm, with a dictionary containing all affine variations of the

square template model: the residue R1T 1 is obtained by subtracting

Figure 15. Examples of affine variations for

the square model described with the meta-atom

gg
M that becomes [gg

M]g0
a;k

when submitted to an
affine transformation ga,k0 ¼ [pxa,k

0 , pya,k
0 , sxa,k

0 , sya,k
0 ,

y0a,k, Sma,k
]: the atom ggk defined by [pxk, pyk

, sxk,
syk, yk] becomes ggk ; g0a;k

defined by [pxk
0 , pyk

0 , sxk
0 ,

s0yk, yk
0] .

Figure 16. Example of a synthetic Target 1 and the MP-based shape recognition process: the first row shows the first step of the extraction

(from (a)–(c)), and the second row shows the second square extraction (1283 128 image).
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the contribution of the first square found, shown in Figure 16b,

from the target image T 1. The second square is found in the resid-

ual part R1T 1 in the second extraction step, shown in Figures 16c–

16e. As the next step produces a solution whose contribution

is lower than the threshold of resemblance, we stop the MP decom-

position at this point. The minimal error threshold giving the toler-

ance of the difference between the object detected and the model is

fixed here to 90% of the ideal case, i.e., the object found is identical

to the template object.

We have two solutions for the square, one identical to the model

(see Fig. 16b), and the other one rotated by 458 (see Fig. 16d). The
final solution of the extraction is given by their sum (see Fig. 17b).

For the minimization process (see Eq. (27)), the parameters of

the GA (Figueras i Ventura and Vandergheynst, 2001) are set to 27

chromosomes and 50 generations for each step of MP decomposi-

tion, and will remain the same for all the following experiments.

Note that for a one-to-one object comparison application, i.e., the

target image contains only one object, such as in CBIR applications

(see, e.g., Wang et al., 2004) or classical face recognition process

(see, e.g., Zhao and Nandhakumar, 1998), measuring the distance

between two set of indexes to give a direct comparison on the indexes

is possible, as the shape description is unique (see section IV). Indeed,

by using a full search optimization, we would obtain the same set of

indexes for both model and target in case of identity between them.

C. Towards an Extension to a Linear Scale-Space. The

tolerance threshold introduced permits to consider solutions that

have local variations, but it may be too sensitive, or we may extract

partial solutions that correspond to a local minima of the energy

function.

Our model handles affine variations (see Figs. 13 and 14), but

bigger perturbations (see Fig. 18) may lead to false solutions.

As we consider an energy function that is not necessarily con-

vex, experience shows that we may be sensitive to local minima,

even if GA leads theoretically to a global minimum. This may con-

duct to an incomplete solution: Figure 19c shows a false match

where one leg of the model is captured correctly.

In order to increase the robustness of our process, we will use

the linear scale-space extension of our model [gg
M]g0 ,s, and thus real-

ize the Matching Pursuit-based Shape Recognition (MPSR) task

into a linear scale-space of our target image T .

VIII. MP-BASED SHAPE RECOGNITION USING
A LINEAR SCALE-SPACE

A. Object Dictionary Extension in the Linear Scale-
Space. We need to extend our redundant dictionary DM ¼
f½gMc �c0 gc02C0 , in the linear scale-space, where the scale parameter is

given by s, with s > 0.

Following Eq. (19), the scale-space extension of the meta-atom

at scale s gives the following parameters for each atom defined in

Eq. (21):

C0
gck

¼ C0
gck

p0xk
p0yk

" #
¼

1 Sm

0 1

� �
r0x 0

0 r0y

" #
cosðh0Þ sinðh0Þ
� sinðh0Þ cosðh0Þ

� �
pxk
pyk

� �
þ

p0x
p0y

" #

r0xk ¼ rxk r
0
x r

r0yk ¼ ryk r
0
y r

h0k ¼ hk � h0

8>>>>>>>>>><
>>>>>>>>>>:

ð29Þ

where [Cggk
, pxk, pyk, sxk, syk, yk] are the initial atoms parameters for

k ¼ 0..K, and [px
0, py

0, sx0, sy0, y0, Sm] are the parameters of the affine

transformation g0. We can observe that the scale parameter s, corre-
sponding to a local isotropic dilation, does not influence the posi-

tions [pxk
0 , pyk

0 ] but only the variances [sxk
0 ,syk

0 ] of each atom.

The object submitted to an affine transformation in a scale-space

is then given by

O0 : ½gMc �c0;r ¼
XK
k¼0

C0
gck
gck ;c0 Gr ¼

XK
k¼0

Cgck
ggk;g0 ;r ; ð30Þ

Figure 20 shows an affine variation of the dude model with [px
0 ,

py
0 , sx0 , sy0 , y 0, Sm] ¼ [0, 0, 0.8, 0.8, p/4, 0.5] and its associated

scale-space for s ¼ 1..4.

Therefore, we obtain an extended overcomplete dictionary

DM
r ¼ f½gMc �c0;rgc02C0;r2Rþ

�
; where s is the set of possible indexes in

the linear scale-space, with s > 0.

B. MP Decomposition at Scale r. We now describe how to re-

alize an MP decomposition at a scale bigger than the original scale

(s > 0).

Figure 17. Target 1 and the 2 objects extracted corresponding to
the square template.

Figure 18. Local variations in ‘‘dude’’ model.

Figure 19. Target image and the false match extracted.
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The decomposition process described in Eq. (25) for the original

scale of the object gives at the first step the object [gg
M]g0

a;0
where

[gg
M]ga,0

0 ¼ Sk¼0
K Cggk

ggkg0a,0.
Performing this MP decomposition at a different scale s > 0

implies that our target image T becomes T Gs, and that the object

[gg
M]g0a,n becomes [gg

M]ga,n,s0, following Eq. (30).

The first MP decomposition step at a fixed scale s > 0 becomes

R1T r ¼ T Gr � hT Gr; ½gMc �c0
a;0
;ri½gMc �c0

a;0
;r: ð31Þ

We obtain the following objects present in the target image by re-

iterating the MP decomposition at scale s. For the second object

[gg
M]g0

a;1
, we have to minimize R2T r:

R2T r ¼ R1T r � hR1T r; ½gMc �c0
a;1
;ri½gMc �c0

a;1
;r: ð32Þ

If N objects are present in T , we obtain for the Nth object

[gg
M]g0

a;N�1
by minimizing the residue RNT r:

RNT r ¼ RN�1T r � hRN�1T r; ½gMc �c0
a;N�1

;ri½gMc �c0
a;N�1

;r: ð33Þ

C. Performing Shape Recognition Through Multiscale
MP. Multiscale strategies in image processing have been widely

used to increase the robustness of the process considered, such as,

e.g., shape recognition: they have been jointly used, e.g., with Mar-

kov Random Fields (Zhang and Ma, 2000), with a tree-based com-

parison (Demirci et al., 2003), or with a curvature scale-space

descriptor (Mokhtarian, 1995). These three approaches have in com-

mon that they consider coarse-to-fine process. This is of course one

of the two possibilities the scale-space approach offers, the other

one being a stack approach.

As we are able to decompose an image T into the object basis at

any given scale s (see Eqs. (31)–(33)), we now drive through the

scale to realize the multiscale recognition task, in order to overcome

local minima problems such as, e.g., the result shown in Figure 19. As

shown in Figure 21, the extraction of a possible object solution begins

at a coarser scale (here represented by s2), and each solution obtained

at a coarser scale is then propagated iteratively to finer scales (s1, s0)
to act as an initialization step, until we reach the object scale (s ¼ 0).

We minimize for each object [gg
M]g0a,n at each scale sk with k ¼ N..0:

Rnþ1T rk ¼ RnT rk � hRnT rk : ½gMc �c0a;n ;rk i½g
M
c �c0a;n;rk ; ð34Þ

with sN > � � � > sk > � � � � s0.
This process leads to more stable solutions as we propagate an

approximate solution (the dilated object) through the scales. And

thus, it is less sensitive to small variations of the object, as they

have less influence at higher scales.

We show an example of this approach, using the target T pre-

sented in Figure 19a to extract both dude models, given in Figures

6d–6f: we conduct the multiscale approach building each tree fol-

lowing each object. Figure 22 shows the pyramid scale that con-

ducts to respectively the first ‘‘dude’’ object, and the second ‘‘dude’’

object. We can see that the direction of each object is refined

through scale, up to the original object scale.

Figure 20. Example of affine variations for the model ‘‘dude’’, and

its associated scale-space for s ¼ 1..4: (a) and (b) show respectively

an affine variation of the model with [px
0, py

0, sx0, sy0, y0, Sm) ¼ [0, 0, 0.8,

0.8, p/4, 0.5], and its associated scale-space, where level 0 repre-
sents the affine variation of the original dude model.

Figure 21. Scale-space recognition of the object O in a target T .

174 Vol. 16, 162–180 (2007)



Figure 23 shows the final result of the extraction, obtained by

summing each step of the decomposition. Both objects are correctly

extracted.

In this synthetic example, both objects have the same scale, and

so the coarser scale chosen here is the same for both objects. But

this question of the best coarser scale selection is closely related to

this kind of coarse-to-fine extraction, as if we choose a scale bigger

than the optimal one, we might miss one object at this scale, and

consequently not propagate this solution to finer scales. Strategies

for automatic scale selection have been investigated by, e.g., Linde-

berg (1996). This represents a possibility to determine the ideal

scale to begin the process, but is difficult to set up as the basic scale

of the object varies. Another approach could be to perform first the

extraction for the initial solutions we obtain and to refine afterwards

in the considered scale if new solutions to our minimization prob-

lem exist. Combining these considerations could lead us to consider

the second possibility for a multiscale approach, i.e., realizing the

extraction in a stack scale-space. In this case, we would extract

each object in all planes at the same time.

We will now show some results of this approach with different

kinds of images, and shape models.

IX. RESULTS

A. Introduction. In this section, we will perform shape recogni-

tion process on different kind of images, using different shape mod-

els, namely,

� two kind of tests on synthetic images using the ‘dude’ model

previously used, where salt and pepper noise will be added

afterwards;

� two kind of tests on natural aerial images, to detect boats

parked side by side; with a model of boat that gives a stron-

ger weight to the front part (grayscale model), where noise is

added afterwards; and

� a test on recognition of brain ventricles in brain magnetic

resonance (MR) image: we model from a left ventricle

extract from a first brain a pair of ventricles (group of

objects) to be matched in a second brain.

Figure 22. First and second pyramidal object extraction from T .

Figure 23. Original target T and the result of the extraction.

Figure 24. Original target T , the result of the extraction and the
superimposition of (a) and (b) where the corresponding parts are

shown in white (c).
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B. Synthetic Images. In Figure 24, we realize a detection test on

a synthetic image build with two objects presenting bigger varia-

tions in the dude model (see Fig. 18) and other different objects,

such as dog and fish shapes. Note that the second variation of the

dude model that has an arm going up, has also a difference in the

right leg: from now on, we denote it as ‘‘dude no. 2,’’ and the other

one as ‘‘dude no. 1.’’

We show here the increase in stability due to the scale-space

introduction in the shape recognition task, in order to avoid false

detection in adverse conditions (presence of local minima) such as

in Figure 19, where the recognition process leads to a false solution.

Note that the model shown in Figure 24a is more complex than the

one presented in Figure 23.

Figure 24 presents the recognition process result for the multi-

scale method described in Section VIII-C, which is denominated as

the ‘‘coarse-to-fine approach.’’
In Figure 24c, both objects corresponding to our model are cor-

rectly found, with respect to their local deformations, which are not

matched as we do not allow nonrigid deformation in our model.

Matched parts are shown in white.

In Figure 25, we show the recognition process conducted on the

same target model of Figure 24a, with white noise added (SNR ¼ 5

dB (Mallat, 1998)). We observe that the coarse-to-fine approach

Figure 25. Frames of the recognition process of the ‘dude’ model

in the target T with white noise added: (b) the result of the extraction

and (c) the superimposition of (a) and (b).

Figure 26. (a) Original target T , (b) its gradient, (c) the boat model
used for the extraction process, and (d) its MP-based representation

with 100 atoms.

Figure 27. Original target T , the result of the extraction and the
superimposition of (a) and (b) where the corresponding parts are

shown in white (c).
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remains robust to the presence of noise in the image, as both objects

are correctly recognized.

C. Real World Images. In order to assess the stability of the pro-

cess in real world images, the following recognition tests are con-

ducted on an aerial image containing several boats (see Fig. 26a).

The model to be extracted is a boat (see Fig. 26c) modeled by our

MP description with 100 atoms (see Eq. (13), shown here in Figure

26d. Note that we use a grayscale model of the boat as we want to

give a stronger weight to the front of the boat.

The detected objects are presented in Figure 27. Globally, we

can say that the five biggest boats are found, even though some sol-

utions (two for the case in Fig. 27b) are validated with a wrong ori-

entation: this shows a possible problem that occurs when the object

searched presents strong symmetries.

This could be considered as a wrong match. However, in this

case, we decided to validate it as the solution found is in agreement

with the minimal threshold of resemblance we chose. As we fix a

threshold of resemblance, we do not give a matching percentage as

it is usually done in the pattern recognition domain: we just validate

the solutions that verify Eq. (26) (see section VII-A).

The presence of high gradient level in the back of the boats due,

e.g., to the presence of a motor may also cause problems: as we

give a higher weight to the front of the boats, the process may stay

stuck into a local minimum.

This process overcomes the problem of having close solutions,

such as the group of three boats in the middle of the target image.

However, small boats at the bottom of the image, whose gradients

are low, are not detected, as their contribution is too low when com-

pared with the threshold of resemblance we fix.

In Figure 28a, we introduce white noise directly on the gradient

of the target image (SNR ¼ 9 dB). The scale-space approach

behaves correctly: all the five boats are found (see Fig. 28b) for the

objects), even if the orientation problem is still present in two solu-

tions of boats. As the noise added covers the gradient signatures of

the small boats, the process is unable to extract them. For more

clarity, Figure 28d presents the target image without noise, with the

boat solutions found superimposed.

Because of the integration of the scale-space, the white noise

present in Figure 28a is averaged through the scales: its influence

diminishes with increasing s. Therefore, the shape signatures at

higher scales are less disturbed than the ones at lower ones, and so

helps guiding the extraction process at lower scales.

D. Medical Images. In Figure 29, we consider two axial slices

of a MR image of the brain: we want to recognize both ventricles in

the second axial cut (see Fig. 29b) based on a dictionary of ventricle

shapes created from another different brain (see Fig. 29a). In this

example, we realize the tests with the coarse-to-fine approach, as

our interest here is more in demonstrating the variability of the

shape model when considering a group of separate objects, and its

integration in the MP-based shape recognition process.

We extract the left ventricle (LV) from the axial cut 1 (see Fig.

30a), and then construct a model with n ¼ 100 atoms (see Fig. 30b)

based on the gradient of the LV.

We generate a new dictionary for the model of the right ventri-

cle (RV), using an axial symmetry, achieved by shifting pxk indexes
and changing the atoms orientations (yk0 ¼ �yk). By concatenating

both LV and RV descriptions, we obtain a model for a pair of iden-

tical ventricles: this one is fully described using 2n atoms, while

maintaining their intrinsic spatial relationship (see Fig. 30c). This

relationship is inversely linked to the scale of the ventricles: as the

Figure 28. Original target T with noisc added, the result of the
extraction and the superimposition of (a) and (b) where the corre-

sponding parts are shown in white (c).

Figure 29. Original axial cut for the model of the left ventricle (LV) of
the human brain and the targeted axial cut for ventricle extraction.
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ventricles have a bigger scale, the distance between them reduces.

This relationship is illustrated in Figure 31: in (a), the ventricles

have a scaling factor sd1, and are at a distance d1, and in (b), the

ventricles have a scaling factor sd2, and are at a distance d2. We pro-

pose the following relation linking the distance di between the ven-

tricles and their scaling factor sdi, with i ¼ 1,2:

di ¼
A

rdi
; ð35Þ

where A is a positive constant, A [ �*
+.

As shown in Figure 31, having sd1 > sd2 implies that d1 < d2.
The extraction is then conducted for both ventricles simultane-

ously in the axial cut 2 (see Fig. 32).

The solution, highlighted in white, is shown twice: we first

superimpose it to the axial cut (see Fig. 32b), and second, we show

in Figure 32c the zoom of the solution, thus presenting its corre-

spondence with the gradient of the axial cut 2 (in black).

Both ventricles are correctly localized, even though the location

of the RV presents a small shift with respect to the gradient. This is

due to the application of the same scaling factor on the two ven-

tricles, as they are contained in an unique model, but we can easily

observe that the size of ventricles differs. In these conditions, the

minimization process brings the best trade-off between the different

size of the ventricles, maximize the contribution of the left ventri-

cle, and rotate the block of ventricles to get the best match possible

on the right one.

If we want to achieve a better match, we have to extract both

ventricles separately: we note that the scaling factor is not identical

in both cases, confirming the shape difference of the ventricles.

The result of the extraction obtained by this way is now correct

for both ventricles (see Fig. 33): the solution is shown in white in

both Figures 33b and 33c.

Through the example shown in Figure 32, we demonstrate the

ability of the MP-based representation to describe simultaneously

multiple objects using a single model, as well as its accuracy in dif-

ferent conditions. Even if the extraction of the ventricles step by

step, i.e., left ventricle then right ventricle, gives the optimal solu-

tion, we can clearly see the advantage of considering a group of

objects that have a variable spatial relationship: this enables to con-

sider models that need rigid parts, that can have an ‘‘internal move-

ment’’ driven by a predefined set of rules (here just based on the dis-

tance between the ventricles).

Figure 32. Axial cut of a MR brain image and extraction of both

ventricles.

Figure 33. Axial cut of a MR brain image and result of the sepa-

rated extraction of left and right ventricles.
Figure 31. Variations of the size and distance between both ven-

tricles, given with different scaling factors sx0 ¼ sy0 ¼ sd1,2
.

Figure 30. Original model O for the left ventricle (LV) of the human

brain and its extension to both ventricles.
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To improve this example, we can think of adding one degree of

freedom in the variable spatial relationship of the two ventricles,

e.g., allowing a rotation of one ventricle with a center placed at the

middle of the segment indicated in Figure 31, but this also increases

the complexity of the process.

X. CONCLUSIONS

We have proposed a new shape descriptor on the basis of the use of

matching pursuit as a shape analysis tool, and extended it by intro-

ducing a scale-space approach and an affine invariant dictionary.

We first decompose the shape in its principal ‘‘shape vectors’’

(atoms), and then used this description, called meta-atom gg
M, as a

new dictionary for shape recognition task (MPSR).

Because of the nature of the initial anisotropic refinement dic-

tionary D, the description and the detection of the object are invari-

ant to similitude transformations. Introducing a shearing parameter

leads us to pseudo-affine invariance for the new dictionary

DM ¼ fgMc g composed by all variations of the meta-atom. More-

over, the atom definition allows to easily generalize the object defi-

nition to a scale-space representation, and gives an analytical defini-

tion of the object in the linear scale-space. We use it in the MPSR

task, in a coarse-to-fine approach, and improve the robustness of

our extraction process.

We showed accurate results for this method, with complex syn-

thetic shapes. This method has also been assessed on real world

(aerial and medical) images, to demonstrate its stability in more

complex conditions, as well as its capability to handle multiple sep-

arated objects with a single model, and/or give a different weight to

parts of the model.
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