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Abstract

Quantitative evaluation of similarity between feature densities of images is an important step in sev-
eral computer vision and data-mining applications such as registration of two or more images, retrieval
and clustering of images. Previously we had introduced a newclass of similarity measures based on en-
tropic graphs to estimate Rènyi’sα-entropy,α-Jensen difference divergence,α-mutual information and
other divergence measures for image registration. Entropic graphs such as the minimum spanning tree
(MST) and k-Nearest neighbor (kNN) graph allow the estimation of such similarity measures in higher
dimensional feature spaces. A major drawback of histogram-based estimates of such measures is that
they cannot be reliably constructed in higher dimensional feature spaces.

In this paper, we shall briefly extrapolate upon the use of entropic graph based divergence mea-
sures mentioned above. Additionally, we shall present estimates of other divergence viz the Geometric-
Arithmetic mean divergence and Henze-Penrose affinity. We shall present the application of these mea-
sures for pairwise image registration using features derived from independent component analysis of
the images. An extension of pairwise image registration is to simultaneously register multiple images,
a challenging problem that arises while constructing atlases of organs in medical imaging. Using en-
tropic graph methods we show the feasibility of such simultaneous registration using graph based higher
dimensional estimates of entropy measures. Finally we present a new non-linear correlation measure
that is invariant to non-linear transformations of the underlying feature space and can be reliably con-
structed in higher dimensions. We present an image clustering experiment to demonstrate the robustness
of this measure to non-linear transformations and contrastit with the clustering performance of the linear
correlation coefficient.
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1 Introduction

The accuracy of image matching algorithms critically depend on two factors: the selection of a highly

discriminating image feature space and the choice of similarity measure to match these image features.

These factors are especially important when some of the intensity differences are due to the sensor itself,

as arises in registration of speckle-limited images or whenimages of objects exhibit non-linear intensity

relationship. In such cases, it is well known that the standard linear cross correlation is a poor similarity

measure.

To overcome limitations of linear correlation, Viola and Wells [1] and Maes et. al. [2] devised a simi-

larity measure based on the Kullback-Liebler [3] information divergence between the joint feature density

and the product of the marginal densities. This is the mutualinformation (MI) measure and it quantifies the

non-linear correlation between images as the amount of statistical dependency in the underlying joint prob-

ability distribution functions (pdf); where the pdf is estimated using pixel intensity histograms. Although

the pixel-histogram method overcomes the nonlinear correlation problem, drawbacks abound due to the use

of histogram density estimators. Histograms are efficient density estimators in low dimensions, but cannot

be reliably constructed in higher dimensional feature spaces (> 4) thus limiting themselves to applications

where dimensionality of feature space is very low. Several applications such as in multi-image and multi-

sensor registration require the higher dimensional feature descriptors to effectively capture signal properties.

Unfortunately, the pixel-histogram method cannot be directly extended to address these problems.

Ma and Hero [4] proposed the use of entropic-graph methods for image registration. As contrasted to

the previous approaches, entropic graphs estimate an information divergence without the need to compute

histogram density estimates. Our approach is based on the entropic graph based estimate of Rényi’sα-

entropy introduced by [5, 6, 7] and developed by Ma for image registration [4]. An entropic graph is any

graph whose normalized total weight (sum of the edge lengths) is a consistent estimator ofα-entropy. An

example of an entropic graph is the k-nearest neighbor graphand due to its low computational complexity

it is an attractive entropic graph algorithm. This graph estimator can be viewed as a multidimensional

generalization of the Vasicek-Shannon entropy estimator for one dimensional features [8, 9]. Graph methods

sidestep the issue of density estimation and have asymptotic convergence to the Rényiα-entropy of the
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feature distribution.

This paper extends our previous work with regards to using entropic graphs for registration. Here we

present the applications of entropic graphs for robust pairwise image registration and extensions to multi-

image registration. We also introduce a new measure of non-linear correlation that can be estimated using

entropic graphs and is shown to be more robust to non-linear transformations than the linear correlation

coefficient (CC). Previously [10], we had demonstrated the advantages of cross modality image registration

algorithms that used divergence measures calculated on higher dimensional feature spaces using entropic

graph methods such as the minimum spanning tree and k-Nearest neighbor graphs. Divergence was esti-

mated using theα-Jensen difference that is a generalization of the Shannon-Jensen divergence. In [11, 12]

we presented entropic graph based estimation of Henze-Penrose affinity,α-MI and α-Geometric arithmetic

mean divergence. An overview of our previous work is presented in some detail here to ease understanding

of concepts related to entropic graph based estimation of entropy and divergence.

This paper is arranged as follows: Section 2 briefly introduces different divergence measures based on

Rényi’s generalized divergence. Different graph length functionals will allow us to approximate a wide va-

riety of entropic matching criteria without the need to explicitly estimate densities or histograms. Building

on our previous work [6, 10, 11, 12], in Sections 3 and 4 we willshow how a kNNG can be used to estimate

alpha-entropy, Henze-Penrose affinityα-mutual information and Geometric-Arithmetic mean divergence.

Section 5 introduces a new non-linear correlation method based on entropic graphs. Section 6 will demon-

strate how the combination of high dimensional ICA featuresand kNNG similarity measures can lead to

significant registration benefits in ultrasound breast imaging. In section 7 we explain the utility of higher

dimensional matching toward simultaneous registration ofthree images. Lastly, section 8 presents a cluster-

ing example to contrast the performance of the NLCC versus the CC in the face of image corruption due to

non-linear distortion.

2 General Entropic Dissimilarity Measures

Z is ad-dimensional random vector andf(z) andg(z) denote two possible densities forZ. HereZ will be

a feature vector constructed from the reference image and the target image to be registered andf andg will
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be the feature densities. When the features are discrete valued the densitiesf andg should be interpreted as

probability mass functions.

2.1 Measures Related to the Ŕenyi Divergence

The basis for entropic methods of image fusion is a measure ofdissimilarity between densitiesf andg. The

Rényiα-divergence, also called the Rényiα-relative entropy, betweenf andg of fractional orderα ∈ (0, 1)

Dα(f‖g) =
1

α − 1
log

∫
g(z)

(
f(z)

g(z)

)α

dz =
1

α − 1
log

∫
fα(z)g1−α(z)dz. (1)

When the densityf is supported on[0, 1]d andg is uniform over this domain the (negative)α-divergence

reduces to the Rényiα-entropy off :

Hα(f) =
1

1 − α
log

∫
fα(z)dz. (2)

When specialized to various values ofα the α-divergence can be related to other well known diver-

gence and affinity measures. Two of the most important examples are the Hellinger dissimilarity Hellinger-

Battacharya distance squared,

DHellinger(f‖g) =

∫ (√
f(z) −

√
g(z)

)2

dz = 2
(
1 − exp

(
1

2
D 1

2

(f‖g)
))

, (3)

and the Kullback-Liebler (KL) divergence obtained in the limit asα → 1 of (1),

lim
α→1

Dα(f‖g) =

∫
g(z) log

g(z)

f(z)
dz. (4)

Another divergence measure arises as a special cases of the Rényi α-divergence: theα-geometric-

arithmetic mean divergence (α-GA) [13]

αDGA(f, g) = Dα(pf + qg‖fpgq) =
1

α − 1
log

∫
(pf(z) + qg(z))α(fp(z)gq(z))1−αdz, (5)
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where the weightsp andq = 1−p are selected in the interval(0, 1). Theα-GA divergence is a measure of the

discrepancy between the arithmetic mean and the geometric mean off andg, respectively, with respect to

weightsp andq = 1−p, p ∈ [0, 1]. Theα-GA divergence can thus be interpreted as the dissimilaritybetween

the weighted arithmetic meanpf(x)+qg(x) and the weighted geometric meanfp(x)gq(x). Similarly to the

α-Jensen difference (10), theα-GA divergence is equal to zero if and only iff = g (a.e.) and is otherwise

greater than zero. To our knowledge this measure has never been applied to image registration.

Finally, when the dissimilarity between a joint densityf(x, y) and the product of its marginalsg(x, y) =

f(x)f(y) is of interest, theα-mutual information (αMI) can be defined from theα-divergence:

αMI = Dα(f‖g) =
1

α − 1
log

∫
fα(x, y)f1−α(x)f1−α(y)dxdy. (6)

In the limit asα → 1 this measure converges to the Shannon mutual information (MI) given by:

MI =

∫
f0,1(z0, zT ) log

(
f0,1(z0, zT )

f0(z0)f1(zT )

)
dz0dzT = H(f0) + H(f1) − H(f0,1), (7)

whereH(g) = −
∫

g ln g denotes the Shannon entropy of densityg.

For registering two discreteM × N images, one searches over a set of transformations of the target

image to find the one that maximizes the MI (7) between the reference and the transformed target. We call

this the “single pixel MI”. In Viola and Wells [14] the authors empirically approximated the single pixel

MI (7) by “histogram plug-in” estimates, which when extended to theαMI gives the estimate (neglecting

unimportant normalization constants)

M̂I
def
=

1

α − 1
log

255∑

z0,zT =0

f̂0,1(z0, zT ) log

(
f̂0,1(z0, zT )

f̂0(z0)f̂1(zT )

)
. (8)

2.2 Other Entropic Similarity Measures

Another divergence measure was introduced by Henze and Penrose [15] as the limit of the Friedman-Rafsky

multivariate run-length statistic [16] and we shall call itthe Henze-Penrose (HP) divergence

DHP (f‖g) =

∫
p2f2(z) + q2g2(z)

pf(z) + qg(z)
dz, (9)
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with respect to weightsp andq = 1 − p, p ∈ [0, 1]. To our knowledge this measure has not been applied to

image registration.

An alternative entropic dissimilarity measure between twodistributions is theα-Jensen difference [17]:

∆Hα(p, f, g) = Hα(pf + qg) − [pHα(f) + qHα(g)], , (10)

with respect to weightsp andq = 1 − p, p ∈ [0, 1]. Theα-Jensen difference has been applied to image

registration [18, 19]. For detailed discussion on this divergence measure please refer to [10, 11, 12].

All of the above divergence measures can be obtained as special cases of the general class of f-divergences

[17]. The through the feature density functions; it is a non-negative function and equal zero only when

f = g; it is convex inf andg. On the other hand, unlike the divergences, theα-Jensen difference is not

invariant to invertible transformations of the feature spaceZ. This means that theα-Jensen difference could

depend on the feature parameterization, which is not desirable. We will see that this translates into reduced

discrimination capability in image registration applications.

3 Entropic Graph Estimators of Feature Similarity Measures

All of the similarity measures introduced in the previous section could be estimated by plugging in feature

histogram or density estimates of the multivariate densityf . This is the approach taken in virtually all previ-

ous image registration work. A deterrent to these approaches is the curse of dimensionality, which imposes

prohibitive computational burden when attempting to construct histograms in large feature dimensions. An

alternative approach, taken here, is to attempt to estimatethe divergence directly without recourse to diffi-

cult density estimation. Such approaches have been developed for entropy estimation using the gap Vasicek

estimator for one dimensional feature spaces [20] and entropic graph entropic graph estimators have been

developed for higher dimensions [6, 21]. As our previous work in entropic graph estimators forms the basis

for approximating more general feature similarity metricswe will review it here.
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3.1 Entropic Graphs for Entropy Estimation

Assume that an i.i.d. set of continuously valued feature vectorsZn = {z1, . . . , zn}, z ∈ IRd, have been

collected from an image and that it is desired to estimate theentropy of the underlying feature densityf(z).

An entropic graph estimator of entropy is constructed as follows. Considering then points inZn as vertices,

construct a a certain kind of minimal graph that spans these vertices. Assume that the total edge length of

the graph satisfies the continuous and quasi additive property [22], which is satisfied by graph constructions

such as the minimal spanning tree, the traveling salesman tour solving the traveling salesman problem (TSP),

the steiner tree, the Delaunay triangulation, and the k nearest neighbor graph2 Then the total edge length

function converges (a.s.) to a monotone function of the Rényi α-entropy off asn → ∞.

More specifically, define the length functional of such a minimal graph as

Lγ(Zn) = min
E∈Ω

∑

e∈E

eγ(Zn) =
∑

i

eγ
i ,

whereΩ is a set of graphs with specified properties, e.g., the class of acyclic or spanning graphs (leading to

the MST),e is the euclidean length of an edge inΩ, γ is called the edge exponent or the power weighting

constant, and0 < γ < d. The sum
∑

i e
γ
i is an equivalent notation this length functional, where the{ei}i

are the lengths of the edges in the minimal graph. The determination ofLγ usually requires a combinatorial

optimization over the setΩ but in some cases, e.g., the kNNG, this can be done inO(n log n) time.

The celebrated Beardwood, Halton and Hammersley (BHH) Theorem asserts that [22]

lim
n→∞

Lγ(Zn)/nα = βd,γ

∫
fα(z)dz, (a.s.) (11)

whereα = (d − γ)/d and βd,γ is a constant independent off - it only depends on the type of graph

construction (MST, kNNG, etc). Comparing this to the expression (2) for the Rényi entropy it is obvious

that an entropy estimator can be constructed from the relation (1 − α)−1 log (Lγ(Zn)/nα) = Ĥα(f) + c,

wherec = (1 − α)−1 log βd,γ is a removable bias. Furthermore, it is seen that one can estimate entropy

for different values ofα ∈ [0, 1] by adjustingγ. For many minimal graph constructions the topology of the

minimal graph is independent ofγ and only a single combinatorial optimization is required toestimateHα

for all α.
2Roughly speaking, continuous quasi additive functionals can be approximated closely by the sum of the weight functionals of

minimal graphs constructed on a uniform partition of[0, 1]d.
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3.2 Entropic Graph Estimate of Henze-Penrose Affinity

Friedman and Rafsky [16] presented a multivariate generalization of the Wald-Wolfowitz for the two sample

problem. The Wald-Wolfowitz test statistic is used to decide between the following hypotheses on a pair of

scalar random variablesX,O ∈ IRd with densitiesfx, fo respectively:

H0 : fx = fo, H1 : fx 6= fo, (12)

The test statistic is applied to an i.i.d. random sample{xi}n1

i=1
, {oi}n0

i=1
from fx andfo. In the univariate

Wald Wolfowitz test (d = 1), then0 + n1 scalar observations{zi}i = {xi}i, {oi}i are ranked in ascending

order. Each observation is then replaced by a class labelX or O depending upon the sample to which it

originally belonged, resulting in a rank ordered sequence.The Wald-Wolfowitz test statistic is the total

number of runs (run-length)Rℓ of X’s or O’s in the label sequence. As in run-length coding,Rℓ, is the

length of consecutive sequences of lengthℓ of identical labels.

The Friedman-Rafsky (FR) test [16] generalizes the Wald-Wolfowitz test tod dimensions by clever use

of the MST. The FR test proceeds as follows: 1) construct the MST on the pooled multivariate sample points

{xi}
⋃{oi}; 2) retain only those edges that connect an X labeled vertex to an O labeled vertex; 3) The FR

test statistic,N , is defined as the number of edges retained. The hypothesisH1 in (12) is accepted for

smaller values of the FR test statistic. As shown by Henze andPenrose [15], when normalized by the total

numbern0 + n1 of points, the FR test statisticN converges to 1 minus the Henze-Penrose divergence (9)

between the distributionsfx andfo. The FR test is illustrated in Fig. 1.

4 Entropic Graph Estimators of α-GA and αMI

Assume for simplicity that the target and reference featuresetsOn0
= {oi}i andXn1

= {xi}i have the same

cardinalityn0 = n1 = n. The estimators ofα-GA andαMI are based on a kNNG-Voronoi partitioning

heuristic, described below. While Voronoi and nearest neighbor approaches to entropy estimation have been

proposed by Miller [23] and Kozachenko and Leonenko [24], respectively, to our knowledge the heuristic

below is new and is applicable to both entropy and divergenceestimation.
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Figure 1: Illustration of Friedman and Rafsky’s (FR) MST estimate of the Henze-Penrose divergence for the
case of two Gaussian densities. (a) The two densities have the mean and variance parameters. (b) the mean
of one distribution is now shifted so that the densities diverge. The proportion of MST edges that connect
feature vectors from different classes is a consistent estimate of1 − DHP (fo‖fx).

4.1 kNNG Estimator of αGA

Assume an equal number of feature vectorsOn = {oi}n
i=1

andXn = {xi}n
i=1

are acquired from images 1

and 2, whereoi andxi are i.i.d. random variables distributed with densitiesfo andfx, respectively. Here

we apply the kNNG-Voronoi partitioning heuristic approximation from [25]. This heuristic allows us to

approximate the volume of cellular Voronoi partitions on the feature density using kNN graph edge lengths.

To estimateαDGA(fo, fx) = (α − 1)−1 log IGA(fo, fx), whereIGA(fo, fx) is the integral in (5):

IGA(fo, fx) =

∫
hα(z)(fp

o (z)f q
x(z))1−αdz =

∫ (
fp

o (z)f q
x(z)

h(z)

)1−α

h(z)dz, (13)

andh(z) = pfo(z) + qfx(z). Finally, observe thath is the density function of the pooled sampleZn =

{oi, xi}n
i=1

with p = q = 1/2. Re-index (in no particular order) these2n samples as{zi}2n
i=1

. If the

consistent kNNG-Voronoi partition density estimation procedure discussed in [25], is used to estimatefo,

fx andh from On, Xn andZn, respectively, we know that

ÎGA =
1

2n

2n∑

i=1

(
f̂p

o (zi)f̂
q
x(zi)

ĥ(zi)

)1−α

, (14)

is a consistent estimator ofαGA divergence. We assume for simplicity that the support sets offo andfx are

contained in[0, 1]d. There is no loss of generality if actual support sets are bounded regionsS ⊂ IRd as they

can be mapped inside the unit cube through coordinate transformation.
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Next invoke the kNN-Voronoi heuristic and make the partition density estimator approximations

ĥ(zi) =
µ(Πz(zi))

λ(Πz(zi))
≈ c/n

min{ed
i (On), ed

i (Xn)} , f̂o(zi) =
µ(Πo(zi))

λ(Πo(zi))
≈ c/n

ed
i (On)

, f̂x(zi) =
µ(Πx(zi))

λ(Πx(zi))
≈ c/n

ed
i (Xn)

.

Substitution of these approximations into (14) yields the entropic graph approximation to theα-GA mean

divergence (5):

α̂DGA =
1

α − 1
log

1

2n

2n∑

i=1

min

{(
ei(On)

ei(Xn)

)γ/2

,

(
ei(Xn)

ei(On)

)γ/2
}

, (15)

where unimportant constants have been omitted.

4.2 kNNG Estimator of αMI

We assume thatn vectors of paired featureszi = (oi, xi) ∈ IR2d are acquired from the two images, i.e.,

Zn = {zi}n
i=1

is the coincidence scatter-plot of these features. Definefox(z) the joint feature density and

fo andfx the marginal densities ofoi ∈ IRd andxi ∈ IRd, respectively, and define the integral expression

IMI

IMI =

∫
fα(ox)(u, v)f1−α

o (u)f1−α
x (v)dudv

appearing in the expression for theαMI (6), i.e., αMI = 1

α−1
log IMI . If a consistent partition density

estimate of procedure, discussed in the previous subsection, is used to estimatefox, fo andfx, then it is

easily seen that

ÎMI =
1

n

n∑

i=1

(
f̂o(oi)f̂x(xi)

f̂ox(oi, xi)

)1−α

, (16)

is a consistent estimator ofIMI. Here, we note that according to the definition of a consistent estimator, a

consistent estimator ofIMI is one that converges in probability toIMI as the sample size grows.

Application of the kNNG-Voronoi partitioning heuristic ([25]) yields

f̂ox(zi) ≈
c/n

e2d
i (Zn)

, f̂o(ui) ≈
c/n

ed
i (On)

, f̂x(vi) ≈
c/n

ed
i (Xn)

.

which when substituted into (16) gives the entropic graph approximation to theαMI

α̂MI =
1

α − 1
log

1

nα

n∑

i=1

(
ei(Zn)√

ei(On)ei(Xn)

)2γ

, (17)
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whereei(Zn) is the distance from the pointzi = (oi, xi) ∈ IR2d to its nearest neighbor in{Zj} andei(On)

(ei(Xn)) is the distance from the pointoi ∈ IRd, (xi ∈ IRd) to its nearest neighbor inOn (Xn). Again,

unimportant constant factors have been omitted from (17).

4.3 Implementation Issue

The stable computation of theα-MI estimator (Equation 17) requires thatei(o) and ei(x) be non-zero

wheneverei(o × x) is non-zero (Figure 2). If eitherei(o) or ei(x) is zero,α-MI cannot be calculated

due to division-by-zero problems. For continuously distributed features{Oi} and{Xi} the probability of

stable computation is one, since the probability that any two feature components be exactly equal is zero.

However, for practical applications where the feature space is quantized to finite precision arithmetic, the

probability of stable computation is strictly less than one. In fact, it can be shown that the probability of

stable computation of theα-MI estimator rapidly goes to zero as the number of feature realizations gets

large.

A remedy for this is randomization. To avoid zero values ofei(o) andei(x), a small amount of uniform

noise may be added to the feature coefficient. This randomization disperses points uniformly in an area

around their discretized value. This process is consistentwith the assumption that local distribution of con-

tinuously valued feature vectors is uniform around their discretized values. In simulations with discretized

8-bit pixel intensity features, univariate uniform noise with a varianceσ2 = 0.02 was added to each pixel

intensity. This ensured that no two intensities were exactly the same and thus enabling stable computation of

αMI. Another approach is to replaceei(o) andei(x) with max(ei(o), ǫ) andmax(ei(x), ǫ), whereǫ << 1

[26].

5 A non-linear correlation measure

The simple form of Equation 17 is suggestive of a non-linear correlation measure between the features{Oi}

and{Xi} that eliminates the implementation issue discussed above.Indeed, if “ei” in Equation 17 is rede-

fined as the statistical expectation “E”, then theα-MI estimator takes the appearance of a linear correlation

coefficient between{Oi} and{Xi}. However, as explained above, the ratioei(o × x)/
√

ei(o)ei(x) is not
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bounded between 0 and 1, rather it can take values that are arbitrarily large. The following modification of

Equation 17 can be used to ensure that the non-linear correlation measure lie between 0 and 1. This new

measure is called the non-linear correlation coefficient (NLCC).

Let ei(o × x) be the distance fromi-th feature pair(oi, ei) to its nearest neighbor as before. Instead of

ei(o) andei(x) being the coordinate-wise nearest neighbor distances along the feature coordinate axesX

andO (See Figure 2) we definẽei(o) andẽi(x) the associated nearest neighbor distances in the plane (see

Figure 3). The quantitỹei(o×x)/
√

ẽi(o)ẽi(x) is now bounded between 0 and 1. In particular, it is equal to

one when the nearest neighbor to(oi, xi) is also the coordinate-wise nearest neighbor to(oi, xi) along the

coordinate axesO andX .
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Figure 2: Illustration of the distancesei(o × x), ei(o) andei(x) used in theα-MI estimator (Equation 17)

In particular the quantity

ρ̂ =
1

n

n∑

i=1

(
ẽi(o × x)√
ẽi(o)ẽi(x)

)
(18)

is equal to one when the nearest neighbor graph is monotone (increasing or decreasing) piecewise linear

curve in the plane 4. Thus if the features are realizations ofthe random vector(O,X ) which obeys the

monotone model:

Θ = g(X ), (19)

whereg(·) is a monotonic increasing function, the NLCĈρ will equal 1 with probability one. This motivates
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Figure 3: Illustration of modified distancesei(x) andei(o) used to stabilize the estimator (Equation 17),
defining the non-linear correlation coefficient (NLCC)

the use ofρ as a measure of information betweenΘ andX . Unfortunately, if the actual model is

Θ = g(X ) + w (20)

wherew is additive noise,̂ρ will converge to zero asn → ∞ for any continuous random variablew. It can

be shown that the rate of convergence in this case isn
−γ
2d . This motivates the modification of the NLCC to:

ρ̂NLCC =
1

n1−γ/2d

n∑

i=1

(
ẽi(o × x)√
ẽi(o)ẽi(x)

)
. (21)

This modified correlation now takes values between0 and∞. A normalized version can be defined as:

ρ̂ =
ρ̂NLCC

1 + ρ̂NLCC
(22)

that is between zero and one.

We illustrate the NLCC by comparing it to the linear correlation coefficient 23 for two simple models.

The linear correlation coefficient is defined as:

ρ̂CC =
1

n

∑n
i=1

(oi − ō)(xi − x̄)√
1

n

∑n
i=1

(oi − ō)2 1

n

∑n
i=1

(xi − x̄)2
(23)

whereō = 1/n
∑n

i=1
oi andx̄ = 1/n

∑n
i=1

xi are sample means.
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Figure 4: The Nearest Neighbor Graph over the realizations{(oi × xi)}N
i=1

of the paired features describes
a monotone function in the plane. For this case, the NLCCρ̂ = 1

5.1 Numerical experiments with NLCC

Consider the linear modelΘ = aX + w, wherea2 = ρ2
CC/(ρ2

CC + 1). Figure 5 shows a plot of the

linear (Equation 23) and nonlinear (Equation 21) correlation coefficients,̂ρCC andρ̂NLCC for this model as

functions of the number of pointsN for various values ofa. As a increases, the linear correlation increases

but does not reach one due to the presence of additive noisew. In the limit asN → ∞ the non-linear

correlation coefficient converges to a constant.
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Figure 5: Comparison of Linear and non-linear correlation coefficient for a linear model
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Now consider the nonlinear model given byΘ = ag(X ) + w; g(X ) = bX 3. As shown in Figure 6,

the linear correlation coefficient remains unchanged at thevalue corresponding to the relation betweenΘ

andX . The non-linear correlation, however increases witha, showing that it responds to changes in the

non-linear relation betweenΘ andX .
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Figure 6: Comparison of Linear and non-linear correlation coefficient for a nonlinear model

Figure 7 confirms these findings. It illustrates the relationbetween the linear and non-linear correlation

coefficients for both linear and non-linear models. The values are plotted forN = 50000 anda increases

from 0.1 to 0.7071.
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6 Application to Ultrasound Breast Imaging

Ultrasound (US) imaging is an important medical imaging modality for whole breast imaging that can aid

discrimination of malignant from benign lesions, can be used to detect multi-focal secondary masses, and

can quantify response to chemotherapy or radiation therapy. In Fig. 8 a set of twenty 2D slices extracted from

a 3D volumetric US breast scanner is shown for twenty different patients (cases) receiving chemotherapy.

The women were imaged on their backs with the transducer placed so as to image through the breast toward

the chest wall. Some of the cases clearly exhibit tumors (delineated masses with shadows), others exhibit

significant connective tissue structure (bright thin linesor edges), and all have significant speckle noise and

distortions.

In registering ultrasound images of the breast, the reference and secondary images have genuine differ-

ences from each other due to biological changes and differences in imaging, such as positioning of the tissues

during compression and angle dependence of scattering fromtissue boundaries. The tissues are distorted

out of a given image plane as well as within it. Speckle noise,elastic deformations and shadows further

complicate the registration process thus making ultrasound breast images notoriously difficult to register. It

is for this reason that conventional registration methods tend to have problems with US breast images. Here

we will illustrate the advantages of matching on high dimensional feature spaces implemented with entropic

similarity metrics.

6.1 Ultrasound Breast Database

To benchmark the various registration methods studied we evaluated the mean squared registration error

for registering a slice of US breast image volume to an adjacent slice in the same image volume (case).

For each case we added differing amounts of spatially homogeneous and independent random noise to both

slices in order evaluate algorithm robustness. A training database of volumetric scans of 6 patients and a

test database of 15 patient scans were created. Feature selection was performed using the training database

and registration performance was evaluated over the test database. These databases were drawn from a

larger database of 3D scans of the left or right breast of female subjects, aged 21-49 years, undergoing

chemotherapy or going to biopsy for possible breast cancer.Each volumetric scan has a field of view of

16



Figure 8: Ultrasound (US) breast scans from twenty volume scans of patients undergoing chemotherapy.
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about4cm3 (voxel dimensions0.1mm2 × 0.5mm) and encompasses the tumor, cyst or other structure of

interest. The scans were acquired at 1cm depth resolution yielding 90 cross-sectional images at 0.4cm

horizontal resolution. The patient data was collected withthe intention to monitor therapy progress in the

patients. Tumor/Cyst dimensions vary and can range from5mm3 to 1cm3 or higher. As the aim of this

study is to quantitatively compare different feature selection and registration methods we restricted our

investigation to rotation transformations over±16◦.

6.2 Feature Space

We have experimented with a large number of vector valued features including, Meyer 2D wavelet coef-

ficients, grey level tag features, and curvelet features. Here we present results for vector valued features

constructed by projecting image patches onto a basis for thepatch derived from independent component

analysis (ICA). The ICA basis is especially well suited for our purposes since it aims to obtain vector fea-

tures which have statistically independent elements and can therefore facilitate estimation ofαMI and other

entropic measures.

Specifically, in ICA an optimal basis is found from a trainingset which decomposes imagesXi in the

training set into a small number of approximately statistically independent components{Sj} each supported

on an8 × 8 pixel block (we choose an 8 by 8 block only for concreteness):

Xi =

p∑

j=1

aijSj. (24)

We select basis elements{Sj} from an over-complete linearly dependent basis using randomized selection

over the database. For imagei the feature vectorszi are defined as the coefficients{aij} in (24) obtained by

projecting each of its8 × 8 sub-image blocks onto the basis.

Figure 6.2 illustrates the estimated 64 dimensional (8×8) ICA basis for the training database. The basis

was extracted by training on over 100,000 randomly sampled8× 8 sub-images taken from the 6 volumetric

breast ultrasound scans. The algorithm used for extractionwas Hyvarinen and Oja’s [27]FastICA ICA

code (available from [28]) which uses a fixed-point algorithm to perform maximum likelihood estimation

of the basis elements in the ICA data model (24). Note that no pruning is performed on the ICA basis

vectors. The 64D ICA is a full decomposition of the8 × 8 patch of image. Given this ICA basis and a pair

18



of to-be-registered image slices, coefficient vectors are extracted by projecting each8 × 8 neighborhood in

the images onto the basis set. Thus forαMI the coincidence scatter plot is in 128 dimensions; the number of

dimensions of a coincidence feature extracted at a particular row-column coordinate in the pair of images.

The feature space for theαJensen,αGA and Henze-Penrose registration criteria was constructed by pooling

the two labeled sets of 64D feature vectors. Thus, the dimensionality of the feature space was 64D. MST

or kNNG were constructed on the 64D feature spaces of the pooled sample. In either case these feature

dimensions (128D or 64D) are too large for a histogram binning algorithm to be feasible, which prevented

comparison to the full dimensional classical density plug-in MI registration criterion.

Figure 9: 8 × 8 ICA basis set obtained from training on randomly selected8 × 8 blocks in the training
database of breast scans.

Recently, Kybic [26] used the kNN graph to estimate MI by randomly grouping higher dimensional

feature vectors. Divergence was calculated as the mean divergence overm such groupings ofn points each.

In our approach, all extracted feature vectors are used to estimate divergence. In experiments where feature

vectors were partitioned (e.g. using k-Means clustering) before building the NN tree over the centroids of

these partitions, we noticed a drop in registration accuracy. Kybic reports that divergence estimation bias

decreased form > 50 and registration error was lower than histogram estimates of divergence.
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6.3 Experimental Results

For each of the 15 scans in the test set 2 image slices were extracted in the depth direction perpendicular to

the skin, such that they showed the cross-section of the tumor. These two slices have a separation distance

of about 5mm. At this distance, the speckle deccorelates butthe underlying anatomy remains approximately

unchanged. The first cross sectional slice was picked such that it intersected with the ellipsoidal-shaped

tumor through its center. The second slice was picked closerto the edge of the tumor. These images thus

show a natural decline in tumor size, as would be expected in time sampled scans of tumors responding to

therapy. Since view direction changes from one image scan tothe next for the same patient over time, rota-

tional deformation is often deployed to correct these changes during registration. We simulated this effect

by registering a rotationally deformed image with its unrotated slice-separated counterpart, for each patient

in the 15 test cases. Rotational deformation was in steps of 2degrees such that the sequence of deformations

was [-16 -8 -4 -2 0 (unchanged) 2 4 8 16 ] degrees. Further, the images were offset (relatively translated) by

0.5mm (5 pixels) laterally to remove any residual noise correlation since it can bias the registration results.

Since some displacement can be expected from the handheld ULimaging process and the relative tissue

motion of the compressible breast tissue, this is not unreasonable. For each deformation angle, divergence

measures were calculated, where the ‘registered state’ is the one with 0 degrees of relative deformation.

Figure 11 shows average objective function plots for the registration experiment discussed above. Thirty

different noise realizations were added to the fifteen test images at every angle of rotational deformation to

giveN = 400 different images for calculation of the matching functions. In the figure, each graph plots the

sample mean,̂µθ, calculated over theN measurements at each angle,θ. The standard deviation of̂µθ, also

called the standard error of the measurements, is given byσMθ
= σθ/

√
N for θ ∈ {−16◦, . . . ,+16◦}, where

σθ is the standard deviation of theN measurements made at each rotational deformation. To normalize the

images it is important to discount for the relative scaling between the matching functions. Hence,µ̂θ of

each matching function is normalized such thatmax (σMθ
) is unity. This restricts arbitrary scaling and also

discounts for any scaling inherent in the computation of thematching function. In each row, the extent on

the search space is identical. This facilitates comparisonof two divergence estimates and also allows for

comparison of a particular divergence as noise increases. It can readily be seen from the trends that at low
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(a) (b)

Figure 10: UL Images of the breast separated and rotationally deformed. (a) Cross-sectional image through
center of tumor. (b) Rotated cross-sectional image acquired at a distance 5mm away from Image in (a).

levels of noise, all feature based estimates have sharper peaks than the Shannon MI estimate using pixel

features. Further, as noise increases some divergence estimates, notablyα GA andαMI divergence between

the ICA features of the images, maintain sensitivity to rotational deformation.

For each extracted image slice we created 250 noisy replicates by adding truncated Gaussian noise.

8 × 8 neighborhoods of the ultrasound image replicates were projected onto the 64 dimensional ICA basis.

The RMS registration error is illustrated for six differentalgorithms in Fig. 12 as a function of the RMS

(truncated) Gaussian noise. Registration error was determined as the RMS difference between the location

of the peak in the matching criterion and the true rotation angle. Note from the figure that, except for the

α-Jensen difference, the standard single pixel MI underperformes relative to the other methods. This is

due to the superiority of the high dimensional ICA features used by these other methods. Theα Jensen

difference implemented with kNN vs MST give identical performance. Unlike the other metrics, theα

Jensen difference is not invariant to re-parameterization, which explains its relatively poor performance for

large RMS noise. Finally, we remark that the runtime complexity of the kNN-based methods (off-the-shelf

kdb-tree implementation) is lower than the MST-based methods (off-the-shelf Kruskal algorithm).
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Figure 11: Normalized average profiles of image matching criteria for registration of UL breast images taken
from two slices of the image volume database under decreasing SNR. All plots are normalized with respect
to the maximum variance in the sampled observations.(row 1)kNN-based estimate ofα-Jensen difference
divergence between ICA features of the two images, (row 2) MST-based estimate ofα-Jensen difference
divergence between ICA features of the two images, (row 3) NNestimate ofα Geometric-Arithmetic mean
affinity between ICA features, (row 4) MST based estimate of Henze-Penrose affinity between ICA features,
(row 5) Shannon Mutual Information estimated using pixel feature histogram method, (row 6)α Mutual In-
formation estimated using NN graphs on ICA features and lastly, (row 7) NN estimate of the Non-linear
correlation coefficient between the ICA feature vectors. Columns represent objective function under in-
creasing additive noise. Column 1-4 represent additive truncated Gaussian noise of standard deviation,σ =
0, 2, 8 and 16. Rotational deformations were confined to± 16 degrees.
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were obtained by averaging 15 cases, each with 250 Monte Carlo trials adding noise to the images prior to
registration, corresponding to a total of 3750 registration experiments.

7 Simultaneous multi-image registration

Multi-image registration deals with the problem of registering three or more images simultaneously. In

breast cancer therapy patient progress is monitored by periodic UL scans of the breast. Radiologists of-

ten register breast images of a patient collected at periodic intervals to monitor tumor growth or recession.

One approach is to sequentially register pairs of images from time A to time B, time B to time C and so

on. Besides being cumbersome and expensive, this process may lead to the accumulation of registration

errors. A less expensive solution that may be able to avoid error accumulation is to register all the sequen-

tial scans (A,B,C,...) simultaneously. This section demonstrates the utility of entropic graph methods to

simultaneously register three or more images.

7.1 Divergence estimation for multi-image registration

Evaluation of divergence for multiple images is straightforward. Theα-MI betweend-dimensional features

{Xi}N
i=1

, {Oi}N
i=1

, {Yi}N
i=1

extracted from three images,I1, I2, I3, respectively is an extension of Equation
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17 as follows:

α̂MI =
1

α − 1
log

1

nα

n∑

i=1

(
ei(x × o × y)√
ei(x)ei(o)ei(y)

)3γ

, (25)

whereei(x × o × y) is the distance from the pointzi = [xi, oi, yi] ∈ R3d to its nearest neighbor in{Zj}j 6=i

andei(x) (ei(o)) (ei(y)) is the distance from the pointxi ∈ Rd, (oi ∈ Rd), (yi ∈ Rd) to its nearest neighbor

in {Xj}j 6=i({Oj}j 6=i){Yj}j 6=i respectively.

Similarly, building on Equation 15α-GA can be estimated between one reference and two target images

as follows:

α̂DGA =
1

α − 1
log

1

3n

3n∑

i=1

min{rj}3
j=1 (26)

r1 = min

{(
ei(o)

ei(x)

)γ/2

,

(
ei(x)

ei(o)

)γ/2
}

,

r2 = min

{(
ei(x)

ei(y)

)γ/2

,

(
ei(y)

ei(x)

)γ/2
}

,

r3 = min

{(
ei(y)

ei(o)

)γ/2

,

(
ei(o)

ei(y)

)γ/2
}

,

whereei(x), ei(o) andei(y) are the distances from a pointzi ∈ {{xi}i, {oi}i, {yi}i} ∈ Rd to its nearest

neighbor in{Xi}i, {Oi}i and{Yi}i, respectively. Here, as aboveα = (d − γ)/d.

Shannon MI can be estimated using pixel features by extending Equation 8 to histogram estimates of

the joint pdf in three dimensional space as follows:

α̂MI
def
=

1

α − 1
log

255∑

x,o,y=0

f̂α
0,1(x, o, y)

(
f̂x(x)f̂o(o)f̂y(y)

)1−α
. (27)

In (27) we assume 8-bit gray level,̂fx,o,y denotes the joint intensity level “coincidence histogram”

f̂x,o,y(x, o, y) =
1

MN

MN∑

k=1

Ixk,okyk
(x, o, y), (28)

andIxk,okyk
(x, o, y) is the indicator function equal to one when(xk, ok, yk) = (x, o, y) and equal to zero

otherwise.
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Equation 28 requires building a histogram in the three dimensional joint space of the three images.

Generalizing toN images, it can easily be seen that aN -dimensional histogram would be required to

estimate Shannon MI using the histogram plug-in method. As discussed earlier, the curse of dimensionality

restricts the estimation of Shannon MI in higher dimensions. On comparison with Equations 25 and 27 it is

seen that estimation ofα-MI andα-GA do not suffer from this curse-of-dimensionality since the complexity

of the kNN graph grows only linearly in the dimension.

In the following section, the performance of entropic graphbased divergence estimates ofα-MI and

α-GA is compared with traditional histogram estimation techniques of Shannon MI.

7.2 Quantitative performance evaluation in multi-image registration

The methods used to evaluate performance of divergence estimates for the two-image case are extended to

three images. The database of UL images is divided, as before, into training and testing sets. 64D ICA

are estimated on the training set and used as features for registration. Test images are extracted from each

volumetric scan in the test dataset. A±5mm depth directional distance separates the reference imageIref

from the two target imagesItar1
andItar2

. ICA basis coefficient features are extracted from the reference

and target images using the standard sub-block projection technique, as before. Registration performance

is evaluated over rotational deformation within the range±16◦. Figure 13 shows an example registration

scenario where the reference images is shown to be sandwiched between two target images that are rotated.

Figure 13: Multi-image registration scenario illustratedusing three UL images of the breast where the
reference image is sandwiched between two target images that are rotated±16◦ respectively.
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In Figure 14 shows the registration performance of the 16 test image sets. Mis-registration error is

measured as the sum of mean-squared misregistration errorsalong each of the target images, and can hence

vary from0◦ to 32◦. The SNR in all the images is progressively decreased by adding truncated uncorrelated

Gaussian noise. Mean misregistration error is obtained by Monte-Carlo simulations over 30 different noise

realizations on each of the 16 image. Thus, every point in thegraph is the mean error over 480 measurements.

Standard error bars are as shown.
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Figure 14: Multi-image registration scenario illustratedusing three UL images of the breast where the
reference image is sandwiched between two target images that are rotated±16◦ respectively.
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8 Image Clustering

Non-linear transformations often creep into the image acquisition process; common sources being lens

distortion in cameras, changes in light patterns or, sensorspecific nonlinearities such as magnetic field

inhomogeneities in magnetic resonance imaging. Since the non-linear transformations cannot be recovered

by a linear measure of similarity such as the linear correlation coefficient, in such situations, the use of a

measure invariant to non-linear transformations could be justified as being more robust approach. While the

mutual information measure, as used by Viola and Wells [1], is invariant to non-linear transformations it is a

joint statistic that requires one-to-one feature correspondence and is difficult to calculate directly in higher-

dimensional spaces. The NLCC that we introduced in section 5does not suffer from these drawbacks since it

is not a joint statistic and can also be reliably calculated in higher-dimensional spaces using the graph-based

methods we describe.

In this section, we attempt to use this invariance property of NLCC for an image clustering application.

In this preliminary example we demonstrated clustering of images sampled from the Corel image database.

15 labeled images were randomly picked and resized to100×100 pixels using bilinear interpolation. Six dif-

ferent non-linear transformation functions, including quadratic, cubic, parabolic, sigmoid, inverse sigmoid

and reverse video were applied to the images in the intensityspace.

Here is a quick mathematical description of the non-linear transformations. Also see Figure 15 for

a graphical illustration of the transform. Letx correspond to the set of intensity features extracted from

the original image. Lety correspond to the set of intensity features generated by applying a non-linear

transformationT (x).

Quadratic transformation

y = T (x) = a ∗ x2 (29)

Cubic Transformation

y = T (x) = a ∗ x3 (30)
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Parabolic Transformation

y = T (x) = a(x − xc)
2 + yc (31)

Third-Order Polynomial Transformation

y = T (x) = a ∗ x2 + b ∗ x3 (32)

Sigmoidal Transformation

y = T (x) =
1

1 + exp−a ∗ (x − b)
(33)

Inverse-Sigmoid Transformation

y = T (x) =
−1

a
∗ log

(
1 − x

x

)
+ b (34)

Reverse Video Transformation

y = T (x) = max(x) − x (35)

Images of the 15 objects used in this clustering study were transformed non-linearly using the formu-

lations described above. Further, reverse-video versionsof each image were also transformed and added to

the dataset. Finally, using different values of the parametersa andb, every image in the dataset has 21 ad-

ditional transformed counterparts to create a dataset of 330 unique images. The LCC and NLCC were then

estimated between all images of the databased picked 2 at a time. There are
(
330

2

)
/2 such combinations. The

linear and non-linear CC were then calculated for all such image pairs. To visualize the resultant cloud of

relative positions of these images where distance is measured using the similarity measure, we project them

onto a 2D space using a variant of the multidimensional scaling algorithm as used in the Pajek [29] software

package. The relative estimates provided by MDS algorithmsare accurate up to a rotation of the co-ordinate

positions of the vertices. The resultant mappings can be seen in Figures 16 and 17. The performance of the

clustering result is measured using a clustering figure-of-merit called the Dunn’s validity index [30] defined

as:

Dnc = min
i=1,...,nc

{
min

j=i,...,nc

(
d(ci, cj)

maxk=1,...,nc
diam(ck)

)}
, (36)
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Figure 15: Non-linear transformations applied to images from the Corel database.

whered(ci, cj) is the dissimilarity function between two clustersci and cj and is defined asd(ci, cj) =

min(x ∈ ci, y ∈ cj)d(x, y) anddiam(ci) is the diameter of the cluster representing its dispersion and given

asdiam(ci) = max(x, y ∈ ci)d(x, y). Dunn’s technique is well-suited to illustrate clusteringperformance

since it attempts to identify clusters that are compact and well separated. In this experiment the number of

classes are known apriori (15 image classes) and the validity index is used to measure the performance of

the clustering algorithm. A higher value ofDnc thus implies that the algorithm can cluster the data into 15

partitions with better separation between classes and morecompactness within each class.

Figures 16 and 17 above show clustering performance of the LCC and NLCC respectively. The vertices

represent the images in the lower dimensional space. The bi-directional links between images each have an

associated weightwLCC
ij andwNLCC

i,j , wherei andj index over images and the super-script signifies the

distance measure of the link. By thresholding onw we can visualize only the strong links. Thus absent

links imply that the link weights were low and the images werenot perceived to be similar. In the first

figure we can see that the LCC has a highly disperse cluster with a great amount of inter-mingling between
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Figure 16: Demonstration of image clustering using the linear correlation coefficient. Intensity images of 15
objects were each transformed using a non-linear function.Using the CC as a similarity function the images
were projected onto a 2D scale using a MDS algorithm [29]. Thenodes of the graph represent images
while the edges represent similarity between images. For clarity, only edge weight greater than a particular
threshold (0.9) of the CC are shown.
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Figure 17: Demonstration of image clustering using the non-linear correlation coefficient. Intensity images
of 15 objects were each transformed using a non-linear function. Using the NLCC as a similarity function
the images were projected onto a 2D scale using a MDS algorithm [29]. The nodes of the graph represent
images while the edges represent similarity between images. For clarity, only edge weight greater than a
particular threshold (0.8) of the NLCC are shown.
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classes. This is also reflected in the lower Dunn’s validity index for the clustering of 15 classes. The NLCC,

however, shows tight clustering and scores much higher on the Dunn’s validity index. Earlier, in section 5

we saw that the NLCC is invariant to non-linear transformations of the underlying image intensity features.

By definition, the linear CC is invariant only to linear transformations of image intensity features. Hence the

clustering of objects under the influence of non-linear transformations on the feature space is much better

behaved when the NLCC is used as a dissimilarity measure.

9 Conclusion

In this paper we have presented several extensions of our previous work on entropy estimation for image

registration. These extensions include new kNN estimatorsof the mutual information (αMI) and geometric-

arithmetic mean divergence (αGA) and a new measure of non-linear correlation. As comparedto previous

work in which estimated Jensen differences were used for registration, these divergence measures have the

advantage of invariance to re-parameterization of the feature space. While we do not yet have any conver-

gence results for the kNN divergence estimators, there is circumstantial theoretical evidence that they do

converge. Furthermore, our numerical evaluations show that these divergence estimators outperform previ-

ous approaches to image registration. We also introduced the Friedman-Rafsky (FR) multivariate run test,

which is an estimator of Henze-Penrose divergence, as a new matching criterion for image registration. Our

numerical experiments showed that the FR,αGA, andαMI significantly outperform previous approaches in

terms of registration mean squared error. Of course, as compared to our kNNG divergence estimators, the

FR method has the advantage of proven theoretical convergence but has the disadvantage of higher runtime

complexity.

The new kNN estimators of theαMI and αGA have the advantage of invariance to re-parameterization

of the feature space. While convergence results for the kNN divergence estimators were not provided there

is circumstantial theoretical evidence that they do converge. Furthermore, the numerical evaluations show

that these divergence estimators outperform previous approaches to image registration. This paper also

introduced the Friedman-Rafsky (FR) multivariate run test, which is an estimator of Henze-Penrose diver-

gence, as a new matching criterion for image registration. Of course, as compared to our kNNG divergence
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estimators, the FR method has the advantage of proven theoretical convergence but has the disadvantage of

higher runtime complexity.

The performance ofαGA and Henze-Penrose have exceeded those of other divergence measures. We

hypothesize that the combination of low-dimensional complexity through the exclusive use of marginal

spaces and invariance to transformations has led to superior noise performance and robustness in these

measures as compared to others. Unlike the other metrics, the αJensen difference is not invariant to re-

parameterization, which explains its relatively poor performance for large RMS noise.

An exciting extension of this work is in registration of multiple images. Multiple images could be

registered simultaneously to form an atlas. Multi-image registration could also be used to simultaneously

register time-sampled imagery such as those acquired during periodic UL examination for cancer detection

and management.

Lastly, we have introduced a new measure of non-linear correlation. Based on an extension ofαGA and

αMI measures, the NLCC is estimated using the kNN graph to adaptively partition space based on local

density of samples. We contrast its performance to the linear CC and find this measure to be robust in the

face of non-linear intensity transformations.
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