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Abstract
During functional MRI (fMRI) studies, blood oxygenation-level dependent (BOLD) signal
associated with neuronal activity acquired from multiple individuals are subject to the derivation
of group-averaged brain activation patterns. Unlike other cortical areas, subcortical areas such as
the thalamus and basal ganglia often manifest smaller, biphasic BOLD signal that are aberrant
from signals originating from cortices. Independent component analysis (ICA) can offer session/
individual specific brain activation maps without a priori assumptions regarding the timing or
pattern of the signal responses. The small activation loci within the subcortical areas are sparsely
distributed among the subjects, and a conventional group processing method based on the general
linear model (GLM) or ICA may fail to characterize the activation loci. In this paper, we present
an independent vector analysis (IVA) to overcome these limitations by offering an analysis of
additional dependent components (compared to the ICA-based method) that are assigned for use in
the automated grouping of dependent (i.e. similar) activation patterns across subjects. The
proposed IVA algorithm was applied to simulated data, and its utility was confirmed from real
fMRI data employing a trial-based hand motor task. A GLM and the group ICA of the fMRI
toolbox (GIFT) were also applied for comparison. From the analysis of activation patterns within
subcortical areas, in which the hemodynamic responses (HRs) often deviate from a canonical,
model-driven HR, IVA detected task-related activation loci that were not detected through GLM
and GIFT. IVA may offer a unique advantage for inferring group activation originating from
subcortical areas.
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I. Introduction
Functional magnetic resonance imaging (fMRI) has risen as a prominent neuroimaging
modality to characterize brain function. fMRI is based on the acquisition of blood
oxygenation-level dependent (BOLD) MR signal changes associated with neural activation.
The temporal dynamics of the BOLD signal, called a hemodynamic response function
(HRF), is the key element in analyzing fMRI data. The HRF is canonically modeled as a
fixed, approximate mathematical function, responding to the impulse of neural events
(Handwerker, 2004). The task-specific BOLD signal response is then hypothesized as a
convolution between the canonical HRF and a given task-paradigm (such as stimulation or
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an active cognitive task). The voxel-wise conformity between the hypothesized HRF and the
actual temporal signal response within the brain area is tested using a univariate approach
such as general linear model (GLM) or regression analysis (Bandettini et al., 1993; Worsley
and Friston, 1995). The resulting statistical map is thresholded using statistical measures
(e.g. p-value) to represent the individual-specific brain activation map.

Since fMRI data from a single individual may not represent a group-trend of underlying
neural activity, fMRI data are acquired from multiple subjects (exceeding 12 individuals) to
infer the group trend. After the transformation of individual brain volumes into standardized
neuroanatomical space (called the ‘normalization’ process), the subject-specific activation
map is derived in this standardized space. Then, the group trend is inferred using a fixed or
random effect model (Friston et al., 1999). However, the timing and shape of the HRF
associated with neuronal activation may vary across subjects, scans, and brain regions
(Aguirre et al., 1998; McGonigle et al., 2000; Gur et al., 2007), and concurrently it may
affect the accuracy of the group inference. The accurate derivation of the activation becomes
especially important in the subcortical areas of the brain such as the thalamus and basal
ganglia. These function-specific neural tissues, often clustered neural ‘nuclei’, may be
sparsely distributed among the subjects even after the normalization process. This makes the
group analysis from the activation loci within the subcortical areas more vulnerable to
spatial mis-registration that is likely to occur during normalization.

The BOLD signal responses from these subcortical areas are further confounded by the
signal pattern, often shown as ‘biphasic’ features instead of the typical canonical HRF (Gur
et al., 2007). Subsequently, model-driven univariate approaches including GLM may grossly
underestimate the activation patterns from the subcortical areas (Meltzer et al., 2000). Here,
the biphasic feature is defined as the positive BOLD signal change followed by the negative
change with similar levels of intensity (Gur et al., 2007; Meltzer et al., 2007). In addition,
the magnitude of BOLD signal contrast is less than that from the cortical surfaces (Scholz et
al., 2000), and it is likely due to the reduced vasculature in these subcortical areas (Lowe et
al., 2000). The departure from the modeled HRF inherently makes the hypothesis-based
univariate approaches in fMRI less sensitive to the activation from the subcortical areas.
Therefore, data-driven multivariate approaches such as principal component analysis (PCA),
independent component analysis (ICA), or factor analysis (FA) have been proposed to
improve the limitation of the univariate methods (Esposito et al., 2006; McKeown et al.,
1998; Peterson et al., 1999). Among these multivariate approaches, ICA was frequently
adopted in the analysis of fMRI data due to its excellent ability to extract the BOLD signal
components and its spatial features. ICA can also extract signals associated with movement
or transient neural activities (McKeown et al., 1998).

In order to address the group inference of the activation map extracted from ICA, data
concatenation or automatic grouping strategies were used (Calhoun et al., 2001; Svensen et
al., 2002; Esposito et al., 2005; Beckmann and Smith, 2005). For example, Calhoun et al.
(2001) derived group independent component (IC) maps and corresponding time courses
(TCs) by temporal concatenation of BOLD time series’ across subjects, followed by the
PCA-based dimension reduction to alleviate computational complexity. After estimation of
TCs for the concatenated group data, individual TCs are reconstructed from the group TCs
through the dimension reduction matrices. The individual IC maps are then obtained by
calculating the weighting values of the individual TCs to the measured individual BOLD
time series’ (Calhoun et al., 2001). Subsequently, random effect analysis (RFX) (Friston et
al., 1999), employing a one-sample t-test, is applied to derive a population effect from
individual IC maps. Due to an inherently imposed restriction along the (1) spatial, (2)
temporal, and (3) subject domains, the group-inference based-on the ICA approach may not
fully analyze the individual-specific activation patterns, especially those rising from small
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brain areas. The detailed description on the imposed restrictions of group ICA on (1) spatial,
(2) temporal, and (3) subject domains was described elsewhere (p.87 & 90 in Lee et al.
2008).

In order to improve this limitation, we propose a novel group fMRI analysis technique based
on independent vector analysis (IVA) (Kim et al., 2007). Originally proposed to address the
permutation problem of the conventional ICA during a frequency-domain blind source/
signal separation (BSS), IVA operates to increase independence across output vector
components while maintaining dependence among scalar elements within each output vector
component (i.e. across frequency bins within the same output index). The ‘dependence’ in
group fMRI processing is analogous to mutual/similar activation patterns across subjects,
which are comparable to the group trend in activation. We hypothesized that the spatially-
similar trend (such as activations clustered around similar locations) in activation maps
across subjects may be extracted as a single output vector component. Consequently, small
activation features that are spatially clustered (dependent, thus not necessarily overlapped in
each voxel across the subjects) can be readily detected whereas the ICA-based methods may
not.

To demonstrate the efficacy of the proposed method for detecting activation arising from
small subcortical areas such as the thalamus and basal ganglia, we applied the method to
both simulated data and real fMRI data during a motor task, and we compared the results to
those from GLM and from the ICA-based concatenating scheme (Calhoun et al., 2001).
Among the resulting multiple brain activation patterns, activations in the subcortical areas
(i.e. thalamus/basal ganglia) were targeted for detailed analysis. Again, the HRs originating
from these areas are often biphasic (compared to the monophasic canonical HRF) and
contain high-frequency signal components that deviate from the shape of HRF used in GLM
(Moritz et al., 2000).

II. Methods and Materials
The IVA method used in our study was adopted from the work by Kim et al. (2007) that
solved the permutation problem during separation of source speech signals in the frequency
domain. First, the group fMRI data obtained from M subjects is shown as a schematic
diagram (Fig. 1). In the figure, N and V denote the number of volumes (time points) and
voxels within a brain region, respectively. The red and blue rectangular boxes represent 2-
dimensional data matrices of subject 1 and subject M, whereby each column vector

corresponds to a measured BOLD times-series at each voxel.  denotes a measured
BOLD intensity at the vth voxel of the jth volume of subject m.

A. IVA Model and Learning Algorithm
The BOLD times series at the vth voxel across subjects (shown as a green box), can be
modeled within the IVA framework shown in Fig. 2. The IVA model consists of both
synthesis and analysis models. In the synthesis model, the measured BOLD time series at
the vth voxel is assumed to be a linear combination of N independent vector components ci
(v) (i.e. the vth voxel’s activation patterns of the ith unknown component map across M
subjects; i=1,…,N) through a mixing matrix A. The assumed ith independent vector
component at the vth voxel is represented as,

(1)
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where  is a scalar activation value of subject m and N is the number of unknown ICs.
The number of ICs was assumed to be the same as the number of acquired volumes.
However, this number can be further reduced using a dimension reduction scheme such as
PCA or minimum description length (MDL) criteria (McKeown et al., 1998; Calhoun et al.,
2001). The 3-D mixing matrix A (N×N×M) consists of N×N mixing matrices from M
subjects whereby each subject has its own mixing coefficients corresponding to the N
unknown subject-specific IC maps and N measured fMRI volume data. A 2-D mixing matrix
of the mth subject A(m) corresponds to;

(2)

where  is a mixing coefficient from the ith IC map to the jth measured fMRI volume data
of subject m. Therefore, the measured BOLD signal at the vth voxel of the jth volumes across
the M subjects (i.e. M×1 vector) can be expressed as;

(3)

In the analysis model, the kth independent vector component can be obtained by estimating
an unmixing matrix (i.e. inverse of time courses):

(4)

where  is an unmixing coefficient from the measured BOLD signal at the jth volume to
the kth estimated IC map corresponding to the subject m. The unmixing coefficients for each
subject’s data set are also unique.

Based on the IVA model described above, a learning rule of the unmixing matrix was
derived to estimate the assumed independent vector components. The Kullback-Leibler (KL)
divergence between a joint probability density function (p.d.f.) and the factorized marginal
p.d.f.s of estimated vector components was employed as a cost function of IVA (Kim et al.,
2007; Lee et al., 2008) since KL divergence can measure the mutual information (MI)
among vector components (Cichocki and Amari, 2002). The MI using the KL divergence
can be defined as,
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(5)

where p(ĉ1(v) ··· ĉN(v) is a joint p.d.f. and p(ĉi(v) is a marginal p.d.f. of the ith estimated
independent vector component, ĉi(v). Equation (5) has a minimum value of 0 if, and only if,
the joint p.d.f. of estimated output vectors is factorized into a product of their marginal
p.d.f.s and the estimated output vector components become independent in this condition.

By applying a gradient descent scheme to Eq. (5) to minimize the MI, an iterative learning
rule of an unmixing matrix of subject m was obtained. The detailed derivation of learning
algorithm and justification of the adopted nonlinear function can be found elsewhere (in the
Appendix section, Lee et al. 2008).

(6)

where I is an N×N identity matrix, , and

. According to Eq. (6), the only difference compared to
an Infomax-based ICA learning algorithm for a single subject (McKeown et al., 1998) is the
nonlinear function, ϕ(ĉ(m) (v)), which is dependent across subjects in the case of IVA. Thus,
the dependent activation patterns among the subjects within the same output vector
component could be maintained based on this nonlinear function. Finally, by using Eq. (6),
the unmixing matrix of each subject can be iteratively updated as follows:

(7)

where η (≪1) is a learning rate.

B. Evaluation using Simulated Data
Two HRFs along with the corresponding activated areas were simulated and assigned to
each ‘subject’ data set (n=12) to simulate the effects of (1) biphasic HRFs and (2) the degree
of overlap between small activation loci. Figure 3a shows the assumed sources (HRFs &

activation areas) for each trial across 12 subjects (HRFi and  denote an assumed HRF and
activated area to a trial i of subject m; subject index is color-coded in the figure). The
biphasic characteristic of each HR was modeled from the 1st order derivative of a canonical
HRF in SPM2 (www.fil.ion.ucl.ac.uk/spm) and the variations across subjects/areas were
simulated by changing the model parameters of a canonical HRF in SPM2 (e.g. peak
amplitude, duration; Handwerker et al., 2004). The size of each activation area was modeled
as 5×5 voxels (total ‘brain area’: 30×30). Note that the locations of activation areas for trial
1 were slightly shifted by a single voxel across the subjects, and thus there are 2×3 voxels of
common activated areas marked as black. On the other hand, the activated areas for trial 2
were shifted by two voxels across subjects, resulting in no spatial overlap across all subjects.

Lee et al. Page 5

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The exact location of each activated area and the corresponding HR were also shown along
with a maximum percent (%) BOLD contrast-to-noise ratio (CNR) for each area. The
applied maximum percent BOLD CNRs (0.76±0.20%) reflect the low level of BOLD
contrast within subcortical areas as well as the variations among subject/regions. Within the
brain area, simulated 1% white Gaussian noises (WGNs) and 1% periodic respiratory noises
(set at 0.2 Hz; ±10% distribution across the modeled subject data) were also added to all
30×30 voxels’ BOLD time series.

For the IVA processing, BOLD time series’ (n=65; to resemble the time points of real fMRI
data in the next section) of all voxels (30×30=900) were converted to a 2-D matrix (65×900)
for each subject. Before applying the IVA algorithm, PCA was preprocessed to estimate a
smaller number of ICs than the acquired number of volume acquisitions (time points) of the
functional data. This dimension reduction process is practical in an analysis of real fMRI
data since the number of acquired time points of real fMRI data is generally large (>100) so
that the assumption of the same number of ICs with the acquired time points may be
unreasonable in many cases. Therefore, after PCA-based dimension reduction (during the
preprocessing), the number of remaining eigenvalues/eigenvectors (i.e. number of ICs) was
decided to maintain about 90% of the power of the alternating signal (compared to the
positive baseline signal) in the BOLD time series to avoid excessive removal of the original
data. Note that because the reconstructed BOLD signal is always positive, the largest
eigenvalue (>90% power of the sum of all eigenvalues) along with the corresponding
eigenvector represent the static positive baseline signal components. The selected dimension
of reduction was 55 in the prepared simulated data set (a sum of remaining eigenvalues:
90.6±0.2% of a sum of total eigenvalues).

Since the selected 55 ICs may be too large for the prepared simulated data sets, we also
obtained the results for the reduced number of ICs (i.e. 3, 10, & 20), and compared the
sensitivity of the GIFT and IVA methods with respect to the estimated numbers of ICs. Note
that the minimum number of ICs within the data was three (two assumed HRFs and the
positive baseline signal).

A 5×5 voxel cluster was utilized as a block for a semi-batch learning so that the averaged
update term of Eq. (6) corresponding to each cluster’s BOLD data was utilized for the
update of the new unmixing matrix based on Eq. (7). The learning rate η was set as 10−3

throughout iterations and iteration was stopped when the mean square of unmixing matrix
change (ηΔ W(m),old/W(m),old) was stabilized (2.45×10−5 ~ 2.58×10−5). After the iterative
learning process finished, each resulting IC map (i.e. weighting values of TC across all the
voxels) was transformed into a z-scored map by the subtraction of a mean value and
concurrent normalization using the voxel-wise standard deviation value (McKeown et al.,
1998). In order to address sign ambiguity of IC maps/TCs (McKeown et al., 1998;Calhoun
et al., 2001;Svensen et al., 2002;Esposito et al., 2005), the voxel-wise correlation
coefficients between (1) the IC z-map (z-scored map) within the activated regions (p<0.01)
and (2) the original fMRI volumes were utilized in IVA. If the averaged (across time points)
value of the correlation coefficients was negative, the sign of the IC z-map (& corresponding
TC) was inverted.

For comparison to the IVA approach, GLM (SPM2; univariate and model-based approach)
and a group ICA of the fMRI toolbox (GIFT, v1.3b; icatb.sourceforge.net; multivariate and
data-driven approach) were also applied to the same simulated data sets. For the processing
using GLM, two canonical HRFs following two trials of task-paradigm were used as
regressors for Least-Squares (LS) estimation (blue and green time plots in Fig. 3b). For the
processing using GIFT, the same numbers of ICs used in IVA (i.e. 3, 10, 20, & 55) was
estimated and the default values were adopted for the remaining parameters. Infomax
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(McKeown et al., 1998) was employed as an ICA algorithm with default parameters (e.g.
block size=17, stop criteria=10−6, learning rate≈0.0037, and maximum iterations=512). The
sign ambiguity of GIFT was resolved by the convention whereby the maximal absolute
value in each IC map was forced to be positive. When a sign of IC map is changed, the sign
of the corresponding TC was also changed (by personal communication with V.D. Calhoun).

C. Application to Group fMRI Data
The acquisition of fMRI data and subsequent processing was approved by the local
Institutional Review Board. Twelve right-handed subjects (aged 24.7±4.5, 5 females)
performed one session of a right hand clenching (2 clenches/sec) task based on a trial-based
paradigm design (65-sec duration excluding 10-sec of dummy scans; task onset occurred at
15-sec followed by a 3-sec task-period). For the start/end of the task, a pre-recorded sound
cue was played to the subject in the MRI system via a MRI compatible auditory headset
(Avotec, FL). The fMRI data was obtained in a 3-Tesla clinical scanner (GE Medical
Systems) using a single channel, standard birdcage head coil. An EPI sequence was applied
to image most of the brain volume (13 axial slices, flip angle=80°, TE/TR=40/1000msec, 64
frequency and phase encoding: 64×64 in-plane voxels, 5mm thickness with a 1mm gap,
240mm square field-of-view) for detection of the BOLD time series associated with neural
activity.

Prior to group processing, individual EPI data was standardized to the MNI (Monreal
Neurological Institute) space by following preprocessing steps in SPM2 (i.e. in order: slice
timing correction, realignment, normalization into the MNI coordinates, and smoothing
using an 8mm full width at half maximum 3-D Gaussian kernel). Before processing using
the IVA algorithm, a PCA-based dimension reduction scheme was also applied to reduce the
number of IC maps/TCs to 50 (95.5±3.8% of a sum of 65 total eigenvalues). By applying
Eqs. (6) and (7) to the dimension-reduced fMRI group data, a semi-batch learning for every
randomly selected 10×10×10mm3 isotropic cluster (5×5×5=125 voxels due to the
2×2×2mm3 isotropic voxel) was used assuming dependencies of neural activations within
this cluster across subjects. The learning rate was set to 10−3 throughout iterations and the
iteration was stopped when a mean square of unmixing matrix change was stabilized
(1.9×10−5~3.1×10−5). After the iterative learning process finished, the resulting IC map was
transformed into a z-scored map. From the sign corrected results, two output ICs showing
activations within the thalamus and basal ganglia were manually chosen from all 50 ICs.
The selected IC z-maps across subjects were further processed using a one-sample t-test
implemented in SPM2 by considering a RFX model. The resulting individual and group
activation maps obtained by IVA were compared to those derived from GLM and GIFT.

For the processing using GLM, a default canonical HRF in SPM2 (green or blue line in Fig.
5a) was employed as a regressor to detect task-related activations based on LS estimation.
The resulting contrast images across all the subjects were further processed using a second-
level group analysis by considering RFX, and thus a group activation map was obtained by
applying a voxel-wise one-sample t-test to voxels within the same brain area across all the
subjects. For the processing using GIFT, the number of ICs was also set at 50 and the default
parameters were adopted (the Infomax algorithm: block size=255, stop criteria=10−6;
learning rate≈0.0038, and maximum iterations=512). After the learning stage was
completed, the sign-corrected IC maps were transformed to z-maps as provided in the GIFT
toolbox. Two components corresponding to the activation patterns within the thalamus and
basal ganglia were also manually selected from the 50 learned IC maps. All data analysis
steps including pre-processing using SPM2 were performed in the MATLAB computing
environment (version 7.0 R14, Mathworks, Natick, MA).
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As an alternative approach on the selection of the number of ICs for the multivariate GIFT
and IVA methods, a minimum description length (MDL) algorithm was employed using the
GIFT toolbox (Calhoun et al., 2001). The resulting estimated number of ICs was 17
(76.9±14.6% of a sum of the total eigenvalues). In order to find out the performance changes
depending on the number of ICs, we also tested for 30 (86.7±10.2%) and 40 (91.6±6.8%)
ICs.

III. Results
A. Simulated Data Analysis

The results from the simulated data, along with the layout of the data preparation introduced
in the Methods Section, are shown in Fig. 3. Figure 3b illustrates the results from the GLM
where the default canonical HRF in SPM2 was used as the reference regressor. Figures 3c
and 3d show the estimated task-related TCs and corresponding IC maps across the 12 spatial
patterns (simulating different subjects) using GIFT and IVA, as represented in pseudo-
colored z-scores. In the figure, blue lines represent the extracted task-related TCs from the
activation areas related with trial 1 (with mutually overlapped areas among the subjects) and
green lines represent the extracted task-related TCs from the activation areas related to trial
2 (with no overlapped areas among the subjects). Both TCs are overlaid with the modeled
HRF (red) in order to show the degree of similarity (a number represents a correlation
coefficient).

For GLM (Fig. 3b), since two canonical HRFs corresponding to two assumed trial-based
task-paradigm (one trial per activation area) were used as regressors for the simulated data
sets, there were two sets of activation maps and time courses. Similarly, for IVA (Fig. 3d),
after the non-parametric estimation of both activation areas and time courses, only two

output components  and  out of 55 showed the activation patterns within the assumed

activation areas of  and , respectively. For GIFT (Fig. 3c), only one of the 55

components ( ) showed the activation patterns corresponding to the activation area

modeled by , which represented the activation profiles that completely overlapped

among the (modeled) subjects. However, several output components, for example, ,

and , represented the activation patterns that partially overlapped from the area modeled

by .

From the results of GLM, two simulated activation patterns, regardless of the overlapping
features, were not readily detected. This type of result was anticipated since the modeled
source HRFs with biphasic content significantly deviated from the classical canonical HRF.
The situation improved in the results using GIFT, shown in Fig. 3c, whereby the IC maps

governed by HRF1 were decomposed as the 54th output for all subjects ( ). On the other
hand, the sites of simulated activation in the case of the HRF2 (distributed individual
activations in proximity without any overlap) were not decomposed into a single output

component, but were distributed over several outputs ( ).

IVA, on the other hand, showed noticeable improvement for detecting modeled biphasic
BOLD signals along with activation patterns across the subjects. As shown in Fig 3d, two IC

maps ( ) detected activations of the modeled task-related HRF1 and HRF2 within a
single output component. Only a few of HRF2-related activation maps, corresponding to

subjects 1 and 4 ( ), were not successfully identified whereby subjects 1 and 4
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simulated the low BOLD CNR (0.5% and 0.7% respectively). In terms of the ability to
extract the modeled HRFs (as indicated by a correlation coefficient), the estimated TCs
obtained using IVA showed higher similarity (0.91±0.06) compared to those obtained using
GIFT (0.80±0.09).

Figure 4 presents the results from the reduced numbers of ICs estimated from GIFT and
IVA. Overall, the GIFT and IVA methods performed similarly whereby each of the two
assumed ICs (both activation maps and TCs) were successfully decomposed into the same
index of output component across all the subjects. Again, the HRF2-related ICs of the
subjects #1 and #4 were underestimated due to the low CNRs. The higher correlation
coefficients between the assumed HRFs and estimated time courses were observed from
IVA (0.88±0.12) compared to GIFT (0.70±0.16). This is consistent with the findings we
observed from analyzing the data using 55 estimated ICs.

B. fMRI Data Analysis: Individual Activation
The computation time of IVA learning was about 10 hours and memory usage was about
340MB (computer specs: 2.8GHz Intel Pentium 4 Xeon Processor with 3.5GB RAM; 1000
clusters for each iteration; 500 iterations in total; 176,136 voxels within the thresholded
brain region in the MNI space).

The estimation results of the 50 ICs of the fMRI data obtained from 12 individuals
(S01~S12) are shown in Fig. 5 from a single axial slice (Z=0mm of MNI coordinate) over
the thalamus and basal ganglia. The approximate margins of the subcortical areas are
marked by a white line. Two averaged BOLD signals of activated voxels (p<0.01) within the
thalamus and basal ganglia (red line; not necessarily coming from the same slice as shown)
were plotted above each individual activation map. The modeled HRFs (GLM) and
estimated TCs (GIFT/IVA) are also shown (green: thalamus & blue: basal ganglia) with an
indication of the degree of conformity with respect to the averaged BOLD time series as a
correlation coefficient. From the individual processing results based on the univariate GLM
approach (Fig 5a), the activation patterns (yellow; p<0.01) showed that there was significant
variability across the subjects. For example, there was significant activation across the basal
ganglia in S06 whereas there was virtually no activation from S04 and S05.

The results from the GIFT on the extraction of the activation patterns within the subcortical
areas are shown in Fig 5b. The estimated TCs (green: thalamus-related & blue: basal
ganglia-related) were overlaid on the averaged BOLD time series (red). GIFT performed
better than GLM in extracting task-related signals from subcortical areas. For example, non-
existing activation from the left thalamus from S01 was subsequently detected using GIFT.
Similarly, bilateral activation in the basal ganglia, as is evident from S10 and S11, was not
detected from the result obtained using GLM. Compared to the results from GIFT or GLM,
the IVA method showed a markedly improved ability in extracting subcortical areas on an
individual basis (Fig. 5c) where the activations from the thalamus and putamen were
detected from virtually all subjects.

In order to further investigate the difference of HRs within and across subjects as well as
across brain regions, the averaged percent BOLD signal of activated voxels from individual
activation maps (p<10−3) by GIFT and IVA are represented in Fig. 6 as image plots using
the method by Duann et al. (2002). Using this image representation of the BOLD signal
(within ±1.5% as a pseudo-colored plot), the differences of BOLD intensities can be readily
discriminated. In order to find out the conformity between the averaged BOLD signal and
canonical HRF, a correlation coefficient was calculated and is shown with each time plot.
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The BOLD measurement from the primary motor-area was in good agreement with the
hypothesized HRF. Compared to GIFT, the averaged BOLD signal across the subjects
within the activated areas by IVA showed a higher correlation with the hypothesized HRF
(i.e. 0.70 by GIFT vs. 0.88 by IVA), as was also visible by more concentrated task-related
activity during the task period (marked as a black box). BOLD signal within the thalamus
and basal ganglia deviated from the cortex-based canonical HRF, and showed significant
variations across the subjects and regions (as indicated with arrows). As anticipated, the
correlation coefficients between the averaged BOLD signal and the canonical HRF
measured within these areas were less than CCs measured in the motor-area (i.e. 0.55 & 0.63
by GIFT and 0.68 & 0.49 by IVA). This was due to relatively low signal contrast and
biphasic/high-frequency BOLD characteristics within the subcortical area compared to the
cortical area. These results may indicate the efficacy and utility of the non-parametric and
multivariate approaches in the detection of the atypical BOLD responses compared to the
parametric and univariate approaches. Both GIFT and IVA successfully detected the regions
showing the HRs that deviate from the canonical HRF.

C. fMRI Data Analysis: Group Inference
After the identification of individual activation patterns, the group inference results based on
RFX is shown in Fig. 7. Two different threshold values (p<10−3 & p<10−5) were applied for
each RFX-based group activation map and activation patterns were also pseudo-colored
(thalamus in green and basal ganglia in blue). The range of axial slices shown covers from
Z=0mm to 12mm with a step of 4mm.

From visual inspection of the results, GLM detected the bilateral activation in the thalamus
from Z=0mm (p<10−3) and the unilateral thalamic activation at a slightly superior slice, at
Z=4mm (p<10−3). However, the activation within the basal ganglia was not detected. GIFT,
on the other hand, detected the putamen activation in the lentiform nucleus bilaterally in the
slice Z=0 and 4mm (p<10−3). However, the thalamic activation was grossly distorted with
adjacent ventricles. Again, for the higher threshold level of p<10−5, many of the activations
were missed in the results from GIFT. The bilateral activation in the posterior superior
temporal gyri (shown in Z=4~12mm) from GLM, showing a classical HRF pattern, was
excluded from further RFX analysis of the corresponding IC maps by GIFT and IVA in
order to target subcortical areas. In order to ensure that subcortical activation was not missed
during the course of manual selection, different IC maps were searched again for possible
definition, but without any apparent improvement.

The localized group activation areas identified by IVA showed substantially higher z-scores
that remained even for the very stringent threshold condition of p<10−5. The location and
the size of activation identified from each of the group-processing methods are summarized
in Table. 1. Notably, the distinct activation within the anterior putamen and ventral
posterolateral/mediodorsal thalamus only identified through IVA were well matched with
the motor control circuitry within subcortical areas, whereby these areas are known to be
associated with movement parameters such as complexity and frequency (Lehericy et al.,
2006). Interestingly, as is evident from slice Z=4mm, the IVA method was able to identify
the thalamic activation revealed only by GLM and the putamen activation revealed only by
GIFT, suggesting the ability to detect the areas that could be missed by using either GLM or
GIFT alone.

Figure 8 shows the RFX-based group activation maps corresponding to the reduced numbers
of ICs (the location and size of activation loci were summarized in Table 2). The activation
patterns within the thalamus and basal ganglia were now decomposed into one output
component due the reduced number of ICs (except for GIFT analysis using 40 estimated
ICs). Although the overall results are consistent with those obtained from the 50 estimated
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ICs, it is interesting to note that the activation patterns from the 17 ICs (smallest number of
ICs) using GIFT showed strongest statistical significance compared to those from the 30 and
40 ICs. On the other hand, IVA tends to show reduced level of statistical significance from
the results obtained from using 17 ICs.

IV. Discussion
Group fMRI processing of subcortical areas is particularly challenging since the amount of
BOLD signal contrast generated by these areas is typically smaller compared to those from
other parts of the brain. The reduced CNR is compounded by the BOLD signals that are
inconsistent across the subjects and from the typical canonical HRFs. In this study, we
proposed a novel multivariate method for the processing of group fMRI data using IVA,
targeting the group-trend extraction of small activation patterns from subcortical areas.
Based on the analysis of the simulated data, the IVA algorithm successfully characterized
group trends in activation patterns that are slightly shifted in space while conventional group
processing methods were not able to do so. Also, IVA, as one of blind-source-separation
(BBS) techniques, was able to detect the locations with hemodynamic responses that do not
follow the modeled canonical HRFs. In contrast to conventional ICA-based group
processing, IVA derived the spatially-similar trend in activation across subjects as a single
output vector component.

From the analysis of the actual fMRI data, IVA also demonstrated superior utility in
extracting small subcortical activations from the thalamus/basal ganglia activation during
the motor task, compared to GLM or GIFT. Unlike GIFT, which still requires a degree of
manual intervention or a heuristic data reduction scheme from individual to group data, IVA
inherently extracted the common spatial features of activation patterns across the subjects
into a single vector component. Therefore, the level of statistical significance in the group
activation map dramatically increased since the IVA algorithm can extract each individual’s
activation patterns that are mutually dependent on the spatial domain across the subjects.
The inherent spatial homogeneity of the estimates from the GIFT can be traced to the PCA-
based dimension reduction scheme across all the subjects’ data whereby the estimation of
time courses is likely to be biased towards the temporal characteristics from the commonly
activated voxels across all the subjects. More detailed explanation on the inherent restriction
of the GIFT is described elsewhere (Esposito et al., 2005; Beckmann and Smith, 2005; Lee
et al., 2008).

As further demonstrated from the averaged BOLD signal of fMRI data during the right hand
motor task (Fig. 6), BOLD signal measured from the thalamus and basal ganglia, including
the putamen, deviated from the canonical HRF (green) and had large inter-subject variations
(in arrows). On the other hand, BOLD signal from the primary somatomotor areas (left
precentral gyrus) was similar to the modeled HRF. This confirmed the observation that the
deviating characteristics of the BOLD signal arising from the subcortical areas are known as
main difficulties in detecting the corresponding neural activities by using the conventional
cortex-based reference HRF model (Moritz et al., 2000;Riecker et al., 2006).

In addition to the ability to characterize BOLD signal patterns that depart from the canonical
model, IVA also markedly elevated the group-level statistical significance among the three
tested methods. For example, with just a short data acquisition for a single trial (65-sec), the
group activation derived from IVA survived the threshold level of p<10−5 while most of the
activation from the GLM or GIFT at this threshold condition escaped from being detected.
This markedly increased statistical significance can be appreciated from the individual
results (Fig. 5). Individual activation maps processed by GLM or GIFT showed large inter-
subject variability. However, IVA was able to extract strikingly consistent and similar
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activation patterns across the subjects. Another advantage of IVA, compared to the ICA-
based approach, is that output component maps which are automatically grouped across
subjects already reflect the group trend. Therefore, the IVA method does not involve the
complicated selection criteria that are necessary for the ICA-based methods. As
demonstrated in Fig. 3c, the sites of simulated activation (individual activation distributed in
proximity without any overlap) were not decomposed in a single output component, but
rather distributed over several outputs.

Meanwhile, the performance from the GIFT method appears to be more sensitive to the
number of estimated ICs than that of the IVA method whereby the results from the smaller
number of ICs (Figs. 4 & 8) provided more accurate (for simulated data) and statistically
significant (for real data) compared to those based on using more ICs (Figs. 3 & 7). On the
other hand, for IVA, the slight degradation of the statistical significance observed for the
smaller number of ICs (i.e. 17; Fig. 8b) may be due to the inhomogeneous level of BOLD
contrast within the subcortical areas among the subjects. It suggests that IVA may be
susceptible to excessive reduction in ICs. Tensorial ICA, as an extension of ICA algorithm
(Beckmann and Smith, 2005;Lee et al., 2008), may be used to complement the ICA-based
analysis as well as the IVA scheme.

Many cognitive studies have been plagued with potential underestimation of the detection
from the subcortical regions due to spatial smoothing and correction schemes. IVA,
therefore, could be gainfully applied to the studies whereby group activation is needed for
the small activation loci or the area that shows small BOLD contrast. Neuro-psychiatric
fMRI studies, in which the activation could be altered by the underlying pathology or the
crucial neural circuitries that are often involved in small areas, can benefit from the IVA
approach. Schizophrenia, for example, involves abnormal activation patterns as well as
anatomical morphology across the brain. Recent studies indicated that aberrant cognitive
and emotional behavior shown among schizophrenic persons can be traced to the activation
patterns that differ from healthy controls (Aleman and Kahn, 2005; Holt et al., 2006;
Harrison et al., 2007). fMRI has been actively used to study these differences. However, the
results were mostly based on the GLM-based approaches. IVA, in this context, may be used
to detect differences in group trends that have been evading detection based on the
conventional approaches. It is important to note that the proposed IVA method may be
effective in analyses of fMRI data that are susceptible to atypical BOLD signals among the
subjects and brain areas (in terms of magnitude, duration, and timing of onsets). This applies
to the analysis of, for example, data obtained from individuals with neuroleptic medications
(Eyler et al., 2004; Fahim et al., 2005; Ford et al., 2005) or substance abuse (Gollub et al.,
1998; Lee et al., 2003; Chang et al., 2006; Van Horn et al., 2006).

The future utility of the IVA method can be also appreciated from the stand point of
functional connectivity analysis during the resting state. Recently, several fMRI works have
revealed that there are inherent functional connections established among different neural
substrates that share the similar hemodynamic trend without the presence of an apparent task
(Castellanos et al., 2007; Wang et al., 2007). The study on this resting state without any
apparent stimulation or task, therefore, can not be studied using model-driven approaches.
IVA, with its ability to sort out the similar spatio-temporal features across subjects, can help
elucidate the connectivity across the neural activation during the resting state.

The current IVA-based approach is achieved at the cost of more extensive computational
demands, compared to the existing GLM or ICA-based methods. This is because an
individual unmixing matrix is iteratively trained using the results from other subjects
(represented as the nonlinear function, ϕ(ĉ(m) (v)) of Eq. (6), which subsequently requires the
updates of all the unmixing matrices in parallel. The increased computational load
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associated with IVA can be alleviated by increasing the capacity of computer memory or
utilization of a multi-core CPU. Although the current study shows the potential utility of
IVA, elaborate sets of optimization processes would be needed in terms of learning
parameters and selecting components-of-interest for the fully-automated group processing.
The application of the IVA method to analyze fMRI data examining the various types of
neuropsychiatric disorders would constitute future areas of study.
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Figure 1.
A schematic diagram of the measured group fMRI data from M subjects (N: number of
acquired volumes or time points; V: number of voxels within a brain region). The 2-
dimensional data matrices (N×V) of the subject 1 and M are shown as red and blue
rectangular boxes, respectively. A 2-D matrix of the measured BOLD time series at the vth

voxel across all the subjects is represented as a green box and is used in the IVA model
shown in Fig. 2.
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Figure 2.
An illustration of the synthesis and analysis models of the IVA method applied to the group
fMRI data. Similar to the ICA method, the measured BOLD time series is assumed to be a
linear combination of the unknown IC maps through a mixing matrix (time courses;
unknown) in the synthesis model. In the concurrent analysis model, the assumed IC maps
can be estimated by learning an inverse of the mixing matrix (i.e. unmixing matrix; inverse
of the time courses). Note that, however, each component of the IVA model (represented as
rectangular boxes) is a vector as opposed to a scalar value as in the ICA model.
Additionally, the constraint of dependence among the elements of each vector component is
applied to (automatically) group similar activation patterns (among the subjects) as a single
output vector component. And thus, each vector component represents a group trend without
complication of the random permutation of similar components across the subjects (please
refer to the Methods Section for a short description of the model; the detailed description on
the model and learning rule can be found in Lee et al., 2008).
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Figure 3.
The prepared simulated data and the corresponding results: (a) the assumed source biphasic
HRFs and activation areas for all 12 ‘subjects’ (please see the detailed explanation in ‘B.
Evaluation using Simulated Data’ of the Methods Section), (b) the resulting estimated
activation maps along with the source (red)/canonical (blue or green) HRFs by GLM, (c) the
resulting estimated IC maps along with the source HRF (red)/estimated TCs (blue or green)
by GIFT, and (d) the results by IVA. Note that two IC maps and TCs corresponding to the
two assumed trials are expected to be recovered.
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Figure 4.
The estimated IC maps and TCs for the reduced numbers of ICs from the GIFT and IVA
methods. A figure layout including the used color-coding scheme is identical to that of Fig.
3.
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Figure 5.
The resulting individual (S01~S12) activation patterns within the thalamus and basal ganglia
along with the averaged actual BOLD signals (red), the canonical HRF (green & blue) from
GLM, and the estimated TCs (green: thalamus-related & blue: basal ganglia-related) from
GIFT and IVA on top of the image plots (a number denotes a correlation coefficient between
actual BOLD signal and the canonical HRF or estimated TC). Example activation patterns
on a single axial slice (Z=0mm in the MNI space; p<0.01) are shown. An approximate
margin of the subcortical areas is marked by a white line.
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Figure 6.
The image plots of the averaged percent BOLD signals (truncated within ±1.5%) of
activated areas (p<10−3) of the estimated IC map for each subject. The BOLD image plots
corresponding to the primary motor-area (cortical region) from a motor-related IC map from
GIFT and IVA is shown to compare the BOLD image plots corresponding to the thalamus
and basal ganglia (subcortical region). A task-related response is marked as a black box and
example variations from the hypothesized HRF are indicated with arrows. In the bottom of
each image plot, the canonical HRF from GLM (green) and an averaged percent (%) BOLD
signal (red) along with standard deviation (blue) across all subjects are shown as temporal
plots (a number denotes a correlation coefficient between the canonical HRF and averaged
BOLD signal).
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Figure 7.
The resulting group activation trend obtained from RFX within several axial slices (Z=0, 4,
8, & 12mm in the MNI space) is shown for different p-values (p<10−3 & p<10−5) in order to
compare the statistical significance of the analyzed activations depending on the employed
method. The labeled anatomical information of the activation loci is summarized in Table 1.
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Figure 8.
The RFX-based group activation trend within subcortical areas from GIFT and IVA is
shown for several cases of the reduced numbers of estimated ICs (i.e. 17, 30, & 40) and for
two different p-values. The reduced number 17 was estimated using the MDL tool available
in the GIFT toolbox. The labeled anatomical information of the activation loci is
summarized in Table 2.
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