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ABSTRACT 

Brain tumors are one of the most dangerous medical conditions. The dispersed extremities 

and non-uniform structure of the tumors are the basis of why techniques of traditional 

segmentation have grown to be inefficient. Magnetic Resonance Imaging (MRI) is one of the 

most widely used scanning procedures for tumors. However, to ameliorate the survival rate, 

the detection of tumors alone does not suffice, and there are other effective procedures. One 

of the most pivotal procedures for diagnosing the condition is the process of the brain tumor 

segmentation is a laborious and cumbersome process. As a result, a Deep Learning (DL) 

based solution is used to extract tumor subregions like Enhancing Tumor (ET), Tumor Core 

(TC), and Whole Tumor (WT). The proposed model involves novel DSDU-Net: Depth-wise 

Separable Dense U-NET (DSDU-NET) that precise outputs are acquired by retaining the 

low-level features. In the preprocessing stage, a methodology called Multi-Scale Patch 

extraction is used to segregate tumor regions, and a grouping of Gaussian Filter, Unsharp 

Masking, and Histogram Equalization is carried out on the data set to get significantly better 

performance.The proposed DSDU-NET network performed better in terms of performance, 

specificity, sensitivity, dice similarity index, and Hausdorff Distance for segmented image 

sub-regions when validated on BraTS 2018 and 2019 datasources When particularly in 

comparison to other models. 

   

Keywords :  Brain Tumor Segmentation; Depthwise Separable Convolutional Networks; 

Whole Tumor (WT); Tumor Core (TC); Enhancing Tumor (ET) 

 

 

1. INTRODUCTION 

Gliomas and braintumors are the leading causes of death in several countries. Two processes 

play the most significant role in treating brain tumors, diagnostics and growth prediction, 

automatic segmentation, and classification of medical images. The early diagnosis of brain 

tumors infers a quicker reaction to treatment, which ensures an improved survival rate of 

patients. In large medical image databases, the classification and location of brain tumors 

performed regularly as a clinical procedure by manual methods proves to have a high cost in 

both time and effort (Díaz-Pernas et al, 2021). A brain tumor is found to be a pervading 

reason for death due to cancer. More than 70000 citizens have tumors in their brains (20% 

malignant and 80% benign) in the USA. In 2020, around 18020 deaths due to malignant 



 

tumors of the brain and 23890 malignant brain tumors were estimated by the American 

Cancer Society (ACS) for brain tumors. Therefore, Tumor treatment planning and diagnosis, 

precise and accurate quantitative methods, and segmentation of brain tumors are necessary. 

Hence, the automatic indication, position, and classification procedures are advantageous and 

valuable (Nassar et al.,2021). Tumors are divided into two categories: primary & secondary. 

Tumors that develop from the brain cells are called primary brain tumors, and secondary 

tumors are formed by metastasizing into the brain from various other parts of the body. 

Gliomas develop from the brain's glial cells, which is the most occurring type. Gliomas are 

graded from grade 1 (lowest grade) to grade 4 (highest grade) relying on histopathologic 

features such as cytological atypia, anaplasia, mitotic activity, microvascular proliferation, 

and necrosis, according to the World Health Organization (WHO). Grades 1 & 2 are also 

known as Low-Grade-Gliomas (LGG), and they are prone to developing slowly. High-Grade-

Gliomas (HGG) is another name given to Grade III and IV, which are fierce and cancerous 

(Wu et al., 2020) and generally require surgery and/or radiotherapy, having ominous survival 

prediction (Myronenko, 2019). 

The MRI is a non-intraoperative and extensively favored method utilized by radiologists to 

provide complicated and detail-oriented brain images. Hence, it is widely utilized for the 

preliminary characterization and prognosis of tumors. In addition, the MRI could be used to 

segment brain tumors and provide information about the tumor, such as its location for 

biopsy sampling, which leads to tumor grading by a pathologist and its size and shape. 

During acquisition, an MRI produces several image slices (hundreds) in 2D that have high 

contrast for soft tissues without ionizing radiation. Generally, four significant methodologies 

are used in MRI diagnosis. They are as follows: T1-weighted MRI (T1), Fluid-Attenuated 

Inversion Recovery (FLAIR), T1-weighted contrast-enhanced MRI (T1-CE), and T2-

weighted MRI (T2). Every individual modality provides scans that have various tissue 

contrasts; therefore, some modality is further complementary to explore a particular type of 

tissue compared to others. Different glioma tissues are contemplated by different sequences 

of the MRI (Zawish et al., 2019). T1 images are predominantly employed to study healthy 

tissues. T2 modality is more applicable to indicate boundaries of regions of edema. T1-CE 

sequence accentuates borders of tumor. It is appropriate for the observation of the tumor core 

and its active components. FLAIR modality aids in indicating the regions of swelling in CSF. 

T1-Ce is sufficient if the goal is to process brain tumor location and classification using MRI 

(Díaz-Pernas et al, 2021). Multi-modal MRIs provide additional information for tumor 

analysis because they can reveal glioma’s sub-regions.Nevertheless, manual depiction is not 

very efficient in most medical and clinical progress as it is considered to be slow-moving and 

burdensome, which is also influenced by the equivocation of accurate interpretations (Luo et 

al., 2021).  

Various methods have been explored for brain tumor segmentation throughout the literature. 

These methodologies can be classified as deep learning methods (Serte et al., 2020).  and 

traditional methods (generative or discriminative).Generative methods utilize atlases of 

healthy tissues (atlas-based models) to fragment the unspecified tumor segments on test 

images, with the favor of previous knowledge, e.g., the spatial extent and location of healthy 

tissues. For volume pixel categorization, it uses back-end probabilities, as well as image 

registration for tumor segmentation (Naser & Deen, 2020).Discriminative methods seek to 



 

extract discriminative features; subsequently, classification is performed by a 

classifier.Discriminative models, including SVM and random forests, classify voxels using 

imaging features obtained from the MRI instead of accurate MRI data.   

There are certain limitations associated with the works done previously. They are:   

 Present generative methods have computationally expensive registration tasks, which 

are considered an impediment. Further, the in-built atlas might not be able to 

showcase the population of images. 

 Present discriminative methodologies have their limitations from lack of features that 

could showcase brain cancer, which leads to lesser accuracy of prediction. 

Since segmentation of tumors manually is a tedious and slow-paced process, automatic 

segmentation employing the Computer-Aided Diagnostic (CAD) system is utilized to assist 

the radiologists in performing the task of segmentation of brain tumors. (Nassar et al.,2021). 

Glioma segmentation and the abnormal tissues surrounding them based on MRI facilitates a 

physician's observation of the outer structure of each malignant cell of a patient's glioma and 

the physician's assessment and post-treatment based on imaging. As a result, segmenting the 

glioma is considered the first step in the MRI-based examination. (Zawish et al., 2019)  

This paper proposes a novel U-Net-based design. It employs diverse U-net blocks in order 

to detain data at various resolutions of long-distance spatial information. Extraction and 

utilization of sufficient features have been done by upsampling feature maps with varying 

resolutions and assuming that it is easier to learn and process similar features. Furthermore, 

Depthwise separable convolutional networks have been used rather than conventional 3D 

CNN to reduce computational costs. The following are the highlights of our accomplishments 

in this study: 

1. The model was designed using DSDU-Nets and multiscale patches that extract 

features by upsampling feature maps at different resolutions. 

2. Obtaining lengthy spatial data at various resolutions using DenseU-Net blocks. Time 

and space complexity has been reduced by using separable convolutional neural 

networks.  

3. Final results are obtained from comparisons of BRATS Datasets. 

 

Structure of the paper: 

The remaining part has been organized as Section 2 summarises the existing DL models of 

brain tumor-segmentation. Third section introduces methodologies. The dataset and 

performance metrics are discussed in fourth section. Section 5 summarises the findings and 

analysis. At the end of the paper, Section 6 outlines concluding remarks. 

 

2. RELATED WORKS 

Several studies have been conducted over the years for brain tumor sub-regions 

segmentation. For example, in a paper by Myronenko et al., they proposed a CNN 

architecture predicated on the encoder-decoder framework with asymmetrical components. A 

larger encoder is in charge of FE, while a smaller decoder is in charge of segmentation mask 

reconstruction. (Myronenko, 2019).  



 

In this paper, the features are extracted and classifies in skin lesions using support vector 

machines based on AlexNet and VGG-16 models. It obtained area of curve values of 98% 

and 97%. (Almezhghwi et al., 2021) 

 

Isensee F. et al. projected a 3D U-Net framework whose encoder section was similar to the 

conventional CNN classification. U-Net recovers the spatial information lost during 

information aggregation by CNN through the decoder. Through skip connections, essential 

data from  'U' base is combined with higher resolution feature maps acquired from encoder. 

(Myronenko, 2019) 

           McKinley introduced a new set of classifiers, (McKinley et al., 2019) This model was 

based on DeepSCAN. The architecture that consisted of several blocks of densely connected 

dilated convolutions was trained with the help of a novel loss function. Another work done by 

Zhou, C. et al. had explained about the use of several deep learning models for capturing 

attentive and contextual information. The predictions made from these models were 

eventually used for obtaining precise results in Segmentation. Thus, the problem of 

overfitting in Segmentation was significantly decreased (Zhou et al., 2019). Bacanin et al. In 

this paper, an automatic image classification system is developed to classify glioma brain 

tumor. the proposed convolutional neural network model implies hyperparameters’ 
optimization using modified firefly algorithm to get optimal solution. (Bacanin et al., 2021) 

 

           A default end-to-end multi-label learning for dense volumetric Segmentation was 

conducted by Z. Luo et al. A 4-channel input with a concatenated set of images from several 

imaging modalities is given to the model. At the heart of the 3D segmentation model is an 

HDC-Net that essentially works with 2D convolutions (Luo et al., 2021). A multi-planar 

ConvNet model was also introduced by Banerjee S et al. for sub-regions segmentation 

automatically. The structure of the tumor body was better analyzed using spatial max pooling 

and unspooling layers. Upsampling has been used for minimizing errors during Segmentation 

around the tumor boundary (Banerjee & Mitra, 2020). Two-block cascaded U-Net with 

variational autoencoder for Segmentation as an attempt at better Segmentation (Jiang et al., 

2020). 

A variation of 3D CNN, CANet was proposed by Pei L et al., Segmentation of brain tumors. 

Its front end of CANet was used to extract HD features, and linear regression was used to 

make a complete survival prediction (Pei et al., 2020b). A 3D unit structure with several 

hyperparameters was introduced by Feng et al., which consisted of pre-processing, patch 

extraction, and training of several CNN models. Each model was deployed for volume 

prediction and final ensembling (Feng et al., 2020). Oday Ali Hassen et al. introduced a 

model that uses level set segmentation and Artificial Bee Colony optimization to satisfy 

parameters that could help detect brain tumors (Ali Hassen et al., 2021). Segmentation of 

brain tumors was also achieved by Bayesian active learning and GAN networks by Alshehhi, 

R. et al., (Alshehhi & Alshehhi, 2021).  

A model based on multi-scale prediction with 3D U-Net where feature extraction takes place 

in the encoder part of the network and downsampling by ReLU was proposed by Chen M et 

al. (Chen et al., 2020). Muti-resolution features derived by the decoder were then aggregated 

to give the final segmentation result. Hamghalam M. et al. proposed a model that segmented 



 

was fed with MR volume, I ∈ R H×W×D, based on labels S ∈ {1, 2, ..., c} H×W×D, in which 

outcomes are given by c. H stands for spatial height, W for spatial width and D for spatial 

depth (Hamghalam et al., 2020). A model that segmented brain tumors was also created using 

multimodal 3D magnetic resonance (MR) volumes made from synthetic images.3D FCN was 

used for segmentation in a model developed by Hamghalam M et al., (Kim et al., 2020). Li X 

and colleagues propose using a multi-levelcascaded network for precise brain tumor 

segmentation in a separate study.Their network architecture consisted of three major 

components: a 3DU-Net architecture with deep supervisions, as well as a multi-levelcascaded 

network. (Li et al., 2020). 

 

Summary: 

Existing deep learning methods for brain tumor's segmentation that use CNN incur significant 

computational and training costs. The selection of the correct number of neurons per layer 

and the ideal number of total layers is a frequently debated problem (Nassar et al., 2021). 

Although several models show satisfactory overall performance, not many models have 

achieved peak accuracies on segmentation tasks (Luo et al., 2021). Furthermore, most 

methods are time-consuming and only improve the results slightly (Jiang et al., 2020). A 

novel method that successfully overcomes this limitation has been proposed in this paper. 

 

3. Methods and Materials 

3.1 Overview 

The proposed deep learning method has three stages: First, Pre-processing using image 

processing methods, patch extraction, and segmentation into corresponding tumor sub-region. 

Gaussian filters have been used to remove noise and to smooth the image. Second, brightness 

enhancement by normalization of image intensity distribution is done using histogram 

equalization, and edge enhancement is improved by unsharp masking. Third, corruption of 

images due to magnetic fields is corrected by bias removal. Further, N4ITK is used for 

intensity correction. Finally, normalization is done as the last step in pre-processing.  

Pre-processing is followed by multi-patch extraction. First, the images are resized, and the 

tumor's portion is extracted from the MRI image. The patch extracted images are then fed 

into the Depthwise Separable CNN model combined with Dense U-Net. This portion of the 

network isolates the different subregions in the tumor and gives the output in ET, TC, and 

WT.     

 

 

3.2 BraTS Database 

BraTS(BrainTumorSegmentation)database contains MRI-images of brain-tumors acquired 

from-various imaging equipment and under different imaging protocols. They were collected 

from several health centers under standard clinical conditions. The images were of varying 

qualities and segmented manually on the scale from 1 to 4 based on the same annotation 

protocol.  Three sub-regions were used for evaluation purposes -  

a)    The active tumor or the tumor that is enhancing (ET). This section describes the 

areas where contrast discharge occurs, indicating a breach in the blood-brain 

obstruction. (Pei et al., 2020a). 



 

b)   Tumor core (TC) comprises necrotic tissues as well. The tumor core is the part 

that is most commonly resected during surgeries.  

c)    The whole tumor (WT), which is the complete tumor. This label is the union of 

all labels in the dataset. Since the invaded tissue also consists of tumor cells and 

edema, it is also taken as a section in WT.  

The parts of the active tumor that show hyper-intensity in T1Gd compared with T1 and when 

compared with ‘healthy' whitematter tissue in T1Gd are classified. The tumor substance that 
is commonly resected is usually denoted by TC. The enhancing tumor, necrotic, i.e., fluid-

filled, and non-enhancing section of tumor entail the tumor core. Necrotic and the non-

enhancing tumor core appearance is usually hypo-intense in T1-Gd in comparison to T1. The 

whole tumor entails TC and  ET, i.e., peritumoral edematous/invaded tissue (ED). This is 

usually highlighted in T2-FLAIR by a hyperintense signal. The ground annotations of these 

images were created by several experts and were then approved by experts in the domain. 

The annotation styles were slightly different for each rater through a particular and detailed 

annotation protocol was described to the institutions from where the data was acquired. As a 

result, a domain specialist of over 15 years experience in neuroradiology was appointed to 

review the final labels for compliance and consistency with the annotation protocol. (Bakas 

al., 2018).  

 
Figure 1. Samples from the BRATS 2018 dataset. Flair, T1, T1ce, T2 (From left to right) 

 

The current architecture has been assessed using the standards of BraTS of 2018 and 2019. 

The dataset contains MR scans obtained from 4 modalities – T2, T1, T1ce, and Flair, and 

their respective segmentation maps. Segmentation is done with four labels - 1, 2, 4, and 0-

non-enhancing tumor core (NCR/NET), peritumoral edema (ED), and ET. For validation, 

MRI data were taken from datasets.(comparable to the training dataset but without 

segmentation.)  They were placed in same location that used the same MR volume matrix (X, 

Y, Z = 240 × 240 × 155) [15]. The BraTS 2018 dataset consisted of 285 images, while the 

BraTS 2019 dataset consists of 355 cases (Zhao et al., 2020).  

 

3.3 Pre-processing  

Better quality images are obtained by pre-processing the data set using Unsharp 

Masking, Histogram Equalization, and Gaussian Filter. Normalization, bias removal, and 

standardization are also carried out before the data is sent for segmentation. Bias field created 

due to the inhomogeneity of magnetic fields is removed by bias removal. This signal with a 

low frequency degrades MRI images and distorts frequencies of a higher range. The N4ITK 



 

algorithm is used for correction, which is an extension of N3. The pixel intensity range is 

changed during normalization. The mathematical representation of this process is given 

below.  𝐼𝑛𝑒𝑤 =  (𝐼 − 𝑀𝑖𝑛)(𝑀𝑎𝑥𝑛𝑒𝑤 − 𝑀𝑖𝑛𝑛𝑒𝑤)𝑀𝑎𝑥 − 𝑀𝑖𝑛 +  𝑀𝑖𝑛𝑛𝑒𝑤                             (1)  
where , 

 

Inew represents new-pixel-value, Max reresents old-maximum-value, Min:represents old-

minimum-value, I represent old pixel value, Maxnew represents new maximum value, and 

Minnew represents new minimum value. 𝐼𝑛𝑒𝑤 = 𝐼 − 𝜇𝜎                                                                                                (2) 

where, Inew stands for new-pixel-value, μ denotes image-set average and σ is the image set 
standarddeviation(SD). 

Patches of N×N are also normalized after normalization of individual slides before testing 

and training. This is done so that they maintain zero mean and unit variance after pre-

processing has been completed. 

 

3.4 Multiscale patch extraction 

 Images in the dataset are extracted in patches. The windows are of dimensions w × h 

with s as the stride for both original and resized images. The patch size is set to 224 x 224 

since the DenseUNet model. The range of extracted clusters from data with a size of H × W 

is represented as follows: 𝑁 = (⌊𝑊−𝑤𝑠 ⌋ + 1) × (⌊𝐻−ℎ𝑠 ⌋ + 1)                                                (3) 

 

Here⌊𝑁⌋represents rounded-down. Also,intensities are again set to unit variance, and 

zero mean. Two data augmentation techniques that raise the diversity and size of the dataset 

have been introduced. This also helps in resolving the problem of overfitting. Each patch is 

converted into 8 patches by amalgamating 𝐾. 𝜋2 rotations, Where 𝐾 = {0,1,2,3, }. Vertical 

reflections may or may not be present at this step. The patches are also processed with 

perturbations. Thus, we have about 259200 patches ready for training by the model, which 

allows it to learn mirroring invariant, and rotation invariant representation of images. 

 

 

3.5. Depthwise Separable CNN 

The Depthwise Separable CNN is formed from two convolutions - depthwise and pointwise. 

A convolution is carried out on every input volume in a depthwise convolution while the 

depthwise convolution outputs are merged using the pointwise convolutions (Alalwan et al., 

2021). Depthwise separable convolution has been utilized here rather than the traditionally 

used convolutional networks since they reduce computational costs. Two filters have been 

used to break down a traditional convolution - filters are first applied to each channel and 

then a 1 × 1 × 1 filter to combine all the output feature maps point-by-point. These operations 

are performed on the assumptions that the input features are of shape D × D × D, no. of input 



 

and output channels is denoted as M and N, and K × K × K denotes size of convolutional 

kernel. When N convolution kernels tracks the data in M streams in a conventional 

convolution, feature maps of M×N are generated.. Eventually, feature maps (M) are 

superimposed with their corresponding maps, and a feature map is obtained. Thus, the N 

output channels that are required are obtained. This process is depicted in the figure below. 

The cost of computation of the process is: K × K × M × N × D × D  

M feature maps are created when different filters are applied to each channel in the depth-

wise separable convolution. The feature maps(M) are then point-by-point linearly combined 

by 1 × 1  filters. The number of N output channels that are required is achieved. Figure 6 

depicts the procedure. The process's computational cost is  : 𝐾 × 𝐾 × 𝑀 × 𝐷 × 𝐷 + 1 × 1 × 𝑀 × 𝐷 × 𝐷 

We get ( ) by using ( ) dividing ( ): 

 𝐾 ×𝐾×𝑀×𝐷×𝐷+1×1×𝑀×𝐷×𝐷𝐾 ×𝐾×𝑀×𝑁×𝐷×𝐷 = 1/N + 1/K3 

 

 The kernel size is traditionally 3 × 3 × 3and number of available channels N is 16, 32, 

64, 128, etc. Decrease in the computational costs can be seen as well after this process (Peng 

et al., 2019). 

 

3.6. Dense U-Net 

The DenseUNet architecture is composed of repeated blocks of DenseNet networks. Each of 

these blocks has varying output dimensions with links connecting each succesive layer. 

Maximum flow of information is achieved by these connections between each block that 

improves convergence to an ideal solution. We make the assumption that 𝐼 ∈  𝑅𝑛 ×(224×224)×𝑐𝑛 

Ground-truth classifications for training images (for 224224 input volume) are as follows: 𝑌 ∈  𝑅𝑛 ×(224×224)×1 

The input batch size is denoted by n, and the channel is represented by the last dimensioncn. 

A class c can be assigned to each pixel (i;j;k) (brain,tumor and background), i.e., Yijk = c; and 

thus segmentation for brain and tumor by the DenseUNet is; 

 𝑋 = 𝑓(𝐼, Ɵ); 𝑋 ∈ 𝑅𝑛 ×(224×224)×64 �̂� = 𝑓(𝑋, 𝜃), �̂� ∈ 𝑅𝑛 ×(224×224)×3 

 

The pixel-wise outcomes for the input data I are denoted by X, and the final up-sampling 

layer's (Fifth layer; refer Figure. 2) feature vector is denoted by Y. Let theta represents model 

parameters such as convolution weights and bias conditions of ReLU. Upsampling and 

transition blocks, activation layers, batch normalization layers with pointwise and depthwise 

convolutional layers are among the layers in the model. The transition block decreases the 

number of characteristic vectors. BN layer, 1x1 convolution layer & convolution layer of 

stride 2 make up the transition block. Expansion of feature maps was prevented by setting the 

compression factor to 0.5. A bilinear interpolation layer makes up the upsampling blocks. As 

a result, a set of low-level functionalities, such as UNet connections and a 3x3 convolutional 



 

layer, are added from dense blocks exact reverse of current block. Broader and deeper 

networks are created using the BN layer, contributing to the network's success. A rectified 

linear unit (ReLU) layer is implemented by the activation layer. These layers are executed 

after each convolutional layer. The ReLU layers ensure optimization of the model and 

enhancement of its performance.  

3.7. Loss function 

Precise learning of parameters and features from the images in the dataset, function loss is 

minimised. This function was used as weighted-crossentropy and is represented below: 

𝐿(𝑦, �̂�) = − 1𝑁 ∑ ∑ 𝑤𝑖𝑐𝑦𝑖𝑐 log �̂�𝑖𝑐3
𝑐=1

𝑁

𝑙̇=1
 

 

Here, the probability of ground truth is represented by 𝑦𝑖𝑐, while byci gives prognosticated the 

probability of volume pixels i belonging a certain class-c (background, brain tumor) & the 

weighting factor of each class is represented by 𝑤𝑖𝑐. (Alalwan et al., 2021) 



 

 
Figure 2. Semantic Brain & Tumor Segmentation using the proposed DSDU-Net Framework. 

 

4. Experiments and Results 

The experiments and model validation was carried out in a Python environment, utilizing 

keras, TensorFlow as a backend and implemented using Googlecolaboratory with specified 

data. 

4.1.Performance Evaluation Metrics 

The Designed network is validated using training&validation database. Evaluation results 

used include Hausdorfdistance , DiceScore, specificity&sensitivity for WT, TC, and ET. 

These are defined below: 



 

4.1.1.Dice Similarity Coefficient.  

 Performance of semantic segmentation is typically evaluated using Dice score (Dice) 

or Dice Similarity Coefficient. It is the extent to which provided ground truth (GT) and the 

predicted masks (PM) overlap spatially. The mathematical definition is as follows: 

 𝐷𝑖𝑐𝑒 =  2|𝐺𝑇∩𝑃𝑀||𝐺𝑇|+|𝑃𝑀| ∗ 100…………………..(1)  
 

 Dice score values typically range from 0 to 100, with 100 being complete agreement 

and 0 overlapping. 

 

4.1.2. Hausdorf Distance (95%) 

 Evaluation with spatial overlap agreement parameters alone for volumetric 

segmentation is not sufficient. Differences in slotted edges may not have a profound effect on 

the spatial overlap but may have a significant impact in areas close to the brain's boundaries, 

thereby leading to the presence of the skull or an omission of tumor regions. To combat this, 

we also use the 95th percentile of the Hausdorf f95 distance for evaluating maximum contour 

distance d between ground truth and predicted masks on a radial assessment. 

  𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓 𝑓95 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 (𝑑𝑃𝑀,𝐺𝑇 ∪ 𝑑𝐺𝑇,𝑃𝑀, 95𝑡ℎ) 

Higher Dice scores and lower Hausdorf f95 scores indicate enhanced results. 

4.1.2 Sensitivity and Specificity 

Sensitivity and specificity have also been taken into consideration as evaluation metrics. 

They are represented mathematically as follows.   

𝑆𝑒𝑛𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑃, 𝑇) = |𝑃1 ∧ 𝑇1 ||𝑇1|  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑃, 𝑇) =  |𝑃0 ∧ 𝑇0||𝑇0|  

 

where P denotes the algorithm's prediction map, and T denotes the ground truth label 

fragmented manually by specialists. |•| represents no. of volume pixels set, P0, P1 denotes 
negative&positive volume pixels of predicted map, and T0, T1 denotes the negative&positive 

volume pixels of ground truth map. 

 

4.2.Comparison with Existing Methods 

Table 1: Compared With Existing Methods Based On Validation Dataset (Brats2018) 

 

Table 1 (a): Comparison based on sensitivity and specificity 

Reference Sensitivity Specificity 

 

TumorC

ore 

Enhancin

gTumor 

WholeTum

or 

TumorCor

e 

Enhancing

Tumor WholeTumor 

(Myronenko, 2019) 0.865 0.847 0.926 0.998 0.998 0.995 

(Isensee et al., 2019) 0.846 0.830 0.920 0.999 0.998 0.995 



 

 

(McKinley et al., 2019) 0.836 0.830 0.913 0.998 0.998 0.994 

(Zhou et al., 2019) 0.868 0.813 0.914 0.997 0.998 0.995 

(Banerjee & Mitra, 

2020) 0.873 0.869 0.913 0.997 0.997 0.993 

Proposed Model 0.889 0.872 0.926 0.999 0.999 0.999 

 

Table 1(b): Comparison predicated on Hausdorff Distance and Dice score 

Reference Dice Score Hausdorff Distance 

 

Tumorcor

e 

Enhancing

tumor 

Wholetumo

r Tumorcore 

Enhancingt

umor 

Wholetum

or 

(Myronenko, 2019) 0.8155 0.7665 0.8840 4.8100 3.7732 5.9045 

(Isensee et al., 

2019) 0.863 0.809 0.913 6.518 2.413 4.268 

(McKinley et al., 

2019) 0.847 0.792 0.901 4.988 3.603 4.063 

(Zhou et al., 2019) 0.8651 0.8136 0.9095 6.545 2.716 4.172 

(Luo et al., 2021) 0.843 0.815 0.890 8.76 2.42 4.59 

(Banerjee & Mitra, 

2020) 0.872 0.8244 0.9724 5.061 2.636 4.748 

Proposed model 

0.897 0.858 0.918 3.720 4.568 4.568 

 

Table 2: Compared With Existing Methods Based On Validation Dataset (BRATS2019) 

Table 2(a): Comparison based on sensitivity and specificity 

Reference Sensitivity Specificity 

 Tumorcore Enhancingtumor 

Whole 

Tumor. Tumorcore 

Enhancing

tumor Wholetumor 

(Ali Hassen 

et al., 2021) 0.831 0.765 0.924 0.997 0.998 0.994 

(Chen et al., 

2020) 0.8027 0.7564 0.8655  0.9944 0.9981 0.9914 

(Hamghalam 

et al., 2020) 0.826 0.766 0.897 0.996 0.998 0.995 

(Li et al., 

2020) 0.819 0.802 0.921  0.997 0.998 0.992 



 

(Bakas et al., 

2018) 77.71 76.88 91.32 99.76 99.85 99.39 

Proposed 

Model 0.834 0.859 0.897 0.999 0.998 0.999 

 

Table 2(b): Comparison predicated on Hausdorff Distance and Dice score 

Reference Dice Score Hausdorff Distance 

 

Tumorco

re 

Enhancing

tumor Wholetumor Tumorcore 

Enhancing

tumor Wholetumor 

(Pei et al., 

2020b) 0.835 0.821 0.895 6.712 3.319 4.897 

(Jiang et al., 

2020) 0.837 0.833 0.888 4.13 2.65 4.619 

(Feng et al., 

2020) 0.831 0.795 0.912 6.53 3.97 3.786 

(Ali Hassen et 

al., 2021) 0.851 0.760 0.936 7.357 3.401 7.35 

(Alshehhi & 

Alshehhi, 2021) 0.82 0.77 0.89 5.21 4.11 5.01 

Proposed 

Model 0.909 0.863 0.918 

 

2.732 3.677 3.677 

 

Table 3.  Comparison of supervised learning for tumorsubregions analysis based on 

dicescore & sensitivity 

MODEL DiceScore Sensitivity 

 Tumorcore 

Enhancing

tumor 

Whole 

tumor Tumorcore 

Enhancing

tumor Wholetumor 

NoNew-Net (Isensee 

et al., 2019) 0.863 0.809 0.913 0.846 0.830 0.920 

AMPNet (Chen et al., 

2020) 0.7948  0.7413 0.893 0.7144 0.6813 0.8533 

3D-UNET (Wang et 

al., 2020) 0.807 0.737  0.894 0.826 0.766 0.897 

Two Step U-NET  

(Kim et al., 2020) 0.764 0.672 0.876 0.765 0.763 0.887 

Proposed Model 0.897 0.858 0.918 0.889 0.872 0.926 

 

 



 

5. Discussion 

Segmentation of brain tumors into their subregions has been done performed with the help of 

deep learning models. The model has been trained with two datasets- The braTS 2018&2019 

database that consists of 285 and 355 magnetic resonance images from patients with glioma. 

T1, T2, T1c, and T2 FLAIR are the four imaging modalities used in this dataset. Images are 

accessible in three different views: axial, coronal, and sagittal. Imaging methods in the axial 

view are among them is considered for the experiments. Figure -- shows the MRI of five 

random patients with the tumor sub-regions extracted. Images a-d depict the four different 

modalities, T1, T2, FLAIR, and T1c.  

 

 
Fig. 3: Patient name segmentation for a brain tumor Deep learning models are used by 

Brats18 2013 3 1. T1 image, T2 FLAIR image, T1-contrast image are shown in the first row; 

ground truths of WT, TC, ET and all sub-regions combination are shown in the second row 

e–h; prediction of WT , TC, ET , all sub-regions combination (all) is shown in the third row 

i– l (All). 

The model was evaluated from the subregions extracted from 10 random patients. Different 

evaluation metrics were used for analyzing the performance, and exemplary results were 

obtained. The performance metrics used for evaluation are the Hausdorfdistance and 



 

Dicesimilarity coefficient; to measure structural overlap and sensitivity and specificity. Table 

4 (a). shows performance metrics such as specificity and sensitivity applied to this model. 

The model has a specificity of 0.999 and a sensitivity of 0.9115. These results show that the 

model has outperformed most other models with a lesser number of false negatives in the 

prediction phase. From Table4(b).Hausdorff Distance & Dicecoefficient have been used to 

calculate structural overlap similarity of the sub-regions of brain tumors in MRI. Outcomes 

obtained proves that values are almost the same as the ground truth with average dicescores - 

0.903, 0.8605, & 0.918 also average Hausdorff Distance were 3.226, 4.1225, & 4.1225. The 

results can help doctors, and radiologists detect features like position, shape and dimensions 

of brain tumor subregions. 

Table 4 (a). Proposed DSDU-Net Tumor subregions Analysis  

Evaluation Metric DSDU-NET 

 TumorCore EnhancingTumor WholeTumor 

Specificity 0.999 0.9985 0.999 

Sensitivity 0.8615 0.8655 0.9115 

 

Table 4(b). Proposed DSDU-Net Tumor subregions Analysis 

Structural Overlap Similarity 

Metrics 
DSDU-NET 

 TumorCore EnhancingTumor Whole Tumor 

Dicesimilarity coefficient 0.903 0.8605 0.918 

Hausdorff Distance 3.226 4.1225 4.1225 

 

6. Conclusion & Future work 

This study proposed using a depthwise separable convolutional network and a DSDU-NET 

segmenting tumor into Wholetumor (WT), Tumorcore(TC), and Enhancing tumor(ET). 

Several efficient methods have been used for pre-processing. Metrics like sensitivity, 

specificity, Hausdorff distance, and dice coefficient were evaluated. The model can also be 

used to dissection other tissues such as necrosis and cysts that are commonly seen with brain 

tumors. Enhanced longitudinal segmentation of tumors may be done with the help of a better 

label fusion method. The underlying methods for feature extraction can be enhanced further, 

and the amalgamation of a model that considers the treatment modality is an exciting area of 

research. 

 

Funding Information 

 

 No funds, grants, or other support was received. 

 

Ethics Approval  

 

  Not applicable 
 



 

Conflicts of Interest 

None. 

 

 

Declaration of interests 

 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

 

 

References 

 

[1]  Alalwan, N., Abozeid, A., ElHabshy, A. A. A., & Alzahrani, A. (2021). Efficient 3D deep 

learning model for medical image semantic segmentation. Alexandria Engineering Journal, 

60(1), 1231–1239. https://doi.org/10.1016/j.aej.2020.10.046.  

[2] Ali Hassen, O., Omar Abter, S., A. Abdulhussein, A., M. Darwish, S., M. Ibrahim, Y., & 

Sheta, W. (2021). Nature-inspired level set segmentation model for 3D-MRI brain tumor 

detection. Computers, Materials & Continua, 68(1), 961–981. 

https://doi.org/10.32604/cmc.2021.014404.   

[3] Almezhghwi, K., Serte, S., & Al-Turjman, F. (2021). Convolutional neural networks for 

the classification of chest X-rays in the IOT ERA. Multimedia Tools and Applications, 

80(19), 29051–29065. https://doi.org/10.1007/s11042-021-10907-y.  

[4] Alshehhi, R., & Alshehhi, A. (2021). Quantification of uncertainty in brain tumor 

segmentation using Generative Network and Bayesian Active Learning. Proceedings of the 

16th International Joint Conference on Computer Vision, Imaging and Computer Graphics 

Theory and Applications. https://doi.org/10.5220/0010341007010709.   

[5] Bacanin, N., Bezdan, T., Venkatachalam, K., & Al-Turjman, F. (2021). Optimized 

convolutional neural network by Firefly algorithm for Magnetic Resonance Image 

Classification of Glioma Brain Tumor Grade. Journal of Real-Time Image Processing, 

18(4), 1085–1098. https://doi.org/10.1007/s11554-021-01106-x.  

[6] Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, R. T., et 

al. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, 

Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. 

https://doi.org/10.17863/CAM.38755.  

[7] Banerjee, S., & Mitra, S. (2020). Novel volumetric sub-region segmentation in brain 

tumors. Frontiers in Computational Neuroscience, 14. 

https://doi.org/10.3389/fncom.2020.00003.  

[8] Chen, M., Wu, Y., & Wu, J. (2020). Aggregating multi-scale prediction based on 3D U-net 

in brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and 

Traumatic Brain Injuries, 142–152. https://doi.org/10.1007/978-3-030-46640-4_14 

[9] Díaz-Pernas, F. J., Martínez-Zarzuela, M., Antón-Rodríguez, M., & González-Ortega, D. 

(2021). A deep learning approach for Brain Tumor Classification and segmentation using a 

multiscale convolutional neural network. Healthcare, 9(2), 153. 

https://doi.org/10.3390/healthcare9020153.  

[10] Feng, X., Tustison, N. J., Patel, S. H., & Meyer, C. H. (2020). Brain tumor segmentation 

using an ensemble of 3D U-Nets and overall survival prediction using radiomic features. 

Frontiers in Computational Neuroscience, 14. https://doi.org/10.3389/fncom.2020.00025.   

[11] Hamghalam, M., Lei, B., & Wang, T. (2020). Convolutional 3D to 2D patch conversion 

for pixel-wise glioma segmentation in&nbsp;MRI scans. Brainlesion: Glioma, Multiple 

https://doi.org/10.1016/j.aej.2020.10.046
https://doi.org/10.32604/cmc.2021.014404
https://doi.org/10.1007/s11042-021-10907-y
https://doi.org/10.5220/0010341007010709
https://doi.org/10.1007/s11554-021-01106-x
https://doi.org/10.17863/CAM.38755
https://doi.org/10.3389/fncom.2020.00003
https://doi.org/10.1007/978-3-030-46640-4_14
https://doi.org/10.3390/healthcare9020153
https://doi.org/10.3389/fncom.2020.00025


 

Sclerosis, Stroke and Traumatic Brain Injuries, 3–12. https://doi.org/10.1007/978-3-030-

46640-4_1.  

[12] Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., & Maier-Hein, K. H. (2019). No 

new-net. In A. Crimi, T. van Walsum, S. Bakas, F. Keyvan, M. Reyes, & H. Kuijf (Eds.), 

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 4th 

International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Revised 

Selected Papers (pp. 234-244). (Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11384 

LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-11726-9_21. 

[13] Jiang, Z., Ding, C., Liu, M., & Tao, D. (2020). Two-stage cascaded U-Net: 1st place 

solution to brats challenge 2019 segmentation task. Brainlesion: Glioma, Multiple 

Sclerosis, Stroke and Traumatic Brain Injuries, 231–241. https://doi.org/10.1007/978-3-

030-46640-4_22.   

[14] Kim, S., Luna, M., Chikontwe, P., & Park, S. H. (2020). Two-step U-nets for brain tumor 

segmentation and random forest with radiomics for survival time prediction. Brainlesion: 

Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 200–209. 

https://doi.org/10.1007/978-3-030-46640-4_19.  

[15] Li, X., Luo, G., & Wang, K. (2020). Multi-step cascaded networks for Brain Tumor 

Segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain 

Injuries, 163–173. https://doi.org/10.1007/978-3-030-46640-4_16.  

[16] Luo, Z., Jia, Z., Yuan, Z., & Peng, J. (2021). HDC-net: Hierarchical decoupled 

convolution network for Brain Tumor Segmentation. IEEE Journal of Biomedical and 

Health Informatics, 25(3), 737–745. https://doi.org/10.1109/jbhi.2020.2998146.   

[17] McKinley, R., Meier, R., & Wiest, R. (2019). Ensembles of densely-connected cnns with 

label-uncertainty for Brain tumor segmentation. Brainlesion: Glioma, Multiple Sclerosis, 

Stroke and Traumatic Brain Injuries, 456–465. https://doi.org/10.1007/978-3-030-11726-

9_40.  

[18] Myronenko, A. (2019). 3D MRI brain tumor segmentation using Autoencoder 

regularization. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain 

Injuries, 311–320. https://doi.org/10.1007/978-3-030-11726-9_28.  

[19] Naser, M. A., & Deen, M. J. (2020). Brain tumor segmentation and grading of lower-grade 

glioma using deep learning in MRI images. Computers in Biology and Medicine, 121, 

103758. https://doi.org/10.1016/j.compbiomed.2020.103758.  

[20] Nassar, S., Mohamed, M., & Elnakib, A. (2021). MRI brain tumor segmentation using 

deep learning. (dept. E). MEJ. Mansoura Engineering Journal, 45(4), 45–54. 

https://doi.org/10.21608/bfemu.2021.139470.   

[21] Pei, L., Bakas, S., Vossough, A., Reza, S. M. S., Davatzikos, C., & Iftekharuddin, K. M. 

(2020). Longitudinal brain tumor segmentation prediction in MRI using feature and label 

fusion. Biomedical Signal Processing and Control, 55, 101648. 

https://doi.org/10.1016/j.bspc.2019.101648.    

[22] Pei, L., Vidyaratne, L., Rahman, M. M., & Iftekharuddin, K. M. (2020). Context aware 

deep learning for brain tumor segmentation, subtype classification, and survival prediction 

using Radiology Images. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-

74419-9. 

[23] Peng, S., Chen, W., Sun, J., & Liu, B. (2019). Multi‐scale 3D U‐NETS: An approach to 
automatic segmentation of brain tumor. International Journal of Imaging Systems and 

Technology, 30(1), 5–17. https://doi.org/10.1002/ima.22368.   

[24] Serte, S., Serener, A., & Al‐Turjman, F. (2020). Deep Learning in Medical Imaging: A 
brief review. Transactions on Emerging Telecommunications Technologies. 

https://doi.org/10.1002/ett.4080.  

https://doi.org/10.1007/978-3-030-46640-4_1
https://doi.org/10.1007/978-3-030-46640-4_1
https://doi.org/10.1007/978-3-030-11726-9_21
https://doi.org/10.1007/978-3-030-46640-4_22
https://doi.org/10.1007/978-3-030-46640-4_22
https://doi.org/10.1007/978-3-030-46640-4_19
https://doi.org/10.1007/978-3-030-46640-4_16
https://doi.org/10.1109/jbhi.2020.2998146
https://doi.org/10.1007/978-3-030-11726-9_40
https://doi.org/10.1007/978-3-030-11726-9_40
https://doi.org/10.1007/978-3-030-11726-9_28
https://doi.org/10.1016/j.compbiomed.2020.103758
https://doi.org/10.21608/bfemu.2021.139470
https://doi.org/10.1016/j.bspc.2019.101648
https://doi.org/10.1038/s41598-020-74419-9
https://doi.org/10.1038/s41598-020-74419-9
https://doi.org/10.1002/ima.22368
https://doi.org/10.1002/ett.4080


 

[25] Wang, F., Jiang, R., Zheng, L., Meng, C., & Biswal, B. (2020). 3D U-Net based brain 

tumor segmentation and survival days prediction. Brainlesion: Glioma, Multiple Sclerosis, 

Stroke and Traumatic Brain Injuries, 131–141. https://doi.org/10.1007/978-3-030-46640-

4_13.  

[26] Wu, W., Li, D., Du, J., Gao, X., Gu, W., Zhao, F., Feng, X. & Yan, H., 2020. An 

Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep 

Convolutional Neural Network and SVM Algorithm. Computational and Mathematical 

Methods in Medicine, 2020. 

[27] Zawish, M., Ali, A., Hyder, S., Zahid, A., &amp; Khalil, A. (2019). Brain tumor 

segmentation through region-based, supervised and unsupervised learning methods: A 

literature survey brain tumor segmentation through image processing methods: A literature 

survey. Journal of Biomedical Engineering and Medical Imaging, 6(2). 

https://doi.org/10.14738/jbemi.62.6725 . 

[28] Zhao, Y.-X., Zhang, Y.-M., & Liu, C.-L. (2020). Bag of tricks for 3D MRI brain tumor 

segmentation. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain 

Injuries, 210–220. https://doi.org/10.1007/978-3-030-46640-4_20.   

[29] Zhou, C., Chen, S., Ding, C., & Tao, D. (2019). Learning contextual and attentive 

information for Brain Tumor Segmentation. Brainlesion: Glioma, Multiple Sclerosis, 

Stroke and Traumatic Brain Injuries, 497–507. https://doi.org/10.1007/978-3-030-11726-

9_44 .  

 

https://doi.org/10.1007/978-3-030-46640-4_13
https://doi.org/10.1007/978-3-030-46640-4_13
https://doi.org/10.14738/jbemi.62.6725
https://doi.org/10.1007/978-3-030-46640-4_20
https://doi.org/10.1007/978-3-030-11726-9_44
https://doi.org/10.1007/978-3-030-11726-9_44

