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Abstract 

Visual stimulus decoding is an increasingly important challenge in neuroscience. The 

goal is to classify the activity patterns from the human brain; during the sighting of visual 

objects. The inputs are fMRI data, and the stimuli names are the outputs. One of the cru- 

cial problems in the brain decoder is the selecting informative voxels. Selection methods 

fall into one of three types: filter; wrapper; and embedded.We propose a meta-heuristic 

voxel selection framework to decode the brain activities of visual stimuli accurately. It is 

composed of four phases: pre-processing of fMRI data; filtering insignificant vox-  els; 

post-processing;  and meta-heuristic selection.  The main contribution is benefiting a 

meta-heuristic search algorithm to guide a wrapper voxel selection. The main crite- rion 

to nominate a voxel is based on its mutual information with the provided stimulus label. 

The Support Vector Machine, with a linear kernel is operated as an efficient clas- 

sifier.The leave-one-subject-out cross-validation scenarios have been used to assess the 

generalization of proposed framework. The results show impressive accuracy rates which 

are 92.4% and 92% for DS105 and DS107 respectively. This outperforms the most of 

existing brain decoders in similar validation conditions. Brain decoding framework has 

been proposed, by focusing on the information quantity in fMRI data. SA, is a search al- 

gorithm that used in the wrappers methods to select informative voxels. The experimental 

results of proposed framework are very encouraging which can be successfully used in 

the brain-computer interface, BCI, systems. 

Keywords:Brain Decoding, fMRI, Mutual Information, Simulated Annealing, Voxel 

Selection, Visual Stimulus. 
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1 Introduction 

The study of brain decoding goes back to two decades and a half. Brain decoder is a 

computational model to establish a proper correlation between the brain activity and the 

outside stimulus. The first aim of a brain decoder is to classify neural activities into re- 

lated high-level cognitive states such as the processing of a stimulus (viewed objects); 

emotions; and mental illnesses. The second one is localizing the brain regions that are 

strongly selective to a specific stimulus; this helps neurologists to understand the un- 

derlying brain activity. The attractive application of brain decoder is in designing the 

brain-computer interface, BCI, systems. 

There are different neuroimaging modalities to record brain activities. For instance, 

Electroencephalography (EEG), Magnetoencephalography (MEG), Positron-emission to- 

mography (PET), and functional magnetic resonance imaging (fMRI). fMRI records the 

brain activities via tracking oxygen consumption in the brain regions; which known as 

blood oxygen level dependent (BOLD) signals. Even though fMRI scanners produce 

noisy and high-dimensional images, it remains a favorable imaging modality for brain 

decoding issue, because it is noninvasive and provides detailed information on deep brain 

structure and activity [47]. In fMRI data, it is difficult to distinguish between neural pat- 

terns due to the spontaneous fluctuations, even if they are obtained from the same person 

[13]. 

The validation scheme is used to assess brain decoder for inter-subject case, leave-one- 

subject-out cross-validation schemes; The state-of-art frameworks to select informative 

voxels from the fMRI images have been presented in [5, 53, 57]. The experimental results 

indicate how the stability of brain decoders is increased while over-fitting avoided. 

If a voxel leads to decode viewed stimuli accurately, it will be hypothesized as “infor- 

mative”. Identifying and selecting the informative voxels is used in decoding and localiz- 

ing brain activities. While devising a brain decoder based on fMRI data of perceiving a 

visual stimulus, the following questions could be raised: to what extent we trust the vox- 

els? How accurate is the brain decoder? Where are the locations of these selected voxels 

in the human cortex? How are they allocated on the cortex; distributed or centralized 

within the same subject or among subjects? The advantage of the proposed framework is 

its significant accuracy rate using multi-class SVM in brain decoding,  which makes  it 

applicable in the brain-computer interface, BCI. Furthermore, it helps neurologists to 

localize neural activity accurately. 

In the literature,  “subject” refers to a person who set in the fMRI scanner and do  the 

brain scan; in order to determine which part of his/her brain is activated by external 

stimulus. In the study of vision in the human brain, the “object” denotes a visual stimulus 

such as a picture of one visual object;  viewed to the subject multiple times according   to 

the task design. “Run” is referred as the fMRI data acquired in one experimental session 

also “trail” has the same meaning, “session” may includes one or more trials. Task timing 

or task “onset” includes the time of object viewing to the participant during fMRI 

acquisition; starting and ending time. The “voxel” denotes one point in the three- 

dimensional space of brain image. Each voxel in fMRI images has three indices (X, Y, 

and Z), its values represent the BOLD signal across time. 
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Figure 1 shows the main phases of the proposed framework. The pre-processing and 

voxel filtering are performed by FSL software, but the post-processing and wrapper selec- 

tion of voxels are implemented in Matlab environment. Hereafter, we call the proposed 

Meta-heuristic Filter and Wrapper Voxel Selection framework MFWVS in short. In the 

voxel filtering, the general linear model, GLM, filters the whole brain voxels by localiz- 

ing activities, which are associated with the visual stimulus.The atlas information filter the 

statistical maps (GLM’s outputs). Accordingly, we run an iterative procedure; to select the 

voxels with maximum likelihood relation to the external stimulus from each anatomical 

region. Then, we execute the voxels post-processing which consists of multiple processes; 

normalization, value scaling and discretization. Post-processing makes voxels appropriate 

to calculate mutual information and learn the classification model. 

The main contribution of this paper is using the Simulated Annealing algorithm, SA, 

in wrapper voxel selection approach, to find best voxel subset in the input voxel space. 

SA algorithm searched for the optimal values of (α, β) parameters in our voxel scoring 

algorithm, mutual information voxel scoring, MIVS. The wrapper voxel selection helps 

the learning model to give a high accuracy rate. Further more, We apply voxel filtering to 

reduce the number of input voxels to tackle the time-complexity problem in MIVS. The 

proper selection of the mentioned parameters leads to the finest possible accuracy rate. 

Finally, visualization of the selected voxels in within-subject and between-subjects 

scenarios gives evident insight into underlying brain activity. This paper is divided into 

five sections. In section two, we discuss the state-of-the-art studies on brain decoding and 

voxel selection. Section three presents the proposed framework in detail. Section four, 

shows the significant results of the proposed framework and discuss it with the recent 

studies in the field. The final section presents the concluding remarks and declares the 

important points of the proposed framework. 

2 Literature Review 

Brain decoding has become a hot area of neuroscience research in recent years. The role 

of brain decoder is to discriminate between external stimuli depending on some special 

patterns in brain activities. Furthermore, several surveys have discoursed the brain de- 

coding problem especially from visual object perspective [1, 4, 18, 20, 38]. There are three 

approaches to solve brain decoding problem: neural pattern classification, stim-  uli 

identification, and reconstruction [36]. In this study, we only discuss the neural pat- tern 

classification which can be assorted into four different approaches; nonlinear such as 

multi-layer perceptron [12, 17, 50], probabilistic methods [5, 15, 35–37, 46], graph- based 

decoder [39, 43, 44] and multivariate pattern analysis (MVPA). MVPA may in- cludes 

some learners like Support Vector Machine (SVM) linear discriminant classifiers, and k-

nearest-neighbor [8, 10, 32]. In general, brain-decoder is composed of three major steps: 

pre-processing, voxel (feature) selection, and model (decoder) learning. Because of the 

large volume of data, using some specific software tools would be crucial. In this regard, 

some of the most popular pre-processing software like FSL [23, 49, 54] and SPM [14, 41] 

have been developed. 
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FIGURE 1: The proposed framework for meta-heuristic voxel selection based on mutual 

information 

Principally, feature selection is categorized into three approaches; filtering, wrapper 

and embedded feature selection [45]. Filtering approach calculates some measures be- 

tween features and labels such as correlation, mutual information, and causality. The 

measures acting as scores to nominate the important features subset. Filtering methods 

work independently of the learning process. Wrapper feature selection approach gener- 

ates a subset of features and accesses its accuracy rate from learning model. Wrapper 

method depends on the learning process to evaluate the selected voxels (features) subset. 

The wrappers are divided into deterministic such as sequential forward or backward se- 

lection, SFS or SBS, and meta-heuristic search algorithms like simulated annealing, hill 

climbing [27, 45]. The embedded feature selection works similar to wrapper methods, but 

it performs the feature selection with learning process jointly such as decision tree and 

elastic nets; some embedded feature selection methods introduced in [25, 32]. 

fMRI images are massive and high dimensional, so the voxel (feature) selection 

method plays an essential role in decoder performance. So, several early studies focused 
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on efficient voxel selection methods. GLM is one of the famous voxel selection methods 

or neural activity localizers which are used for voxel selection in fMRI. It finds the  most 

suitable voxels to the task model design;  when the specific stimulus is provided  [8, 19].  

The studies [1, 5, 30, 33, 52] employed mutual information between voxels   and the 

stimulus as voxel selection on activity localizing. In other studies Principal Component 

Analysis (PCA) has been used for voxel scoring. PCA method is based on variance 

analysis of time-series voxels; it finds the orthogonal components with high 

discrimination ability using a non-linear transformation [17, 31, 40]. In other studies, 

Graph-based methods have been used to localize brain activity and select the most 

important voxels [26, 39, 43]. As we try to propose a simple and fast voxel selection 

framework we use two levels of selection inspired by the previous studies. First the filter 

approach which is settled on statistical model and atlas information, this reduces the 

voxels number (dimensional space) and time-complexity for the next level. Second is 

wrapper, consists of voxel scoring algorithm to choose the informative voxel (feature) 

subset, and the Simulated Annealing search algorithm. 

3 Materials and Methods 

This section introduces the proposed framework for voxel-selection to localize the brain 

activities of viewing visual stimuli and decode these stimuli precisely. To find the most 

informative voxels, four major phases that are pre-processing, filtering, post-processing, 

and wrapper selection are conducted. In the following, each phase is discussed in detail. 

3.1 fMRI datasets 

In this paper, two real fMRI datasets are processed, including object viewing task in the 

human brain. The first one is a widely used fMRI benchmark for studying visual object 

recognition task in the human brain [19]. The second one consists of fMRI data related to 

viewing four categories [9]. We download these data from “openfmri.org” website, which 

has been deprecated to “openneuro.org”. Table 1 shows the summary statistics of these 

datasets. 

TABLE 1 

Summary statistics of the used fMRI datasets 

3.2 fMRI pre-processing 

Pre-processing of fMRI images was accomplished using FEAT (FMRI Expert Analysis 

Tool) Version 6.00, part of FSL library [23]. The Details of pre-processing steps are 

present in Appendix A. 

Dataset Name Subjects Number Runs Number Time points Number Corrupted Subject Objects Stimuli 

DS105 6 12 9 subject 5 run 8 Faces, Houses, Cats, Bottles, Scissors, 

Shoes, Chairs and Scrambled 

DS107 49 2 7 subject 41 run 2 Words, Objects, Scrambled Objects, Conso- 

nant strings 
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3.3 Voxel filtering 

The goal of this phase is to decrease the voxels number (feature space size) by concentrat- 

ing on the most important cortical regions instead of whole brain structure. In the initial 

case, the number of voxels is so large; especially when the voxel size is converted to 2mm 

standard space. As a result, using an anatomical mask or atlas is highly recommended. In 

this regard, we suggest multiple steps to filter unimportant voxels. We only focus on the 

cortical regions of the brain and neglect others like cerebellum or sub-cortical structures; 

so we choose Harvard Oxford Cortical atlas. If we select all voxels in the atlas, the learn- 

ing algorithm will face with a large feature vector. Thus, we use the intersection between 

atlas and the output of regression model. More information on voxel filtering steps are 

declared in Appendix B. 

3.4 Voxel post-processing 

Voxel post-processing is an essential phase in the proposed framework.  Accordingly,  the 

voxels data are standardized and arranged in a vector form to further use in learning 

process. The main steps are normalization, segmentation, flattening, discretization, and 

scaling. Let’s denote the whole time-series of data could be expressed as a matrix where 

the columns represent as voxels, and rows indicate the time points of the related voxels. 

The above mentioned steps are applied on this matrix as follows: 

• Normalization which adjusts values in a specific range for each column separately. 

• Calculate the average of the time-series voxel in each column. 

• Subtract the above average from each row “time point” for each column; this task 

leads to standardization and uniformity of voxels. 

Segmentation of the time-series is the second part in post-processing. It determines what 

rows are related to specific stimulus in the time-series. It is committed to the timing val- 

ues in the onset files which comes with datasets. For example, in DS105 each stimulus is 

presented during 9 time points (each time point is 2.5 seconds, TR=2.5s). Similarly, each 

stimulus is presented in 7 time points (each time point 3 second, TR=3s) for D107. Flat- 

tening is responsible to reshape the time-series segment into one vector. The discretization 

plays an important role in reducing the noise, also eliminates the fluctuations in values. 

Finally, scaling projects the values of voxels between 0 and 1, this procedure helps the 

SVM model to learn faster. Figure 2 compares the histogram of voxels magnitudes before 

and after post-processing. X-axis presents the bins of a particular magnitude range, Y-axis 

indicates the number of voxels in the range of related box. Before post-processing, the 

magnitudes are varied from 0 to 14000 which has a negative effect on the classification 

performance. Figure 2-a, shows total characteristics of data before post-processing. As it 

is shown the majority of voxels fall into the range of 8000 to 12000. Refer to Figure 2-b, 

the voxels have become similar to a normal distribution after post-processing. 
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FIGURE 2: Histogram of voxels magnitudes before and after post-processing 

3.5 Meta-heuristic wrapper voxel selection 

Voxel selection is essential in building the brain decoder, due to high number of voxels in 

the brain images. Similar to feature selection the voxels selection methods fall into one of 

three types filter, wrapper (meta-heuristic or deterministic) and embedded. Wrapper 

approach embed the model learning within the feature subset search [34, 45]. We choose 

wrapper method because it is suitable to tune the both classification and scoring algo- 

rithms. At first, we implement a special algorithm to calculate the voxel scores based on 

mutual information, and select the important subset. Then, simulated annealing is em- 

ployed to find the best voxel subsets according to the parameters in a mutual information 

algorithm. Therefore, the proposed framework recognized as meta-heuristic. Figure 3 

illustrates the arrangement of processes in voxel selection framework, in this case each 

fold is related to one subject. 

3.5.1    Simulated annealing 

Simulated Annealing, SA, is a probabilistic and memory-less search method. When solv- 

ing a specified function, SA is used to find a proper approximation of the global solution. 

Multiple versions of approximation algorithms are used in the wrapper voxel selection 

approach [2, 6, 11, 28, 51]. Definitely, SA is often used when the search space is dis- crete 

such as traveler salesperson problem. Adaptive Simulated Annealing, ASA, is also a 

global optimization method, which inspects the search space more efficiently than other 

previous simulated annealing algorithms [21]. In the proposed framework, ASA is used to 

investigate the global optimal values of two parameters α and β in the mutual information 

algorithm which aim to minimize the error rate of the SVM classification algorithm. The 

error rate is defined as below: 

number of false classified instances 
(1) ErrorRate = 

number of all classified instances 
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FIGURE 3: Wrapper voxel selection approach in inter-subject cross-validation scheme 

The error rate of the SVM classification model is acting as fitness function, and the ASA 

tries to minimize it, by searching the space of α and β values. The default parameters are 

used in ASA algorithm such as annealing fast, exponential temperature, and SA accep- 

tance function. We determined the start solution of alpha and beta as (0.003, 0.56). It is 

necessary to mention that lower and upper bounds of two parameters are very important 

to guide the whole search. 

3.5.2 Voxel scoring 

Mutual information, MI, is a measure to estimate the statistical dependency between two 

numeric phenomena [7, 16]. Mutual information between two discrete random variables 

is calculated as shown as follow: 

Σ Σ     p(a, b)  
(2) MI(A, B) = p(a, b) · log ( ) 

p(a) · p(b) 
a∈A b∈B 

The mutual information between two independent variables is presented as MI(A, B). 

The term p(a, b) is the joint probability distribution function for A and B. p(a) and p(b) are 

the marginal probability distribution functions of A and B, respectively [7]. The mutual 

information voxel scoring, MIVS, finds the importance score of the voxels based on its 

mutual information with the viewed-object labels. Figure 4 shows the flowchart of the 

voxel selection algorithm by mutual information scoring. The inputs of MIVS algorithm 

are: 

• high-level labels or visual objects such as house, scramble, cat, shoe; and so forth. 

For each label, an integer value is assigned. For instance, house→1, scramble → 2. 

• Flattened BOLD signal values of voxels in the tabulated form X, each row presents 

one block of the signal, which is relevant to one high-level label. 
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• The parameter α is the threshold value for the accepted mutual information. If a 

voxel which has a mutual information value above the threshold, it will be selected. 

• The parameter β is used as a threshold value on a BOLD signal. In other words, 

this parameter determines which voxel is activated and when? 

The major instructions of the MIVS algorithm are described in Figure 4. First, the labels 

for each instance were converted to the binary form as follow 1 = (10000000), 2 = 

(010000000) . . . 8 = (00000001). Then, the threshold β would be employed on the voxel 

values. This threshold determines whether a voxel is triggered or not. MI vector for each 

label is calculated. It consists MI between every voxel and the binary label. Then, the 

summation of the MI vectors for all classes is found. The algorithm returns the indices of 

the most important voxels after applying α threshold on final mutual information values 

of each voxel. The loop bounds of two nested for-loops in the flowchart are defined as 

label-number, k, and voxel-number, n, respectively. If we assume the time complexity 

of mutual information calculation becomes O(m) where m indicates the number of time 

points in each voxel, then the overall time complexity of the algorithm will be O(k × n × 

m) ' O(n3) where k, m n; the number of overall features is calculated as following 

n = (voxels number × time points number). We hold this issue (high dimensions) by 

adding the voxel filtering phase; which discussed in the section 3.3. 

start stop 

Data, Alpha 

Beta 

binarize labels 

sum MI_mat by 

columns 

Set voxels index, 

i=1 
No 

Set labels index, j 

=1; 
i<=voxelnum 
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Calculate mutual information 

between current label and 

voxel, MI_mat(i,j) increment(i) 

increment(j) Yes j <= labelnum No 

FIGURE 4: Flowchart of voxel scoring algorithm by mutual information 
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3.5.3 Neural pattern classification 

The objective of a brain decoder is to distinguish between neural patterns and recog- nize 

the related high-level cognitive state, similar to the classification algorithms. In this work, 

we have groups of time-series voxels of the stimulated brain; each group can be 

categorized into one of the multiple visual objects. For example, in the dataset DS105, 

there are eight different classes (visual objects), and four objects in dataset DS107. In this 

regard, the brain decoder acknowledged as a supervised classification problem. The 

wrapper methods works iteratively until find the best voxel subset. The accuracy of the 

learning process in each iteration fed into the SA algorithm as fitness value. In the learn- 

ing process, different models can be used such as SVM, logistic regression and decision 

tree [5, 8, 43]. Support Vector Machine, SVM, is a supervised learning model used for 

both classification and regression problems. The original version of SVM was initially 

introduced for binary classification. 

We have employed the LIBSVM [3], since the multi-class is the main concern in this 

work, LIBSVM converts the SVM binary models to the multi-class classifier, by utilizing 

a one-versus-one scheme; In our investigation, it has been shown that the linear kernel 

surpasses other ones in SVM for intra-subject scenario; However, in the inter-subject, the 

RBF kernel generates accurate results in comparison with linear and polynomial kernels. 

4 Results and Discussion 

Two real fMRI datasets are investigated [9, 19]. Visual object viewing in the human brain 

is the examined task. FSL library tools carried out the pre-processing and first level GLM 

analysis of fMRI images. The learning and voxel scoring algorithms have been executed 

in Matlab environment. 

4.1 Evaluation measure and scheme 

Accuracy is a description of systematic errors, a quantity of statistical bias, as this reason 

a change between the result labels and the reference values, also called as trueness [42]. 

The overall accuracy rate is calculated as below: 

number of correct classified instances 

number of all classified instances 
(3) AccuracyRate = 

The validation approach is leave-one-subject-out, it is used to evaluate the inter-subject 

variabilities. This approach is beneficial in evaluating the mind-reading models because it 

is similar to nature. Naturally, the model trained data comes from multiple persons. The 

model will be tested with unseen neural data, which came from a new subject (person). 

This style is valuable for generalization of the brain decoder across multiple subjects. In 

this scenario, all the samples of one participant put aside for testing and the date from 

other participants, are used for learning. Then, the cross-validation procedure is repeated 

for the entire participant, each fold is related to one subject Figure 3. 
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4.2 Results and Anatomical analysis 

In DS105, the mean accuracy rate in inter-subjects validation scenario is 92.4%. The 

median accuracy rates are the same for all kernel types. More than half of accuracy rates 

are above 91%. The RBF and linear kernels give similar performances. While in DS107 

the mean accuracy rate is 92% and the median is about 91.67% in linear kernel, it shows 

more stability than RBF and Polynomial kernels because its accuracy has lower standard 

deviation. 

TABLE 2 

anatomical locations of the largest blobs of voxels in two datasets 

Figure 5 presents a clear distribution of voxels in LOC and TOF for DS105. As it can 

be found, the spread of voxels in the Occipital Pole and Superior Temporal Gyrus are 

obvious to DS107. Table 2 gives a detailed explanation of the anatomical regions in Figure 

5. 

4.3 Comparison with state-of-the-art methods 

The proposed framework provides the “informative voxels” to the classification model 

which leads to high accuracy rates Table 3 compares the performance of different voxel 

selection and classification methods for all subjects of both datasets. The comparison 

criteria are the number of selected voxels (without considering the number of time points 

in each voxel), selection method, and accuracy rate. All rows in the Table 3 are inspired 

from [57] but the main concern of comparison is the voxel selection method. 

Hence, studies in Table 3 have employed voxels with more than 3 mm in size, while 

our framework utilizes voxels with 2mm size in the MNI152 standard space. On the other 

hand, the other methods are established on Haxby ROIs; the Ventral Stream in the human 

brain. Instead, MFWVS employs anatomical information derived from Harvard Oxford 

Atlas, which includes 96 cortical regions. It is worthy to mention that the major difference 

between the proposed method and the state of methods is in the voxel selection strategy, 

which is crucial in recognizing the visual activity of the human brain. The accuracy rates 

differences between proposed framework and other methods are highlighted Table 3. The 

Dataset Name Brain Region Percent Stimulus Name 
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Left Lateral Occipital Cortex, inferior division 

Left Paracingulate Gyrus 

Left Superior Parietal Lobule 

Right Lateral Occipital Cortex, inferior division 

Right Temporal Occipital Fusiform Cortex 
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7.34 

4.34 
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4.64 

3.73 

Consonant String 

Objects 

Words 

Scrambled Objects 

 

 



Meta Heuristic Voxel Selection 12 

FIGURE 5: Selected voxels locations in 3D image per stimulus 

results, as shown in Table 3, indicate that proposed framework states a superior accuracy 

rate in most cases, except one. 

To investigate the significance of accuracy rates in the proposed framework, a two-way 

ANOVA test has been performed. We assume that the accuracy variables have a normal 

distribution. For each method, the mean and std are used to generate 10000 variables. 

Then, the generated variables from all subjects are put together to form one variable for 

each framework results. The test indicates that MFWVS report has superior accuracy rates 

for DS105 at significance level p=0.001. Furthermore, MFWVS exceeds all other 

methods except [57] for DS107 with one percent variation as shown in Table 3. 

The number of selected voxels have not been reported in the mentioned references, so 

we did not put them in the Table 3 for comparison. But in the previous work of 

Yousefnezhad [56] the number of selected voxels are varied between 100 and 1200. 

 

 
DS105 

 
 
 
 
 
 
 

 
X=31 Y=15 Z=40 

 
DS107 

 
 
 
 
 
 
 
 

X=23 Y=30 Z=26 

 
 
 

Mask of Harvard Oxford Cortical Atlas Mask of Voxels After Filtering Mask of Voxels After Selection 

 

 

 



Meta Heuristic Voxel Selection 13 

TABLE 3 

Comparison of accuracy rates for inter-subjects classification results in both datasets 

5 Concluding Remarks 

This paper provided a novel framework, MFWVS, to discover the informative voxels, 

related to any fMRI task-based dataset. Even neurologists or engineers can utilize the 

MFWVS for neural patterns decoding.  Each process in the framework acts as a piece  of 

mosaic panel. Missing one piece leads to undesired decoding accuracy rate. This 

framework has been tested on two popular fMRI datasets, of object viewing tasks, DS105 

and DS107. MIVS algorithm takes more time to run, especially in the inter-subjects case. 

In this regard, reducing the voxel space is highly recommended before starting wrapper 

voxel selection. The reduction of the voxel space is accomplished in voxel fil- tering 

phase. This task was done by using the localizer’s outputs with anatomical atlas. Multi-

level voxel filtering and selection reduced time-complexity of the whole voxel se- lection 

process. Since the proposed framework depended on the GLM output, this caused some 

restrictions as discussed in [55]. Moreover, if the task timing information about the test 

fMRI images have not supplied, applying MFWVS will be impractical. Voxel post-

processing performed extra refinement on the voxels values and led to improving the 

decoder performance. At the present, no specific rule for determining the main param- 

eters in MIVS, α and β, has been found. Indeed, these parameters were highly subject 

correlated. We have employed Simulated Annealing optimization to find the best values 

of (α, β) to solve this issue we estimated these parameters; the average of them acquired 

from this study. The visualization of selected voxels into 3D brain images helps to un- 

derstand the underlying brain activity and this gives a high advantage to the neurologists. 

The anatomical locations of dense voxels are consistent with anatomical findings in the 

literature, LOC, TOF as shown in related tables such as Table 2. The density or sparsity 

Method 

 

Voxel selec- 

tion type 

 

Voxel selection de- 

tails 

 

Classification 

method 

 

Dataset Name 

 
DS105 DS107 

[8] 

 

Filter 

 

First extraction of 

brain tissue.  One way 

ANOVA test, 

correlation analysis 

multi-class SVM, 

SVD, Linear dis- 

criminant 

 

18.3 ± 4.07 

 
38.01±2.56 

 

[29] 

 

Filter 

 

The intersection be- 

tween Desai Maxi- 

mum Probability at- 

las and GLM func- 

tional activity local- 

izer 

SVM, soft-margin 

classifier 

 

28.72±2.37 

 

68.51±1.07 

 

[39] 

 

Embedded 

 

Specific functional 

ROIs, voxels with 

strong anatomical 

links selected 

Graph based classi- 

fier 

 

50.61±4.83 

 

89.69±2.32 

 

[57] 

 

Filter 

 

Anatomical Pattern 

analysis 

Adaboost multi-class 

 

59.21±2.05 95.61±1.83 

MFWVS (Proposed) 

 
Filter, Wrap- 

per 

 

Both filter and wrap- 

per methods with 

simulated annealing 

multi-class SVM 

 

92.4 ± 9.18 

 

92 ± 8.3 
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of voxels can be noticed clearly by expertise or visualization software like “atlasquery” 

(provided with FSL library) can provide detailed anatomical analysis. The reported ac- 

curacy rates by MFWVS framework are very promising, which supported our hypothesis 

on informative voxels. The experimental results on two popular fMRI datasets indicated 

92.4% in DS105 92% for DS107. The results were very interesting as the data are noisy 

and high-dimensional. Finally, how the brain patterns are varied? To answer this question 

the future work attempts to analyze the connectivity patterns between the selected voxel. 
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Appendix A: fMRI pre-processing 

Before starting FEAT first-level analysis, brain extraction and registration (into 2mm 

MNI152 standard space) are applied on all the fMRI data files. Afterward, the following 

processes (Feat 1st level analysis) are done Figure 6; non-brain structure removal, such as 

skull, neck and eyes, using BET [48]; motion correction using MCFLIRT; spatial smooth- 

ing using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalization of the 

entire 4D dataset by a single multiplicative factor; high-pass temporal filtering (Gaussian- 

weighted least-squares straight line fitting, with sigma=18.0s). The FLIRT achieves the 

registration to structural MNI152 standard space with 2mm resolution. The registration 

algorithm applies normal search in 12 degrees of freedom (DOF) [22, 24]. 

To automate and increase the speed of fMRI processing using FSL, a collection of 

UNIX shell scripts have been implemented. These can operated as general, elastic and 

configurable toolbox for all datasets in openneuro website. 
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FIGURE 6: The pre-processing steps in the proposed framework 

Appendix B: Voxel filtering details 

In summary, cortical regions and GLM statistical maps are our prior knowledge to achieve 

this task. The intersection between them guarantees to select the most important voxels 

in each anatomical region. 

Activity localization 

GLM is a statistical brain activity localizer, which is a soft generalization of linear regres- 

sion to predict the relationship between two scalar variables; the brain activity and outside 

stimulus. The basic GLM is denoted by the following equation, Y = XB + e, where Y is 

the observed time-series fMRI data. X is the matrix of “regressors” which is indicated as 

the design matrix and B contains the parameters to be expected. In our study, we assume 

one regressor for each stimulus type in contrast with other stimuli. Error e is assumed to 

have a normal distribution. Time-series statistical analysis was achieved utilizing FILM 

with local autocorrelation correction [55]. GLM model produces statistic z-score maps 

which are 3D brain images, these images are used to calculate intersections in the next 

step. 

The intersection of atlas and localizer 

The activity related to each object is not only distributed in a predefined area but also   in 

one-third of the whole brain. On the other hand, it is not beneficial to use the whole mask 

of the statistical z-score map due to the processing complexity. Specifying the most 

effective parts is not easy and straightforward. To tackle this problem, we attempt to 

extract the voxels with the maximum z-score in each region of Harvard Oxford Cortical 

atlas. This may ensure that much of the information would be kept by selecting a voxel 

for each stimulus from every ROI in the atlas. The criterion to filter a voxel is not only its 

anatomical location but also its similarity to the specific activity patterns. No threshold 

has been applied on z-scores in each anatomical region. In practice, all values which are 

below the maximum z-score will be neglected. This means that the remained voxels might 
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be changed in each run and even in the same stimulus or in different subjects. The most 

frequent voxels tend to be more informative than the others. 

 

 


