
Rong Yuying (Orcid ID: 0000-0002-7359-0705) 
 
 

Classification of Motor Imagery EEG 
Signals using CSCNN 
Yuying Rong2 | Xiaojun Wu1,2 | Yumei Zhang1,2 

 
1 Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China  
2 School of Computer Science, Shaanxi Normal University, Xi’an, China 

Correspondence 

Yumei Zhang  

Email: zym0910@snnu.edu.cn 

 

ABSTRACT As an important part of brain-computer interface (BCI), the electroencephalography (EEG) 
technology of motor imagery has been gradually recognized for its great theoretical value and practical 
application. In this study, in view of the different motor imagery tasks corresponding active region of the 
EEG signals, we adopt a two-dimensional form including time, frequency and electrode location 
information, then we design a classification method containing continuous small convolution of 
convolutional neural network (CSCNN). This method is mainly used for feature extraction through 
continuous small convolutional kernels and one rectangle convolutional kernel, and the softmax classifier 
for classification. In the experiment, classification accuracy and kappa value are used as evaluation 
criteria to verify the effectiveness of the method proposed in this paper. For classification accuracy, BCI 
competition IV dataset 2b is used to compare with the other five classification methods (CNN, CNN-
SAE, SAE, SVM and 1DCGRU). The results demonstrate that the overall accuracy of CSCNN is higher 
than other methods, and CSCNN obtains an average accuracy of 82.8%. For kappa value, BCI 
competition IV dataset 2b is used to compare with the other three methods (FBCSP, Twin SVM and 
CNN-SAE). The performance of CSCNN is better with an average value of 0.663. Overall, the results 
show that CSCNN maintains a small number of parameters and improves the classification accuracy. 
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1 | INTRODUCTION 

Brain-computer interface (BCI) is a new type of information transmission between the brain and the 
external device. By collecting electroencephalography (EEG) signals which then go through a series of 
signal analysis and process algorithms, the brain information is finally turned into the control commands 
that the output device can understand, which achieves the control of the human brain to the external device, 
such as the movement of the cursor and the grasping of the robot arm[1-3]. BCI can not only be used in the 
engineering and entertainment, but also play a more important role in providing communication for locked-
in patients to the outside world [4]. 

Motor imagery (MI) EEG processing technology is an important part of the BCI, mainly involving 
spontaneous EEG which are characterized by spontaneous electrical activity of neurons in the sensorimotor 
cortex without fixed waveforms [5]. The spontaneous EEG frequency varies from 1 to 30 Hz and is mostly 
divided into four frequency bands: alpha (8-13Hz), mu (8-12Hz), beta (14-30Hz) and theta (4-7Hz) [6]. 
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Different MI tasks can cause changes in the specific frequency band of the sensorimotor cortex. So, we use 
the frequency referred to the MI tasks as control signals for MI EEG identification and classification. 

Common spatial pattern (CSP) is most commonly used in signal feature extraction because it can 
synchronously utilize the spatial correlation of EEG signals and is suitable for processing EEG multi-
dimensional signals [7]. Linear discriminant analysis (LDA) and Support vector machine (SVM) algorithms 
are used in different researches to classify the obtained one-dimensional signal features [8-9]. 

Recently, the neural networks have become popular in BCI to discover the unknown correlations. For 
instance, a 5-layer CNN which composes the feature extraction is applied for classifying MI tasks [10], but 
the key temporal information is not used in its method. Jin Zhang et al. [11] proposed a method combining 
LSTM and CNN, which made a great improvement than CSP. An et al. [12] studied a more powerful deep 
belief network (DBN) is constructed by borrowing the Ada-boost algorithm, aiming at classifying EEG 
signals. Phothisonothai et al. [13] proposed a method of classifying EEG by a three-layer feed-forward 
neural network based on a simple backpropagation algorithm. Recurrent Neural Network (RNN) model 
such as GRU is more suitable for processing the sequence data. However, the RNN model does not consider 
the spatial combination of the EEG data [14]. 

Convolutional neural network (CNN) is widely applied due to good spatial locality and certain degree of 
translation invariance [15]. However, in reference [16], the constructed CNN has too many parameters and 
the accuracy of classification at limited time needs to be improved. Therefore, we employ continuous small 
convolution of convolutional neural network (CSCNN) to classify MI EEG. 

In this paper, the input form combining time, frequency and electrode location information is introduced. 
mu band (4-14Hz) and beta band (14-32Hz) are selected, and the short time fourier transform (STFT) 
method is used to obtain the frequency domain information of C3, Cz and C4 electrodes respectively. Then 
the frequency domain information of mu and beta bands in three electrodes are combined as the vertical 
axis as well as the time are plotted as the horizontal axis, which obtains the two-dimensional feature matrix. 

In our approach, CSCNN is proposed in order to improve the performance of classification in MI tasks. 
In addition, in consideration of the computational cost, we use continuous small convolution kernels which 
can reduce the number of parameters. The overall EEG signals processing and classification process is 
shown in figure 1. 

2 | MATERIALS AND DATA PREPROCESSING 

2.1 | Data description 

The experimental data in this paper are derived from BCI competition IV dataset 2b, which records the 
left/right hand MI tasks. The dataset consists of EEG from 9 subjects. The subjects were right-handed and 
had normal or corrected vision. All of the volunteers sat in armchairs, looking at a flat screen monitor 1m 
from their eyes. Each subject participated in sessions for five times. The first two training sessions contain 
two types of imagery and each type of imagery contains 60 trials. Each of the other three sessions includes 
160 trials. EEG data were recorded by three electrodes (C3, Cz, C4) at sampling frequency of 250Hz. In 
each trial, 1-2s is task-free stage, and 3-7s is MI stage. 

In this paper, in order to employ the change in signals, we use 3-7 seconds of EEG signals to compare 
with mean value of 0-2 seconds of EEG signals before the MI task started. 2-second segment in one trial is 
used as the sample. 50 points of data are used as sliding window to slide forward to select the piece in the 
MI stage (3-7s). So one trial takes 11 pieces. 2-second segment of three electrodes (C3, Cz, C4) is shown 
in figure 2. 

2.2 | Two-dimensional form generation 

When people doing unilateral limb movements (such as the right-hand movement), corresponding to the 
side and the left-brain cortex regions of the amplitude of mu (8-12 Hz) and beta (18-23 Hz) will significantly 
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reduce. At the same time corresponding ipsilateral brain and right brain cortex area of the amplitude of mu 
and beta bands will increase. This phenomenon is known as the event-related desynchronization / 
synchronization (ERD/ERS) [17]. More importantly, ERD/ERS also occurs when a person relies solely on 
imagination for unilateral limb movement. And the phenomenon involves both EEG signals at the C4 and 
C3 electrodes. Cz is also affected by hand movements. 

EEG signal analysis methods are similar to speech signal, the common analysis methods are mainly to 
extract features of frequency domain and time domain information. Then the feature vector of each 
electrode calculated are summarized into one feature matrix as the input of the classifier. However, these 
methods obviously ignore the electrode position information. The brain is a complex structure, and it is not 
enough to process and analyze EEG signals. Therefore, time, frequency and location information are 
combined into two-dimensional form as input data to analyze in this paper. 

The 2-second segment of each electrode contains 500 sample points. The window size of STFT is 64 and 
the time lapses is 14, so the length of time axis in the feature matrix is 32. In order to obtain Nfr*32 image, 
where Nfr is the size of the vertical axis. STFT is used to process time series. Then the frequency bands 
(mu=4-14 Hz and beta=16-32 Hz) were extracted from the output spectrum. And the cubic interpolation 
method is adopted for beta band, and the spectrum of C3, Cz and C4 electrode is combined to obtain 
Nfr=132. 

3 | CLASSIFICATION METHOD 

3.1 | Convolutional networks analysis 

CNN is a kind of feedforward neural networks, which is very suitable for the extraction of two-dimensional 
features and close to the real biological neural network.  
The basic structure of CNN mainly includes five parts: input layer, convolutional layer, pooling layer, full 
connection layer and output layer [18]. The convolutional layer is the core of CNN which is responsible for 
most of the calculation. The convolutional layer uses the convolution kernel of a specific size to convolve 
with the input image of the previous layer to obtain multiple feature maps. Inspired by [19], by the proper 
convolutional kernel decomposition can obtain similarly expressive local representations and speed up the 
training. Therefore, this paper adopts continuous two-layer convolutional kernels instead of larger 
convolutional kernels to feature extraction. Because the larger convolution is usually computationally 
expensive, for example, a 55 convolution with n filters is 25/9=2.78 times more computationally 
expensive than a 33 convolution with the same number of filters on a grid with m filters [19]. Although 
the 55 filter has a stronger ability to capture information. In order to balance calculation cost and 
information loss, we use 33 convolution for decomposition. 
In recent years, going deep greatly improves the learning/fitting ability of the whole network, but at the 
same time increases the model size and computing cost [20]. In this paper, considering the cost problem, 
we adopted fewer layers. Besides, a gradual reduction in the representation size is used to avoid mass loss 
of information. 

3.2 | CSCNN framework 

Based on the above analysis, we adopt continuous small convolutions replacing single large convolution to 
maintain the range of the receptive field while reducing the number of parameters. A CSCNN model is 
shown in figure 3. The network is described as follows: 

Input layer: the input form is a 13232 matrix which contains three EEG feature information of time, 
frequency and location. 

Two convolutional layers: this part includes two continuous 33 convolution kernels in order to increase 
the local perception of EEG signal features. Both convolution layers are 10 filters. After two convolution 
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operations, 10 feature maps are obtained, each of which has a size of (12828). The k th feature map at a 
given layer can be described as  

( ) (( * ) )k k
ij ij kh f a f W x b= = +            (1) 

where x  is the two-dimensional form of MI EEG. kW  is the weight matrix for filter k  and kb  is the 
bias value, for k =1, 2, …, (number of filter)NF. j  is equal to 1 and i  = 1, 2, ..., 30. The output function 
f  is selected as rectified linear unit (ReLU) function. ReLU is defined as 

( ) ReLU( ) max(0, )f a a a= =             

(2) 

The max-pooling layer: this layer aims to MI EEG feature selection and prevention of overfitting. We 
use max pooling in this layer and the size of sampling factor is 44. So the size of output maps of this layer 
are subsampled into 327. 

The convolutional layer: we used 30 convolution kernels with rectangle size of 283. Our aim is to 
discover more feature information along the vertical axis. 

The max-pooling layer: the subsampling layer. The size of the sampling factor is 55. 
The fully connection and softmax: each neuron in fully connection is connected to each neuron of the 

output of the max-pooling layer. The softmax classifier is used as prediction of left/right hand MI EEG 
tasks. The softmax is defined as 
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where n  is the number of classification label, in this study, the categories mainly involve the left and right 
hands, so n  is equal to 2. iz  is the value from fully connection output. 

The output layer: the left/right hand classification results can be obtained. 

4 | EXPERIMENTAL RESULTS AND DISCUSSION 

BCI competition IV 2b is used to evaluate our method. Each subject we use has three sessions containing 
400 trials. The first two sessions contain 240 trials, and the third session contains 160 trials. Electro-
oculogram (EOG) and other noises existed in each trial were not removed. 
In this study, the experiments are computed by MATLAB, and the operating environment is an Intel 3.7 
GHz Core i7 PC with 32GB of RAM. 

In the data preprocessing, we set the time interval to 50 sample points, and the EEG signals of 2s length 
is evenly extracted from 3-7s. Then processed by STFT, the input images containing time, frequency and 
pole information is constructed. In the CSCNN method, we use the network of continuous small 
convolution kernels and one rectangle convolutional kernel. For 500 epochs, the effect of batch size on 
accuracy is shown on Figure 4 with the average time. It can be seen from figure4 that the accuracy is high 
when the batch size equals 30 at the minimum running time. In this study, we select batch size of 30. In 
each session, 90% trials are selected randomly as the training set and the remaining 10% are selected as the 
test set. 

Table 1 shows that CNN has more than twice as many CSCNN parameters as our method. The CNN 
compared has one convolution layer and one max-pooling layer from reference in [15]. Compared with the 
1323 convolution kernel in the one convolutional layer of CNN, CSCNN is added two 33 convolution 
kernels, which increases the receptive field, reduces the difficulty of training and avoids overfitting caused 
by too many parameters. 
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We compare the accuracy of CSCNN with CNN [16], CNN-SAE [21], SAE [21], SVM [21] and 
1DCGRU [22]. In 1DCGRU network, it is a variant of LeNet-5, and the last two fully connected layers is 
instead of the GRU network. As can be seen from the table 2, the average accuracy result of CSCNN is 
higher than other four methods, with an average improvement of 82.8%. The best result was in bold front 
for every subject. It can be clearly found that the classification accuracy of subject 1,2,6,7,8 perform better. 
This indicates that CSCNN obtains the effect in reducing information loss in term of extracting feature. 
Compared with CNN-based models, SAE and SVM is weaker in feature extraction. So, it can be obvious 
seen that SAE and SVM are both lower than CNN-based models in average accuracy. Among them, 
CSCNN in subject 2 has obvious advantage with 22.8% higher than another best result. This suggests that 
CSCNN improve extraction capacity of indistinct feature. However, in subject 4, the performance of CNN-
SAE achieves the best, but the accuracy of our method is only 2% lower. In subject 5 and subject 9, the 
accuracy of the CSCNN is very close to that of the best-performing 1DCGRU. And CSCNN has poor 
performance in subject 3, although the accuracy result is much higher than the SAE. Overall, it is clearer in 
the figure 5 that CSCNN performs better overall than the other five models from subject 1 to subject 9. 

In addition, we introduce kappa value to measure the classification accuracy by removing the influence 
of random classification accuracy. Kappa is calculated as below: 

kappa
1
a r

r
−

=
−

             

(3) 

where a  is the overall classification accuracy and r  is the rate of theoretical consistency.  
Table 3 summarizes the kappa value for the 9 subjects. Kappa value varies from 0 to 1, and the higher 

kappa value indicates the better model consistency. The best kappa value was highlighted with bold front. 
Compared with FBCSP [7], Twin SVM [23] and CNN-SAE in table 3, it easily suggests that the proposed 
CSCNN method outperformed in most subjects. On the average, there is a significant improvement in the 
CSCNN at 11.6% over the other method. From figure 6, CSCNN has better classification accuracy. 

5 | CONCLUSION 

In this study, we propose a CSCNN which mainly consists of two continuous small convolutional kernels 
and one rectangular convolutional kernel to improve performance of classification for motor imagery based 
BCI. In our network structure, the existence of small convolutional kernels cuts down the number of 
parameters which reduces the difficulty of training and avoids overfitting caused by too many parameters. 
And one rectangular convolutional kernel helps to obtain more spectrum feature information along the 
vertical axis. In addition, two-dimensional form of MI EEG combining time, frequency and electrode 
location information is used as the input of CSCNN. Finally, the proposed method is evaluated by the public 
dataset (BCI competition IV 2b). For the accuracy, the results show that our method is superior to others. 
Although the accuracy of subject 3, 4, 6, 9 is poor, it is close to or even above the average of other four 
advanced methods. Besides, in the assessment of kappa value, CSCNN demonstrates good consistency and 
significantly outperform other methods with an average value of 0.663. 
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