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Abstract

Quantitative evaluation of similarity between feature slges of images is an important step in sev-
eral computer vision and data-mining applications suchegstration of two or more images, retrieval
and clustering of images. Previously we had introduced actass of similarity measures based on en-
tropic graphs to estimate Rényisentropy,a-Jensen difference divergeneemutual information and
other divergence measures for image registration. Errggiphs such as the minimum spanning tree
(MST) and k-Nearest neighbor (KNN) graph allow the estioratf such similarity measures in higher
dimensional feature spaces. A major drawback of histogrased estimates of such measures is that
they cannot be reliably constructed in higher dimensiogallfre spaces.

In this paper, we shall briefly extrapolate upon the use ofopit graph based divergence mea-
sures mentioned above. Additionally, we shall presentredéis of other divergence viz the Geometric-
Arithmetic mean divergence and Henze-Penrose affinity. We#l present the application of these mea-
sures for pairwise image registration using features ddrivom independent component analysis of
the images. An extension of pairwise image registration isitultaneously register multiple images,
a challenging problem that arises while constructing elasf organs in medical imaging. Using en-
tropic graph methods we show the feasibility of such sirmdtaus registration using graph based higher
dimensional estimates of entropy measures. Finally weeptes new non-linear correlation measure
that is invariant to non-linear transformations of the uhdeg feature space and can be reliably con-
structed in higher dimensions. We present an image clagtesiperiment to demonstrate the robustness
of this measure to non-linear transformations and contradth the clustering performance of the linear
correlation coefficient.
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1 Introduction

The accuracy of image matching algorithms critically depen two factors: the selection of a highly
discriminating image feature space and the choice of diityilaneasure to match these image features.
These factors are especially important when some of thesitjedifferences are due to the sensor itself,
as arises in registration of speckle-limited images or winesges of objects exhibit non-linear intensity
relationship. In such cases, it is well known that the steshdiaear cross correlation is a poor similarity

measure.

To overcome limitations of linear correlation, Viola and N&d¢1] and Maes et. al. [2] devised a simi-
larity measure based on the Kullback-Liebler [3] inforroatidivergence between the joint feature density
and the product of the marginal densities. This is the mutidatmation (MIl) measure and it quantifies the
non-linear correlation between images as the amount a$titat dependency in the underlying joint prob-
ability distribution functions (pdf); where the pdf is esfated using pixel intensity histograms. Although
the pixel-histogram method overcomes the nonlinear ciogl problem, drawbacks abound due to the use
of histogram density estimators. Histograms are efficiemisity estimators in low dimensions, but cannot
be reliably constructed in higher dimensional feature epds 4) thus limiting themselves to applications
where dimensionality of feature space is very low. Sevegpalieations such as in multi-image and multi-
sensor registration require the higher dimensional fealascriptors to effectively capture signal properties.

Unfortunately, the pixel-histogram method cannot be diyeextended to address these problems.

Ma and Hero [4] proposed the use of entropic-graph methadisrfage registration. As contrasted to
the previous approaches, entropic graphs estimate amrafmn divergence without the need to compute
histogram density estimates. Our approach is based on thepengraph based estimate of Rényi's
entropy introduced by [5, 6, 7] and developed by Ma for imaggastration [4]. An entropic graph is any
graph whose normalized total weight (sum of the edge lehgghs consistent estimator efentropy. An
example of an entropic graph is the k-nearest neighbor graghdue to its low computational complexity
it is an attractive entropic graph algorithm. This graphinestor can be viewed as a multidimensional
generalization of the Vasicek-Shannon entropy estimatasrie dimensional features [8, 9]. Graph methods

sidestep the issue of density estimation and have asympmtotivergence to the Réngi-entropy of the



feature distribution.

This paper extends our previous work with regards to usinmpit graphs for registration. Here we
present the applications of entropic graphs for robustysér image registration and extensions to multi-
image registration. We also introduce a new measure of inea# correlation that can be estimated using
entropic graphs and is shown to be more robust to non-limaasformations than the linear correlation
coefficient (CC). Previously [10], we had demonstrated theaatages of cross modality image registration
algorithms that used divergence measures calculated drerh@imensional feature spaces using entropic
graph methods such as the minimum spanning tree and k-Newighbor graphs. Divergence was esti-
mated using ther-Jensen difference that is a generalization of the Shadeosen divergence. In [11, 12]
we presented entropic graph based estimation of Henzes®eaffinity,a-MIl and a-Geometric arithmetic
mean divergence. An overview of our previous work is presgitt some detail here to ease understanding

of concepts related to entropic graph based estimationtaf@nand divergence.

This paper is arranged as follows: Section 2 briefly intredudifferent divergence measures based on
Rényi’'s generalized divergence. Different graph lengttctionals will allow us to approximate a wide va-
riety of entropic matching criteria without the need to ésiflly estimate densities or histograms. Building
on our previous work [6, 10, 11, 12], in Sections 3 and 4 we stitbw how a KNNG can be used to estimate
alpha-entropy, Henze-Penrose affinidymutual information and Geometric-Arithmetic mean divarge.
Section 5 introduces a new non-linear correlation methegdan entropic graphs. Section 6 will demon-
strate how the combination of high dimensional ICA featuaad KNNG similarity measures can lead to
significant registration benefits in ultrasound breast im@gin section 7 we explain the utility of higher
dimensional matching toward simultaneous registratiothiefe images. Lastly, section 8 presents a cluster-
ing example to contrast the performance of the NLCC versai€o@ in the face of image corruption due to

non-linear distortion.

2 General Entropic Dissimilarity Measures

Z is ad-dimensional random vector arfdz) andg(z) denote two possible densities f8r Here Z will be

a feature vector constructed from the reference image anthibet image to be registered ghdndg will



be the feature densities. When the features are discratedsttie densitieg andg should be interpreted as

probability mass functions.

2.1 Measures Related to the Bnyi Divergence

The basis for entropic methods of image fusion is a measutessimilarity between densitiesandg. The

Rényia-divergence, also called the Rényirelative entropy, betweefiandg of fractional order € (0, 1)

Da(fllg) = o i 1 log/ g(2) (ﬁgi) dz = - 1 n log/fa(z)gl_a(z)dz. (1)

When the density’ is supported o, 1]¢ andg is uniform over this domain the (negative)divergence

reduces to the Rényi-entropy of f:

1
l—«o

Ho(f) =

log/fa(z)dz. 2

When specialized to various values ®@fthe a-divergence can be related to other well known diver-
gence and affinity measures. Two of the most important exesrgole the Hellinger dissimilarity Hellinger-

Battacharya distance squared,

Disatinger(Fl9) = [ (VIG = Vo)) dz =2 (1= exp (3D;(719))). ©

and the Kullback-Liebler (KL) divergence obtained in thailiasa — 1 of (1),

lim Da(fll9) = [ o) 105 455 @

Another divergence measure arises as a special cases ofthe drdivergence: thex-geometric-

arithmetic mean divergence{GA) [13]

aDaa(f,9) = Da(pf +aqgllff9?) = 10g/(pf(2) +q9(2))*(f7(2)g"(2)' " dz,  (B)

a—1
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where the weightg andg = 1—p are selected in the intervé, 1). Thea-GA divergence is a measure of the
discrepancy between the arithmetic mean and the geometdn of f and g, respectively, with respect to
weightsp andg = 1—p, p € [0, 1]. Thea-GA divergence can thus be interpreted as the dissimilagtween
the weighted arithmetic meary (x) + ¢g(z) and the weighted geometric mef(x)g?(x). Similarly to the
«a-Jensen difference (10), theGA divergence is equal to zero if and onlyfif= g (a.e.) and is otherwise

greater than zero. To our knowledge this measure has nesarapplied to image registration.

Finally, when the dissimilarity between a joint densjty:, y) and the product of its marginadgz, y) =

f(x)f(y) is of interest, thev-mutual information ¢MI) can be defined from the-divergence:

1

oMl = Dq(fllg) = ——

log / F @) (@) 1 (y)dady. (6)

In the limit asa — 1 this measure converges to the Shannon mutual informatiohgiven by:

MI = /fo,l(zo,zT)log <%) dzodzr = H(fo) + H(f1) — H(fon), 7)

whereH (g) = — [ gIn g denotes the Shannon entropy of densgity

For registering two discretd/ x N images, one searches over a set of transformations of tet tar
image to find the one that maximizes the Ml (7) between theeatee and the transformed target. We call
this the “single pixel MI”. In Viola and Wells [14] the autr®empirically approximated the single pixel
MI (7) by “histogram plug-in” estimates, which when extedde theaMI gives the estimate (neglecting

unimportant normalization constants)

orydef 1 = fo1(z0,27) >
MI = 1 , | _— . 8
— ogz();:ofo,l(zo 2r)log <fo(zo)f1(zT) (8)

2.2 Other Entropic Similarity Measures

Another divergence measure was introduced by Henze and$&fi5] as the limit of the Friedman-Rafsky
multivariate run-length statistic [16] and we shall caliié Henze-Penrose (HP) divergence

P*f3(2) + ¢°9°(2)
pf(2) +q9(2)

Dirp(fllg) = / dz, ©)
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with respect to weightg andq = 1 — p,p € [0, 1]. To our knowledge this measure has not been applied to

image registration.

An alternative entropic dissimilarity measure between digributions is thex-Jensen difference [17]:

AH.(p, f,9) = Ho(pf +q9) — [PHa(f) + qHa(9)],, (10)

with respect to weightg andqg = 1 — p,p € [0,1]. Thea-Jensen difference has been applied to image

registration [18, 19]. For detailed discussion on this djeece measure please refer to [10, 11, 12].

All of the above divergence measures can be obtained asspases of the general class of f-divergences
[17]. The through the feature density functions; it is a megative function and equal zero only when
f = g; itis convex inf andg. On the other hand, unlike the divergences, dhéensen difference is not
invariant to invertible transformations of the featurecp&. This means that the-Jensen difference could
depend on the feature parameterization, which is not ddsir&Ve will see that this translates into reduced

discrimination capability in image registration applioas.

3 Entropic Graph Estimators of Feature Similarity Measures

All of the similarity measures introduced in the previoustem could be estimated by plugging in feature
histogram or density estimates of the multivariate dengityhis is the approach taken in virtually all previ-
ous image registration work. A deterrent to these appraaishihe curse of dimensionality, which imposes
prohibitive computational burden when attempting to cartithistograms in large feature dimensions. An
alternative approach, taken here, is to attempt to estithatelivergence directly without recourse to diffi-
cult density estimation. Such approaches have been dexkfopentropy estimation using the gap Vasicek
estimator for one dimensional feature spaces [20] and giotgraph entropic graph estimators have been
developed for higher dimensions [6, 21]. As our previouskanrentropic graph estimators forms the basis

for approximating more general feature similarity metrsaswill review it here.



3.1 Entropic Graphs for Entropy Estimation

Assume that an i.i.d. set of continuously valued featurdorecZ,, = {z1,...,2,}, z € R?, have been
collected from an image and that it is desired to estimatetiwpy of the underlying feature densityz).

An entropic graph estimator of entropy is constructed devid. Considering the points inZ,, as vertices,
construct a a certain kind of minimal graph that spans thestices. Assume that the total edge length of
the graph satisfies the continuous and quasi additive prof#2], which is satisfied by graph constructions
such as the minimal spanning tree, the traveling salesmausdving the traveling salesman problem (TSP),
the steiner tree, the Delaunay triangulation, and the kestareighbor graghThen the total edge length

function converges (a.s.) to a monotone function of theyRérentropy off asn — oc.
More specifically, define the length functional of such a miai graph as

L = 1 24 = ’Y

+(Zn) glelg e(2y) Z €i»
ecE )

where() is a set of graphs with specified properties, e.g., the cleasyalic or spanning graphs (leading to

the MST),e is the euclidean length of an edge(¥ v is called the edge exponent or the power weighting

constant, an < v < d. The sumy_, ¢/ is an equivalent notation this length functional, where {hg;

are the lengths of the edges in the minimal graph. The detetion of L., usually requires a combinatorial

optimization over the sé® but in some cases, e.g., the KNNG, this can be dori#(inlog n) time.

The celebrated Beardwood, Halton and Hammersley (BHH) idme@sserts that [22]

ln L (Z0)/n" = By [ 12z (o) (11)
wherea = (d — v)/d and 3, is a constant independent ¢f- it only depends on the type of graph
construction (MST, KNNG, etc). Comparing this to the expi@s (2) for the Rényi entropy it is obvious
that an entropy estimator can be constructed from the oeléti — )~ ! log (L (Z,)/n®) = Ho(f) + ¢,
wherec = (1 — a)~!log B4, Is a removable bias. Furthermore, it is seen that one camastientropy
for different values ofx € [0, 1] by adjustingy. For many minimal graph constructions the topology of the
minimal graph is independent gfand only a single combinatorial optimization is requirecg$timateH ,

for all a.

2Roughly speaking, continuous quasi additive functionalslee approximated closely by the sum of the weight functioof
minimal graphs constructed on a uniform partitiorj@f1]<.



3.2 Entropic Graph Estimate of Henze-Penrose Affinity

Friedman and Rafsky [16] presented a multivariate gersartadin of the Wald-Wolfowitz for the two sample
problem. The Wald-Wolfowitz test statistic is used to deditween the following hypotheses on a pair of

scalar random variableX, O € R? with densitiesf,, f, respectively:

Hoy: fz = fo, Hy: fo # fo (12)

The test statistic is applied to an i.i.d. random samplg;,, {0;}°, from f, and f,. In the univariate
Wald Wolfowitz test ¢ = 1), then + n; scalar observationgz; }; = {x;};,{0;}; are ranked in ascending
order. Each observation is then replaced by a class &bet O depending upon the sample to which it
originally belonged, resulting in a rank ordered sequentke Wald-Wolfowitz test statistic is the total
number of runs (run-length®, of X's or O’s in the label sequence. As in run-length codihy, is the

length of consecutive sequences of len§tf identical labels.

The Friedman-Rafsky (FR) test [16] generalizes the WaldfoMatz test tod dimensions by clever use
of the MST. The FR test proceeds as follows: 1) construct t8d Mn the pooled multivariate sample points
{z;} U{oi}; 2) retain only those edges that connect an X labeled veotex tO labeled vertex; 3) The FR
test statistic,/V, is defined as the number of edges retained. The hypotltasis (12) is accepted for
smaller values of the FR test statistic. As shown by HenzePardose [15], when normalized by the total
numberng + nq of points, the FR test statistiy converges to 1 minus the Henze-Penrose divergence (9)

between the distributiong, and f,. The FR test is illustrated in Fig. 1.

4 Entropic Graph Estimators of a-GA and aMI

Assume for simplicity that the target and reference feagetsO,,, = {o;}; andX,,, = {x;}; have the same
cardinalityng = n; = n. The estimators ofi-GA and aMI are based on a KNNG-Voronoi partitioning
heuristic, described below. While Voronoi and nearesthisig approaches to entropy estimation have been
proposed by Miller [23] and Kozachenko and Leonenko [243pestively, to our knowledge the heuristic

below is new and is applicable to both entropy and divergestienation.
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Figure 1: lllustration of Friedman and Rafsky’s (FR) MSTiestte of the Henze-Penrose divergence for the
case of two Gaussian densities. (a) The two densities havaéan and variance parameters. (b) the mean
of one distribution is now shifted so that the densities ijee The proportion of MST edges that connect
feature vectors from different classes is a consistennesti ofl — Dy p(fol| fz)-

4.1 KkNNG Estimator of aGA

Assume an equal number of feature veci®s= {o;} ; andXx,, = {z;}]", are acquired from images 1
and 2, wherey; andx; are i.i.d. random variables distributed with densitfgsand f.., respectively. Here
we apply the KNNG-Voronoi partitioning heuristic approxtion from [25]. This heuristic allows us to
approximate the volume of cellular Voronoi partitions oa fhature density using KNN graph edge lengths.

To estimatexDga(fo, fo) = (o — 1)t log Iga(fo, fz), Wherelga(fo, f2) is the integral in (5):

P Fa()\ 17
Toallod) = [ WEURE ) = [ (%) h(z)dz. (13)

andh(z) = pfo(z) + qf.(2). Finally, observe that is the density function of the pooled samg =
{o0i,z;}7, with p = ¢ = 1/2. Re-index (in no particular order) thege samples agz;}?",. If the
consistent KNNG-Voronoi partition density estimation ggdure discussed in [25], is used to estimfte
fz andh from O,,, X,, and Z,,, respectively, we know that
2n R A I-a

— 1 fo(zi) f2(2:)

Igr = — Loy , 14

GA 2n;< o) (14)
is a consistent estimator afGA divergence. We assume for simplicity that the suppod s&f, and f,. are
contained in0, 1]¢. There is no loss of generality if actual support sets ar@bed regionss ¢ R? as they

can be mapped inside the unit cube through coordinate tnanafion.
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Next invoke the KNN-Voronoi heuristic and make the partitaensity estimator approximations

; pdl(z1)) c/n plo(2i) _c/n () = Ma(z)) o c/n

fo(zi) =

M) = XM(z) ™ min(el(0n), (X)) AIL(z)) — el(On)’ AL (=) ef(%)

) 7 7

Substitution of these approximations into (14) yields th&apic graph approximation to the GA mean

1 1 & . ei(On) "2 ei(Xn) /2
aDea =77 log%;mm{<ei<m> ’<ei<0n>> ’ o)

where unimportant constants have been omitted.

divergence (5):

4.2 KkNNG Estimator of aMI

We assume that vectors of paired features = (o;,z;) € R?? are acquired from the two images, i.e.,
Z, = {%}}~, is the coincidence scatter-plot of these features. Defipg) the joint feature density and
f, and f,, the marginal densities af, ¢ R? andz; € R?, respectively, and define the integral expression
Iy
Dr = [ £7(0) (w01 £}7 @) £1 (0)dud

appearing in the expression for thél (6), i.e., aMI = ﬁlogIMI. If a consistent partition density
estimate of procedure, discussed in the previous subeedsiaised to estimaté,.., f, and f,, then it is
easily seen that

— 1 (oo fulz)

Ing = 5 Z <m> ) (16)

—1 ox(0i, Ti

is a consistent estimator @f;/. Here, we note that according to the definition of a consistetimator, a

consistent estimator dfy,/ is one that converges in probability fg;/ as the sample size grows.

Application of the KNNG-Voronoi partitioning heuristic2}]) yields

0 PO LI V% PR LN O PO
fox(zi) ~ elzd(zn)’ fo(uz) ~ ed(On)7 f:c(vl) ~ €d(Xn)

K3 3

which when substituted into (16) gives the entropic graptr@axmation to thexMl

n 2y
aMT = 1 log i Z €i(Zn) ) (7)
a—1 "n% = ei(On)ei(Xn)
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wheree;(Z,) is the distance from the point = (0;, ;) € R?? to its nearest neighbor iiZ;} ande;(0,,)
(e;(X,)) is the distance from the poimt € RY, (z; € R?) to its nearest neighbor i@, (X,,). Again,

unimportant constant factors have been omitted from (17).

4.3 Implementation Issue

The stable computation of the-MI estimator (Equation 17) requires thaf(o) ande;(x) be non-zero
whenevere;(o x x) is non-zero (Figure 2). If eithet;(o) or e;(x) is zero,a-MI cannot be calculated
due to division-by-zero problems. For continuously disited feature§O;} and{X;} the probability of
stable computation is one, since the probability that any feature components be exactly equal is zero.
However, for practical applications where the feature sga@juantized to finite precision arithmetic, the
probability of stable computation is strictly less than ome fact, it can be shown that the probability of
stable computation of the-MI estimator rapidly goes to zero as the number of featuaizations gets

large.

A remedy for this is randomization. To avoid zero values;¢6) ande;(z), a small amount of uniform
noise may be added to the feature coefficient. This randdimizaisperses points uniformly in an area
around their discretized value. This process is consistéhtthe assumption that local distribution of con-
tinuously valued feature vectors is uniform around thescobtized values. In simulations with discretized
8-bit pixel intensity features, univariate uniform noiséhwa variances? = 0.02 was added to each pixel
intensity. This ensured that no two intensities were eyxdb# same and thus enabling stable computation of
aMl. Another approach is to replaeg(o) ande;(z) with max(e;(0), €) andmax(e;(x), €), wheree << 1

[26].

5 A non-linear correlation measure

The simple form of Equation 17 is suggestive of a non-lin@aretation measure between the featur@s}
and{X;} that eliminates the implementation issue discussed alindeed, if ‘e;” in Equation 17 is rede-
fined as the statistical expectation “E”, then thél estimator takes the appearance of a linear correlation

coefficient betweed O, } and{X;}. However, as explained above, the ratjt x x)/+/e;(0)e;(x) is not

11



bounded between 0 and 1, rather it can take values that ateaglp large. The following modification of
Equation 17 can be used to ensure that the non-linear ciiorelaeasure lie between 0 and 1. This new

measure is called the non-linear correlation coefficieht@iS).

Lete; (0 x x) be the distance fromith feature pairo;, e;) to its nearest neighbor as before. Instead of
ei(0) ande;(x) being the coordinate-wise nearest neighbor distanceg dlenfeature coordinate axas
andO (See Figure 2) we defing (o) andé;(z) the associated nearest neighbor distances in the plane (see
Figure 3). The quantity;(o x x)/1/€;(0)&;(z) is now bounded between 0 and 1. In particular, it is equal to
one when the nearest neighbor(tg, z;) is also the coordinate-wise nearest neighbafotoz;) along the
coordinate axe® and.X'.

10
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Figure 2: lllustration of the distances(o x x), e;(0) ande;(x) used in thex-MI estimator (Equation 17)

In particular the quantity
L1 éi(o x x)
B A S e 18
’ nZ< éi<o>~<x>> 4o
is equal to one when the nearest neighbor graph is monotooeeéising or decreasing) piecewise linear

curve in the plane 4. Thus if the features are realizationth@frandom vecto(O, X’) which obeys the

monotone model:
0 = g(X), (19)
whereg(+) is @ monotonic increasing function, the NL@ill equal 1 with probability one. This motivates

12
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Dimension 1

Figure 3: lllustration of modified distances(x) ande; (o) used to stabilize the estimator (Equation 17),
defining the non-linear correlation coefficient (NLCC)

the use ofp as a measure of information betwe@rand X'. Unfortunately, if the actual model is
©=gX)+w (20)

wherew is additive noisep will converge to zero as — oo for any continuous random variable It can

be shown that the rate of convergence in this caseds This motivates the modification of the NLCC to:
. éi(ox x
PNLCC = —7/2d Z ( el($)> : (21)

This modified correlation now takes values betw8emdoo. A normalized version can be defined as:

PNLCC

P=17 PNLCC

(22)
that is between zero and one.

We illustrate the NLCC by comparing it to the linear corriglatcoefficient 23 for two simple models.

The linear correlation coefficient is defined as:

LS (o = 0)(wi — 7)
pcc =
VAT (0 — 024 S (w1 — 2)?

whereo = 1/n> ", 0;andz = 1/n )" | x; are sample means.

(23)
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10,

Dimension 2 —-->X

Dimension1 --->0

Figure 4: The Nearest Neighbor Graph over the realizat{gnsx z;)}¥; of the paired features describes
a monotone function in the plane. For this case, the NILGE1

5.1 Numerical experiments with NLCC

Consider the linear modé = aX’ + w, wherea® = pZ.c/(pgc + 1). Figure 5 shows a plot of the
linear (Equation 23) and nonlinear (Equation 21) corretatioefficientspcc andpyroc for this model as
functions of the number of point¥ for various values ofi. As a increases, the linear correlation increases
but does not reach one due to the presence of additive moise the limit asN — oo the non-linear

correlation coefficient converges to a constant.

Linear model, Y = aX + w

-©- CC,a=0.1t00.7071

|2 NLCCa=0.1t00.7071

[

CC and NLCC
o
)

2 3 4 5 6
Number of points N 4

Figure 5: Comparison of Linear and non-linear correlatioafficient for a linear model
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Now consider the nonlinear model given By = ag(X) + w; g(X) = bX3. As shown in Figure 6,
the linear correlation coefficient remains unchanged awéhge corresponding to the relation between
and X. The non-linear correlation, however increases witlshowing that it responds to changes in the

non-linear relation betwee® and X'.

Non-Linear model, Y = ag(X) + w, g(X) = bX 8
4.5 T T T
-©- CCa=0.1t00.7071
—— NLCC a=0.1to 0.7071

4 “““““““““

35 Y /= g g g R 1
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Number of points N 4

Figure 6: Comparison of Linear and non-linear correlatioafficient for a nonlinear model

Figure 7 confirms these findings. It illustrates the relabetween the linear and non-linear correlation
coefficients for both linear and non-linear models. The @alare plotted fofV = 50000 anda increases

from 0.1 to 0.7071.

4.5¢ T T T T
—¥— Linear Model Y=aX+w
-©- NonLinear Model Y=a(bX 3)+W RREERE

N =50,000, a =[0.10 0.20 0.29 0.37 0.45 0.51 0.57 0.62 0.67 0.71]

st
" R S S S —

25 ER R R

NLCC

P O O N

o

Figure 7: Plot of CC v/s NLCC for N = 50000 and a = 0.1 to 0.7071
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6 Application to Ultrasound Breast Imaging

Ultrasound (US) imaging is an important medical imaging alibgd for whole breast imaging that can aid

discrimination of malignant from benign lesions, can bedusedetect multi-focal secondary masses, and
can quantify response to chemotherapy or radiation thetayig. 8 a set of twenty 2D slices extracted from

a 3D volumetric US breast scanner is shown for twenty diffepatients (cases) receiving chemotherapy.
The women were imaged on their backs with the transduceeg@lag as to image through the breast toward
the chest wall. Some of the cases clearly exhibit tumorsneaied masses with shadows), others exhibit
significant connective tissue structure (bright thin lioegdges), and all have significant speckle noise and

distortions.

In registering ultrasound images of the breast, the referamd secondary images have genuine differ-
ences from each other due to biological changes and diffessin imaging, such as positioning of the tissues
during compression and angle dependence of scatteringtfssoe boundaries. The tissues are distorted
out of a given image plane as well as within it. Speckle noéastic deformations and shadows further
complicate the registration process thus making ultragduaast images notoriously difficult to register. It
is for this reason that conventional registration metheds to have problems with US breast images. Here
we will illustrate the advantages of matching on high dimemal feature spaces implemented with entropic

similarity metrics.

6.1 Ultrasound Breast Database

To benchmark the various registration methods studied wkiated the mean squared registration error
for registering a slice of US breast image volume to an adjaskce in the same image volume (case).
For each case we added differing amounts of spatially hormexges and independent random noise to both
slices in order evaluate algorithm robustness. A trainiatallase of volumetric scans of 6 patients and a
test database of 15 patient scans were created. Featuwrgmelgas performed using the training database
and registration performance was evaluated over the tégsbalse. These databases were drawn from a
larger database of 3D scans of the left or right breast of fersabjects, aged 21-49 years, undergoing

chemotherapy or going to biopsy for possible breast careach volumetric scan has a field of view of
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Figure 8: Ultrasound (US) breast scans from twenty volunaasof patients undergoing chemotherapy.
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about4cm?® (voxel dimensiong).1mm? x 0.5mm) and encompasses the tumor, cyst or other structure of
interest. The scans were acquired at 1cm depth resoluteldiyg 90 cross-sectional images at 0.4cm
horizontal resolution. The patient data was collected Withintention to monitor therapy progress in the
patients. Tumor/Cyst dimensions vary and can range fsomm® to 1cm?® or higher. As the aim of this
study is to quantitatively compare different feature sdecand registration methods we restricted our

investigation to rotation transformations owei6°.
6.2 Feature Space

We have experimented with a large number of vector valuetlifes including, Meyer 2D wavelet coef-
ficients, grey level tag features, and curvelet featuresie ke present results for vector valued features
constructed by projecting image patches onto a basis fopdteh derived from independent component
analysis (ICA). The ICA basis is especially well suited for @urposes since it aims to obtain vector fea-
tures which have statistically independent elements andheaefore facilitate estimation oMl and other

entropic measures.

Specifically, in ICA an optimal basis is found from a trainisgt which decomposes imag&s in the
training set into a small number of approximately statéhicindependent components’; } each supported

on an8 x 8 pixel block (we choose an 8 by 8 block only for concreteness):
p
Xi = Z aiij. (24)
j=1

We select basis elements’; } from an over-complete linearly dependent basis using naimkad selection
over the database. For imagthe feature vectors; are defined as the coefficieris;; } in (24) obtained by

projecting each of it§ x 8 sub-image blocks onto the basis.

Figure 6.2 illustrates the estimated 64 dimensioRal §) ICA basis for the training database. The basis
was extracted by training on over 100,000 randomly sample® sub-images taken from the 6 volumetric
breast ultrasound scans. The algorithm used for extrastamHyvarinen and Oja’s [27FastiCA  ICA
code (available from [28]) which uses a fixed-point algaritto perform maximum likelihood estimation
of the basis elements in the ICA data model (24). Note thatmipg is performed on the ICA basis

vectors. The 64D ICA is a full decomposition of tRex 8 patch of image. Given this ICA basis and a pair
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of to-be-registered image slices, coefficient vectors ateeted by projecting each x 8 neighborhood in
the images onto the basis set. Thusd®fl the coincidence scatter plot is in 128 dimensions; the lpemnof
dimensions of a coincidence feature extracted at a paaticalv-column coordinate in the pair of images.
The feature space for thelensenpGA and Henze-Penrose registration criteria was constiuntepooling

the two labeled sets of 64D feature vectors. Thus, the dieality of the feature space was 64D. MST
or KNNG were constructed on the 64D feature spaces of theegadample. In either case these feature
dimensions (128D or 64D) are too large for a histogram bigilgorithm to be feasible, which prevented

comparison to the full dimensional classical density pludAl registration criterion.

Figure 9: 8 x 8 ICA basis set obtained from training on randomly sele@ed 8 blocks in the training
database of breast scans.

Recently, Kybic [26] used the kNN graph to estimate Ml by maméy grouping higher dimensional
feature vectors. Divergence was calculated as the meargdivee overn such groupings of points each.
In our approach, all extracted feature vectors are useditoas divergence. In experiments where feature
vectors were patrtitioned (e.g. using k-Means clusterirgipie building the NN tree over the centroids of
these partitions, we noticed a drop in registration acguri&gybic reports that divergence estimation bias

decreased fom > 50 and registration error was lower than histogram estimdtes/ergence.
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6.3 Experimental Results

For each of the 15 scans in the test set 2 image slices wesedrin the depth direction perpendicular to
the skin, such that they showed the cross-section of thertuhiiese two slices have a separation distance
of about 5mm. At this distance, the speckle deccorelatethbuinderlying anatomy remains approximately
unchanged. The first cross sectional slice was picked swathittintersected with the ellipsoidal-shaped
tumor through its center. The second slice was picked clostte edge of the tumor. These images thus
show a natural decline in tumor size, as would be expecteidhim $ampled scans of tumors responding to
therapy. Since view direction changes from one image sc#retoext for the same patient over time, rota-
tional deformation is often deployed to correct these cbardyring registration. We simulated this effect
by registering a rotationally deformed image with its uatetl slice-separated counterpart, for each patient
in the 15 test cases. Rotational deformation was in stepslefiees such that the sequence of deformations
was [-16 -8 -4 -2 0 (unchanged) 2 4 8 16 ] degrees. Furtherpthges were offset (relatively translated) by
0.5mm (5 pixels) laterally to remove any residual noisealation since it can bias the registration results.
Since some displacement can be expected from the handhelch&atiing process and the relative tissue
motion of the compressible breast tissue, this is not upredsde. For each deformation angle, divergence

measures were calculated, where the ‘registered statee igrte with O degrees of relative deformation.

Figure 11 shows average objective function plots for thésteggion experiment discussed above. Thirty
different noise realizations were added to the fifteen taagies at every angle of rotational deformation to
give N = 400 different images for calculation of the matching functiohsthe figure, each graph plots the
sample meanjy, calculated over thé&' measurements at each andleThe standard deviation @f, also
called the standard error of the measurements, is givenhy= oy/v/'N forf € {—16°, ..., +16°}, where
oy is the standard deviation of thé measurements made at each rotational deformation. To finentlae
images it is important to discount for the relative scaliregween the matching functions. Hengg, of
each matching function is normalized such thatx (o5, ) is unity. This restricts arbitrary scaling and also
discounts for any scaling inherent in the computation ofrtta#ching function. In each row, the extent on
the search space is identical. This facilitates comparigawo divergence estimates and also allows for

comparison of a particular divergence as noise increaseanlreadily be seen from the trends that at low
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(b)

Figure 10: UL Images of the breast separated and rotatiodafbrmed. (a) Cross-sectional image through
center of tumor. (b) Rotated cross-sectional image acgjait@ distance 5mm away from Image in (a).

levels of noise, all feature based estimates have sharpdis tean the Shannon MI estimate using pixel
features. Further, as noise increases some divergenoeatsdj notablyy GA andaMI divergence between

the ICA features of the images, maintain sensitivity totioteal deformation.

For each extracted image slice we created 250 noisy regdiday adding truncated Gaussian noise.
8 x 8 neighborhoods of the ultrasound image replicates weregteg onto the 64 dimensional ICA basis.
The RMS registration error is illustrated for six differeagorithms in Fig. 12 as a function of the RMS
(truncated) Gaussian noise. Registration error was détedras the RMS difference between the location
of the peak in the matching criterion and the true rotatiogl@nNote from the figure that, except for the
a-Jensen difference, the standard single pixel Ml undeoperés relative to the other methods. This is
due to the superiority of the high dimensional ICA featuresdiby these other methods. Thelensen
difference implemented with KNN vs MST give identical perf@ance. Unlike the other metrics, the
Jensen difference is not invariant to re-parameterizatidnch explains its relatively poor performance for
large RMS noise. Finally, we remark that the runtime comipteof the kKNN-based methods (off-the-shelf
kdb-tree implementation) is lower than the MST-based nugt{off-the-shelf Kruskal algorithm).
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Figure 11: Normalized average profiles of image matchirtgiai for registration of UL breast images taken
from two slices of the image volume database under decige&tR. All plots are normalized with respect
to the maximum variance in the sampled observations.(rokNN-based estimate af-Jensen difference
divergence between ICA features of the two images, (row 2Jd&ed estimate af-Jensen difference
divergence between ICA features of the two images, (row 3)eNiNnate otx Geometric-Arithmetic mean
affinity between ICA features, (row 4) MST based estimate @fit&-Penrose affinity between ICA features,
(row 5) Shannon Mutual Information estimated using pixatfiee histogram method, (row &)Mutual In-
formation estimated using NN graphs on ICA features andylagbw 7) NN estimate of the Non-linear
correlation coefficient between the ICA feature vectors.lu@ms represent objective function under in-
creasing additive noise. Column 1-4 represent additiveciited Gaussian noise of standard deviatos;,

0, 2, 8 and 16. Rotational deformations were confinett tt6 degrees.
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Figure 12: Rotational root mean squared error obtained fiegistration of ultrasound breast images us-
ing six different image similarity/dissimilarity critexi Standard error bars are as indicated. These plots
were obtained by averaging 15 cases, each with 250 Monte @&ils adding noise to the images prior to
registration, corresponding to a total of 3750 registrag@periments.

7 Simultaneous multi-image registration

Multi-image registration deals with the problem of registg three or more images simultaneously. In
breast cancer therapy patient progress is monitored bgpdgerUL scans of the breast. Radiologists of-
ten register breast images of a patient collected at periatirvals to monitor tumor growth or recession.
One approach is to sequentially register pairs of images fime A to time B, time B to time C and so

on. Besides being cumbersome and expensive, this procesteathto the accumulation of registration
errors. A less expensive solution that may be able to avea eccumulation is to register all the sequen-
tial scans (A,B,C,...) simultaneously. This section destiates the utility of entropic graph methods to

simultaneously register three or more images.
7.1 Divergence estimation for multi-image registration

Evaluation of divergence for multiple images is straightfard. Thea-MI betweend-dimensional features

{3, {0, {Vi Y| extracted from three imageh,, I, I3, respectively is an extension of Equation
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17 as follows:

_ 1 1 ei(z X oXxy)
MI = log — ’ .
@ a—1 8he ; ( ei(l‘)ei(O)@i(y)> )

wheree;(z x o x y) is the distance from the point = [z;, 0;,y;] € R3? to its nearest neighbor 7},

ande;(z) (e;(0)) (ei(y)) is the distance from the point € R?, (0; € R?), (y; € RY) to its nearest neighbor
in {X;}2({O;}2){Y; } i respectively.

Similarly, building on Equation 1&-GA can be estimated between one reference and two targgesna

as follows:
1 L
aDga = ] log 3 ;mln{rj};’?l 26)
ro= min{(?’gO%)W’ <€%EQ:§>7/2}’
- -G8

(v)
o= (407 ()

wheree;(z), e;(0) ande;(y) are the distances from a poiat € {{z;}’, {0:}}, {y:}'} € R to its nearest

neighbor in{ X; };, {O; }; and{Y;};, respectively. Here, as abowe= (d — v)/d.

Shannon MI can be estimated using pixel features by extgrifiquation 8 to histogram estimates of
the joint pdf in three dimensional space as follows:

255

log Y- fgu(e0.0) (@) ful0)fyw) @7)

z,0,y=0

a1 L
a—1

In (27) we assume 8-bit gray Ievg‘Lphy denotes the joint intensity level “coincidence histogram”

1 MN
fw,o,y(xa 0, y) = m Z Iwk,okyk (.1‘, 0, y)> (28)
k=1

andI,, ... (x,0,y) is the indicator function equal to one whény, o;, yr) = (z,0,y) and equal to zero

otherwise.
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Equation 28 requires building a histogram in the three dsiwral joint space of the three images.
Generalizing toN images, it can easily be seen thatVadimensional histogram would be required to
estimate Shannon MI using the histogram plug-in method.igaudsed earlier, the curse of dimensionality
restricts the estimation of Shannon Ml in higher dimensid@s comparison with Equations 25 and 27 it is
seen that estimation of-MI and a-GA do not suffer from this curse-of-dimensionality sinbhe tomplexity

of the KNN graph grows only linearly in the dimension.

In the following section, the performance of entropic grdqased divergence estimatesceMI and

a-GA is compared with traditional histogram estimation tggnes of Shannon M.

7.2 Quantitative performance evaluation in multi-image registration

The methods used to evaluate performance of divergenceatst for the two-image case are extended to
three images. The database of UL images is divided, as hafdcetraining and testing sets. 64D ICA
are estimated on the training set and used as features fetragign. Test images are extracted from each
volumetric scan in the test dataset.#%mm depth directional distance separates the referenageimg
from the two target imageg,,, andl,,. ICA basis coefficient features are extracted from the esies
and target images using the standard sub-block projeaticdimique, as before. Registration performance
is evaluated over rotational deformation within the raag©. Figure 13 shows an example registration

scenario where the reference images is shown to be sandiMiehteeen two target images that are rotated.

Figure 13: Multi-image registration scenario illustratesing three UL images of the breast where the
reference image is sandwiched between two target imageartheotatedt16° respectively.
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In Figure 14 shows the registration performance of the 16iteage sets. Mis-registration error is
measured as the sum of mean-squared misregistration atonig each of the target images, and can hence
vary from0° to 32°. The SNR in all the images is progressively decreased bygddincated uncorrelated
Gaussian noise. Mean misregistration error is obtained bgt&tCarlo simulations over 30 different noise
realizations on each of the 16 image. Thus, every point igtagh is the mean error over 480 measurements.

Standard error bars are as shown.

32
—©— a Geometric-Arithmetic mean (64D ICA-NN)

oglfl B Mutual Information (64D ICA—-NN)
NonLinear Correlation Coefficient (64D ICA-NN)

24}l —— Shannon Mutual Information (Pixel-Histogram (128 3 bins)) |

—0— Shannon Mutual Information (Pixel-Histogram (256 8 bins))

N
o
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N
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Figure 14:. Multi-image registration scenario illustratesing three UL images of the breast where the
reference image is sandwiched between two target imageartheotated16° respectively.
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8 Image Clustering

Non-linear transformations often creep into the image B&itipn process; common sources being lens
distortion in cameras, changes in light patterns or, sespecific nonlinearities such as magnetic field
inhomogeneities in magnetic resonance imaging. Sincedhdinear transformations cannot be recovered
by a linear measure of similarity such as the linear colaatoefficient, in such situations, the use of a
measure invariant to non-linear transformations couldubéfjed as being more robust approach. While the
mutual information measure, as used by Viola and Wells §livariant to non-linear transformations it is a
joint statistic that requires one-to-one feature corragpace and is difficult to calculate directly in higher-
dimensional spaces. The NLCC that we introduced in sectaweS not suffer from these drawbacks since it
is not a joint statistic and can also be reliably calculatedigher-dimensional spaces using the graph-based

methods we describe.

In this section, we attempt to use this invariance propeityldCC for an image clustering application.
In this preliminary example we demonstrated clusteringrades sampled from the Corel image database.
15 labeled images were randomly picked and resizédo 100 pixels using bilinear interpolation. Six dif-
ferent non-linear transformation functions, includingadtatic, cubic, parabolic, sigmoid, inverse sigmoid

and reverse video were applied to the images in the integpdge.

Here is a quick mathematical description of the non-lineangformations. Also see Figure 15 for
a graphical illustration of the transform. Letcorrespond to the set of intensity features extracted from
the original image. Ley correspond to the set of intensity features generated blyiagpa non-linear

transformatior’(x).

Quadratic transformation
y="T(2) =ax*a? (29)
Cubic Transformation

y=T(z)=axx> (30)
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Parabolic Transformation

y=T(z) = a(r —zc)* +ye (31)
Third-Order Polynomial Transformation

y=T(z)=axx?+bxaz> (32)

Sigmoidal Transformation

1

:T =
Y (@) 1+exp—ax*(z—>b)

(33)

Inverse-Sigmoid Transformation

1 _
sz(a:)z—*log( aj)—l—b (34)
a X
Reverse Video Transformation

y=T(z) =max(z) — x (35)

Images of the 15 objects used in this clustering study waresformed non-linearly using the formu-
lations described above. Further, reverse-video versibeach image were also transformed and added to
the dataset. Finally, using different values of the paranset andb, every image in the dataset has 21 ad-
ditional transformed counterparts to create a dataset@iBjue images. The LCC and NLCC were then
estimated between all images of the databased picked 2raeaThere arg®s’) /2 such combinations. The
linear and non-linear CC were then calculated for all suchgenpairs. To visualize the resultant cloud of
relative positions of these images where distance is medsiging the similarity measure, we project them
onto a 2D space using a variant of the multidimensional sgallgorithm as used in the Pajek [29] software
package. The relative estimates provided by MDS algorithrasiccurate up to a rotation of the co-ordinate
positions of the vertices. The resultant mappings can beisdeigures 16 and 17. The performance of the
clustering result is measured using a clustering figurerefit called the Dunn’s validity index [30] defined

as:

D,, = min min d(ci’cj). ) (36)
" i=lne |=iane \ MaXg=1, . diam(cg)
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Figure 15: Non-linear transformations applied to imagesfthe Corel database.

whered(c;, ¢;) is the dissimilarity function between two clustersandc; and is defined ad(c;,¢;) =
min(z € ¢,y € ¢j)d(z,y) anddiam(c;) is the diameter of the cluster representing its dispersinahgiven
asdiam(c;) = max(z,y € ¢;)d(z,y). Dunn’s technique is well-suited to illustrate clusterpgyformance
since it attempts to identify clusters that are compact aelll separated. In this experiment the number of
classes are known apriori (15 image classes) and the vaiidiex is used to measure the performance of
the clustering algorithm. A higher value &f,_ thus implies that the algorithm can cluster the data into 15

partitions with better separation between classes and coonpactness within each class.

Figures 16 and 17 above show clustering performance of th@ & NLCC respectively. The vertices
represent the images in the lower dimensional space. THrditional links between images each have an
associated weight/““ andw,;*““, wherei and j index over images and the super-script signifies the
distance measure of the link. By thresholdingwomwe can visualize only the strong links. Thus absent
links imply that the link weights were low and the images weot perceived to be similar. In the first

figure we can see that the LCC has a highly disperse clusthrangteat amount of inter-mingling between
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Figure 16: Demonstration of image clustering using thedirerrelation coefficient. Intensity images of 15
objects were each transformed using a non-linear functimmg the CC as a similarity function the images
were projected onto a 2D scale using a MDS algorithm [29]. mbdes of the graph represent images
while the edges represent similarity between images. Foitglonly edge weight greater than a particular
threshold (0.9) of the CC are shown.
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Dunn Validity Index = 192.1468 -
Threshold = 0.8 : :

Figure 17: Demonstration of image clustering using the lmgar correlation coefficient. Intensity images
of 15 objects were each transformed using a non-linear ifumctUsing the NLCC as a similarity function
the images were projected onto a 2D scale using a MDS algof@®]. The nodes of the graph represent
images while the edges represent similarity between images clarity, only edge weight greater than a
particular threshold (0.8) of the NLCC are shown.
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classes. This is also reflected in the lower Dunn’s validityeix for the clustering of 15 classes. The NLCC,
however, shows tight clustering and scores much higher @tmn’s validity index. Earlier, in section 5
we saw that the NLCC is invariant to non-linear transforaagi of the underlying image intensity features.
By definition, the linear CC is invariant only to linear trémsnations of image intensity features. Hence the
clustering of objects under the influence of non-linear sfamnmations on the feature space is much better

behaved when the NLCC is used as a dissimilarity measure.

9 Conclusion

In this paper we have presented several extensions of oviopsework on entropy estimation for image
registration. These extensions include new KNN estimatitfse mutual informationdMI) and geometric-
arithmetic mean divergenceGA) and a new measure of non-linear correlation. As compgrguevious
work in which estimated Jensen differences were used fastragjon, these divergence measures have the
advantage of invariance to re-parameterization of thaufeagpace. While we do not yet have any conver-
gence results for the kNN divergence estimators, thererésitistantial theoretical evidence that they do
converge. Furthermore, our numerical evaluations showtliese divergence estimators outperform previ-
ous approaches to image registration. We also introduaeériedman-Rafsky (FR) multivariate run test,
which is an estimator of Henze-Penrose divergence, as a mghing criterion for image registration. Our
numerical experiments showed that the BBA, andaMI significantly outperform previous approaches in
terms of registration mean squared error. Of course, as adpo our KNNG divergence estimators, the
FR method has the advantage of proven theoretical conveedamrt has the disadvantage of higher runtime

complexity.

The new kNN estimators of theMl and «GA have the advantage of invariance to re-parameterization
of the feature space. While convergence results for the kNéfgence estimators were not provided there
is circumstantial theoretical evidence that they do caywefurthermore, the numerical evaluations show
that these divergence estimators outperform previousoappes to image registration. This paper also
introduced the Friedman-Rafsky (FR) multivariate run,tedtich is an estimator of Henze-Penrose diver-

gence, as a new matching criterion for image registratidrcoOrse, as compared to our KNNG divergence
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estimators, the FR method has the advantage of proven tleabi@nvergence but has the disadvantage of

higher runtime complexity.

The performance offGA and Henze-Penrose have exceeded those of other divergesamsures. We
hypothesize that the combination of low-dimensional caxity through the exclusive use of marginal
spaces and invariance to transformations has led to supwise performance and robustness in these
measures as compared to others. Unlike the other metriegyJénsen difference is not invariant to re-

parameterization, which explains its relatively poor parfance for large RMS noise.

An exciting extension of this work is in registration of mple images. Multiple images could be
registered simultaneously to form an atlas. Multi-imaggisteation could also be used to simultaneously
register time-sampled imagery such as those acquiredgipériodic UL examination for cancer detection

and management.

Lastly, we have introduced a new measure of non-linear lediwa. Based on an extension@GA and
aMI measures, the NLCC is estimated using the kNN graph totaddy partition space based on local
density of samples. We contrast its performance to thedi@€xand find this measure to be robust in the

face of non-linear intensity transformations.
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