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In this paper, an intelligent fuzzy sliding mode control system, which cooperates with a
new learning approach called modulus genetic algorithm, is proposed. Furthermore, it is
applied to a high precision table positioning system for verifying its practicability. Fuzzy
sliding mode controller (FSMO) is a special type of fuzzy controller with certain attractive
advantages than the conventional fuzzy controller. The learning and stability issues of
FSMC are discussed in the paper. Furthermore, to overcome the encoding/decoding
procedure that leads to considerable numeric errors in conventional genetic algorithm,
this paper proposes a new algorithm called modulus genetic algorithm (MGA). The
MGA uses the modulus operation such that the encoding/decoding procedure is not
necessary. It has the following advantages: (1) the evolution can be speeded up; (2) the
numeric truncation error can be avoided; (3) the precision of solution can be increased.
For verifying the practicability of the proposed approach, the MGA-based FSMC is
applied to design a position controller for a high precision table. The experimental
results show the proposed approach can achieve submicro positioning precision. © 2001
John Wiley & Sons, Inc.

I. INTRODUCTION

As we have found, without knowing the plant model, applying model-based
strategies to design a controller is a hard job. However, by organizing human
expertise into fuzzy IF-THEN rules, a fuzzy logic controller (FLC)'™® with
linguistic rules, which works like human experts do, can be designed to control
complex or ill-defined systems. The principle of FLC is based on fuzzy set
theory* and approximation reasoning.” A lot of successful applications have
been published to verify the capability of FLCs.®"® At present, the fuzzy logic
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control has become a well-known powerful scheme for controlling modeless
systems.

In this paper, a self-learning fuzzy sliding mode control system based on
modulus genetic algorithm (called MGA-based FSMC) is proposed. Further-
more, the MGA-based FSMC is applied to a high precision table positioning
system for verifying its practicability. In the proposed system, we use a fuzzy
sliding mode controller instead of a conventional fuzzy logic controller, and in
addition, we adopt the modulus genetic algorithm as a learning mechanism
instead of the traditional genetic algorithm. One may ask: Why fuzzy sliding
mode control? Why modulus genetic algorithm?

A. Why Fuzzy Sliding Mode Control?

The fuzzy sliding mode controller (FSMC) is a special type of fuzzy
controller. In recent years, variant types of fuzzy sliding mode controller were
proposed and studied.'””"® Compared with a conventional FLC, as we have
mentioned in our previous works, there are several attractive advantages,® such
as: (1) The response of a fuzzy sliding mode control system can be specified in
advance; (2) the fuzzy rules are simpler and the entire rule base is more
compact, the speed of fuzzy inference of the FSMC therefore is faster than that
of a conventional FLC; (3) by using genetic algorithm as a learning approach,
the chromosome length of the FSMC is shorter than that of a FLC, conse-
quently, the genetic evolution of the FSMC becomes more efficient.

B. Why Modulus Genetic Algorithm?

Knowledge acquisition is the most important task in the fuzzy controller
design. However, extracting a set of rules, which can be sufficiently represent the
skill human actions, is not an easy mission.>'® Recently, the self-learning
approaches have become popular.'*!%17"1 In particular, many researchers have
focused on the topic of using a genetic algorithm (GA) to extract a fuzzy rule
base.”’ "* Genetic algorithms were originally developed by Holland in 1962. The
detailed principles, mathematical frameworks, and applications can be found in
Goldberg’s book.” The use of GAs for solving control problems was presented
in Ref. 24. The conventional simple GA (SGA) encodes the searched parame-
ters as binary strings. After applying the basic genetic operators such as
reproduction, crossover, and mutation, a decoding procedure has to be used to
convert the binary strings to the original parameter space. As a result, such an
encoding /decoding procedure leads to considerable numeric errors. Hence, this
paper proposes a new algorithm called modulus genetic algorithm (MGA) that
uses the modulus operation to resolve this problem. In the MGA, the
encoding /decoding procedure is not necessary. It has the following advantages:
(1) the evolution can be speeded up; (2) the numeric truncation error can be
avoided; (3) the precision of solution can be increased.

For verifying the practicability of this proposed approach, the MGA-based
FSMC is applied to design a position controller for a high precision table. In
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most manufacturing systems, the precision of the positioning system will affect
the quality of the products. Therefore, good technology that can increase the
precision of the system would improve the manufacturing capability and the
product value. For example, in an IC fabrication system, if the positioning
accuracy has been increased, then the quality and density of the circuits that
were implemented on the IC chips could also be increased. Presently, the
positioning requirement in the level of “submicron” is always needed in the
manufacturing systems of semiconductors, photoelectronic elements, and high-
density magnetic memory devices. However, increasing the precision of position-
ing is not an easy task. It needs not only to satisfy the high manufacturing
standard for the machine, but also needs the advanced control and sensing
technologies. To apply the traditional model-based control strategies for con-
troller design, a high precision plant model has to be derived. However, such a
high precision model is not easy to obtain. Therefore, the fuzzy control strategy,
which does not need an explicit mathematical model, is more suitable than the
model-based approaches. In this paper, a precision table is used as a testing
plant for demonstrating the proposed self-learning control approach.

This paper is organized as follows: after the Introduction in Section I,
Section II describes the fundamentals of the FSMC. In Section III, the MGA is
proposed and used to build an intelligent fuzzy sliding mode control system;
optimal fitness function and system stability will also be considered. Section IV
applies the MGA-based FSMC to a high precision plant. Conclusions are drawn
in Section V.

II. FUNDAMENTALS OF FSMC

An FSMC, which is based on sliding mode control (SMC)**% and fuzzy
logic, has better properties than a conventional FLC. Consider a class of
nonlinear systems with the following error dynamics:?

e =f(e,é,...,e" D) +g(e,é,...,e"  Mu (D)

where e € N is the system error; u € N is the control input; f(-) is an unknown
continuous function with known upper bound, i.e. |f| < fY; g(-) is an unknown
positive definite function with known lower bound, i.e., 0 < g, < g. Actually, Eq.
(1) represents a general uncertain nonlinear dynamic system.

Define x; = e~ Y, i =1,2,...,n, then (1) can be represented by the follow-
ing state representation:

Xy =X,
(2)
X, =f(x) +g(x)u

where x =[x, x, === x,]" € N" is the state vector.
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The first step in FSMC design is to define a sliding function
s(x) =c'x= Y cx; (3)

where ¢ =[c, ¢, -+ ¢,]" € N" is a coefficient vector of sliding surface that
has to be properly determined. Appendix A proposed an approach to obtain an
optimal ¢ based on the LQ technology.

In traditional SMC, a sliding surface that is denoted as 3 is a crisp set of
states, on which (3) equals to zero, i.e.,

3 ={xls(x) =0} (4)

Keeping the state on % with an equivalent control law u,, is the basic idea
of classical SMC. Without loss of generality, let ¢, = 1. By taking the derivative
of (3), we have

$=crx, +f+gu (5)
where ¢, =[c, ¢; =+ ¢, 1% x, =[x, x; - x,]I". Then u,, could be easily
derived by setting (5) to zero. That is

ueq = u|s':0 = _gil(f—i_ QE‘J_Cr) (6)

With the equivalent control obtained above, the state can be kept on 3, the
system is said to be in sliding mode, and its dynamics can be described by

ciet+cé+ - +e" D=0 (7)
Therefore, the characteristic polynomial of the equivalent control system is
given by
P, p" T e =0 (8)
where p denotes the Laplace operator. With a suitable choice of coefficients ¢;s
a stabile control system can be obtained if and only if (8) is Herwitz. As a result,
the dynamic behavior of a sliding mode control system is determined by the
predefined sliding surface.

The second stage in SMC design is to derive a discontinuous control law to
drive the state to reach the sliding surface whenever x & 3.2 that is,

ut>0 fors<0
u;={u’=0 fors=0 9)
u <0 fors>0

Finally, the complete control law in a sliding mode control system is

U=Ug +uy (10)
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However, there is no way to get an exact u,, without knowing f and g. In
the proposed FSMC, an alternative control law is used:

u=(1-a)u;+ au, (11)

where u, is a fuzzy control law, which can be obtained from the following fuzzy
sliding mode control rule base, and is used to drive the state toward the surface
and then slide along it.

R;:IF s is S;(m;, 0;) THEN u, is U,( ¢;) (12)

in which j=1,2,...,N, and N is the number of rules; Sjs are the input
linguistic labels, and are simply assigned as Gaussian-shaped functions in this
paper; i.e., MS(S) = exp(—((s —m;)/ 0)2) Us are the output linguistic labels,
especially, they are assigned to be fuzzy smgleton in this paper, i.e., ,uU(u) =

{643 ¢ . On the other hand, u, is a hitting control to guarantee the stability of

system, and « is a switch factor with the value of « = {}; ©r'/=% _ They will be

0 for [s| < sg
discussed in the next section.
Suppose that the singleton fuzzification and the weighted average defuzzi-
fication methods are applied, then the output of (12) is given by

us(s) = ¢’p(s) (13)

where ¢ =1[¢, ¢y,...,oy]" and p=1[p;, py,..., py]" in which p(s)=
/‘Ls(s)/zj II‘LS(S)

Figure 1 'shows a two-dimensional case of state plane to illustrate the
concept of SMC and FSMC. The sliding surface in Figure 1(a) is a straight line
that passes through the equivalent point (0,0). The state plane has been divided
into two parts by the sliding line. One is s > 0, and the other is s < 0. The
sliding line is also called the switching line, because the control action switched
at the opposite sides of the line. That is why the sliding mode control is also

X, X,

s=c'x=0 ‘ PB s
i s>0
‘ X NB o %
1 . Membership
R u, functions of s
§<0
Uy,
(a) Classical Sliding Mode (b) Fuzzy Sliding Mode

Figure 1. The basic concept of fuzzy sliding mode control.
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known as the variable structure control (VSC). However, such a switching
operation has many drawbacks. One of them is the chattering phenomenon due
to the presentations of the system nonideality, such as hysteresis, delay, sam-
pling, uncertainty, and so on. To reduce the system nonideality effects, the
fuzzification operation was applied to convert the crisp sliding surface into a
fuzzy one. The crisp value of s can be viewed as a generalized distance from a
representative point to the sliding surface. Once the s value is fuzzified, a set of
fuzzy rules based on the fuzzified distance can be constructed. This is the main
idea of the FSMC. Figure 1(b) illustrates such a concept. Here, five linguistic
labels (PB, PS, ZE, NS, and NB) are assigned to the sliding variable s.

III. LEARNING FSMC BY MGA

The fuzzy sliding mode control rule base (12) can be determined by certain
strategies such as heuristic,!' adaptive,'? or self-organizing /self-learning >4
methods. In this section, a modulus genetic algorithm is proposed for the
purpose of self-learning fuzzy sliding mode control rules. The block diagram of
the proposed system is shown in Figure 2.

A. The Modulus Genetic Algorithm

Conventionally, a simple genetic algorithm (SGA) is also called the binary
genetic algorithm since it works with a set of binary strings, e.g., 10110110. It is
one of the disadvantages of SGA. First, SGA encodes the searched parameters
to binary strings. Next, SGA applies the basic genetic operators such as repro-
duction, crossover, and mutation to generation offspring. Then, a decoding
procedure is used to convert the binary strings to the original parameter space.
As a result, such an encoding/decoding procedure leads to considerable nu-
meric errors. The MGA, which works on parameters themselves instead of their
binary codes, is described in this section to resolve the problem. In the MGA,

MGA-based FSMC

Modulus Genetic

Algorithm
X Sliding | s u Plant

Function

A4

Fuzzy Bliding
Mode Controller

¥

State

Figure 2. The block diagram of MGA-based FSMC.
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the encoding/decoding procedure is not necessary. It has the following advan-
tages: (1) the evolution can be speeded up; (2) the numeric truncation error can
be avoided; (3) the precision of solution can be increased.

(1) Reproduction of MGA

The Darwinian “survival of the fittest” is the underlying spirit of reproduc-
tion. This operation, actually, is an artificial version of natural selection.

Let F be the fitness function, and F; denote the value of fitness function
associated with the individual string i in the current population. Reproduction is
a process in which individual strings in the current population are copied
according to their fitness function values F,. A higher F value indicates a better
fit (or larger benefit). To perform reproduction, first, F;s are calculated. Next,
the current individual strings are probabilistically selected and copied into a
mating pool according to their fitness value. The arrangement allows the strings
with a higher fitness to have a greater probability of contributing a larger
amount of offspring in the new population. The easiest way of implementing a
reproduction operator is to create a biased roulette wheel. The slot size of it is
in proportion to the fitness value of each individual in the current population.
Let ps; denote the probability of selection of the individual i, and M be the
population size, then an individual string will get selected with the following
probability:

M
ps;=F, ZF, (14)
j=1

(2) Crossover of MGA

Crossover provides a mechanism for individual strings to exchange informa-
tion via a probabilistic process. Once the reproduction operator is applied, the
members in the mating pool are allowed to mate with one another. The
binary-coded GA takes the following step to accomplish the crossover: First, two
parents are randomly selected from the mating pool. Then, a random crossover
point is picked up. Finally, an exchange of the parents’ genetic codes (binary
digits) following the crossover point. This random process provides a highly
efficient method to search the string space to find a better solution.

In MGA, the parameters lie in the original space rather than binary space.
Hence, the crossover operation has to be modified to work with parameters
themselves rather than their binary codes.

Let {a, b} and {a’, b’} be the parent and offspring parameter pair, respec-
tively. Without loss of generality, suppose that their search space is in the range
of [0, X] € R. The crossover of MGA is proposed as

a' = (a—ay,+b,)MOD X

(15)
b' = (b — b, +a,)MOD X
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where MOD means the modulus operator. It is the reason why the proposed
approach is called “modulus” genetic algorithm. The meanings of the other
notations in (15) are

a, =aMOD aX
b, = b MOD aX

in which « € [0, 1] is called the crossover factor.
The crossover of a binary-coded GA is a special case of (15) with the
following a, and b:

a, =aMOD 2°
b, =bMOD2¢

where ¢ denotes the bit number of crossover point.

(3) Mutation of MGA

In the genetic algorithm, the mutation operation introduces new genes into
the populations such that the problem of trapping in local optimal points may be
avoided. The gene of individual is subject to a random change with probability
of the preassigned mutation rate. In the binary-coded case, a mutation operator
changes a bit from 0 to 1 or vice versa. In MGA, mutation is a random work
mechanism. It simply replaces a parameter, say a, with an arbitrary value, say a’,
in the search space [0, X'].

B. Learning Procedure

Recall the rule base of FSMC described by (12); the output of the rule base
is uniquely determined by a set of parameters that is unionized by the parame-
ters of the IF part, m, o, and the THEN part, ¢. Hence, the parameter vector to
be learned by MGA, 6, can be defined as

T
QZ[’ﬂT QT ‘PT] :[ml m, = My O 0, **° Oy @1 $p ¢N]T (16)

Assume that X, X, X, are the search space of m;s, g;s, ¢;s, respectively;
M is the population size; & is the number of generations. Then the details of
learning procedures of MGA-based FSMC are described in the following.

Step 1. Initially, set # =0 and randomly generate 3M initial parameter
vectors,

m () = [m(RymS(h) - m§ ()]

T

a@(h) = [a'l(i)(h)a'z(i)(h) o aO(h)

eO(h) = [eP(h) (k) = eP(1)]
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where m{’(h) € X,,, 0;(h) € X,, and ¢(W)eX, (i=12...,M,j=
1,2,...,N).

If the ith candidate of MGA-based FSMC is denoted by FSMC. Then the
fuzzy rule base of FSMC" can be created as

R IF s is S((m?, o) THEN u, is UQ( of")
—— RY) :1F s is 8)(mY, o57) THEN u, is U{"( ¢{")
RY :1F s is S§)(m), of’) THEN u, is U (@)

where §s and U"s are linguistic labels to be learned, and m{’s, o;’s, and
goj(”s are their parameters.

Step 2. Construct the parameter vector of the ith individual,

0O(h) = [00(h) -+ 0 (h):08 (h) -+ O (1):0%, 4 (k) -+ 0K (h)]

= [T () T (hye T ()]

Step 3. Establish the population in the generation 4, P(h),

P(h) = (6D(h), 6P(h),..., 0™ (h))

Step 4. Applied fuzzy reasoning to get u;, apply it to the plant. Evaluate the
fitness value of each individual.

The fitness function F can be defined in many ways. The following is one
way, with intuition: a controller which drives the state to reach the sliding
surface as fast as possible without consuming too much control energy and then
keep the state onto the surface as close as possible gets a higher score. For
example,

J=t + f (wlls(k)II+ vllu(k)l)
k=1

. 1
B (Js + ‘90)

Here ¢, denotes the reach time of the sliding mode, k = int(z/At) denotes the
iteration instance, At is the sampling period, int(-) is the round-off operator,
K = int(¢,,,,/At) denotes the number of iterations during one run, ¢,,,, is the
running time during one run, and w and v are positive weights. The norm || -||
can be viewed as a generalized energy measure of a signal. Finally, ¢, is a small
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positive constant used to avoid the numerical error of dividing by zero. Ap-
pendix A shows a suboptimal method that determines F by LQ technology.

Step 5. Apply the modulus genetic operators, i.e., reproduction of MGA,
crossover of MGA, and mutation of MGA, to generate a new population
P(h + 1), which is the offspring of P(h).

Step 6. Keep the elitist. That is, (1) pick up the best fitted individuals in
P(h) and P(h + 1); (2) compare their fitness; (3) if the best individual of P(h)
has a better fitness value than that of P(k + 1), then randomly replace an
individual in P(% + 1) with the elitist.

Step 7. Use the parameters to calculate the output u, of the FSMC.

Step 8. Set h = h + 1; go to Step 2 and repeat the procedure until F > F,,
or h > H. F,; and H denote an acceptable fitness value and a stop generation
number, respectively, as specified by the designer.

C. System Stability

During the learning phase described previously, the unfit individuals (the
controllers which have unsuitable parameters) may cause unstable behavior.
Hence, we propose a stabilizer called a hitting controller, such that

Ixl<8, i=1,2,...,n (17)

Consequently, the system is stable in the sense that the state is bounded.

The hitting control law u, works in the following manner: If the state of the
control system is inside a prespecified boundary layer s, i.e., Is| <s,, then the
hitting controller is turned off. In such a situation, the self-learning fuzzy control
u, provides the control action only. On the other hand, if the state tends to
diverge, i.e., Is| > s,, then the learning controller is turned off and the hitting
controller is turned on to pull the state back. In this situation, the hitting control
u, provides the control action only. Therefore, the hitting controller acts as a
gatekeeper that works in a fashion similar to Wang’s supervisory controller.’

Achieving the goal described above requires the hitting control law to
satisfy the so-called sliding condition®™ when |s| > s, that is,

ss < —lsl (18)
where 7 is a positive constant.

The following theorem provides the methodology for designing the hitting
controller so that (18) is satisfied, and that all states are bounded by (17).

THEOREM. Consider the system (2) with the control law

u=1-a)u;+ au, (19)
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where u, denotes the fuzzy control law given by the self-learning fuzzy control rule
base (12); u,, is the hitting control law and « is a switching factor that is used to
determine whether the fuzzy controller or the hitting controller is to be activated.

If the hitting control law is given by
w, = —sign(s)[g." (fV + 1/ x| + m)] (20)
and the switching factor is defined as

1 for|s| = s,
a= (21)

0 for|s| <s,
where ¢, =[c, ¢, =+ ¢, ;I"and x, =[x, x; === x,]V, then

(1) The sliding condition (18) is satisfied when |s| > s,,.
(2) The control system is stable in the sense that all system states x; (i = 1,2,...,n)
are bounded by

j=1

lx; () < (Zi_l ri_[I)\_,-) 5o =6 (22)

Proof. See Appendix B.
Figure 3 shows a two-dimensional case of the hitting control theorem in
which s = Ax, + x,. Hence, from (22) we have |x,|<s,/A and |x,| <2s,.

X

L N O N

Figure 3. A two-dimensional case of hitting control theorem.



1344 LIN, HUANG, AND CHEN

4 2
[&] 2 [}
g ¥ of=
g0 X
— [}
o 2 -2 w
-4 -4
-1 0 1 0 2 4 6
x1, rad time, sec
40 <30
5 S
5 20 -
E £20
g 0 8
= o]
N [=d 10
5 -20 g
40 0
0 2 4 6 0 2 4 8
time, sec time, sec

Figure 4. Demonstration of the action of hitting control.

Figure 4 is a computer simulation case of the action of hitting control. If the
fuzzy control is “poor” then the state goes to diverge. As soon as the state hits
the boundary of s,, the fuzzy control turns off, and the hitting controller is
activated to pull the state back. While the state is back inside s,, the “poor”
fuzzy control turns on again, and pushes the state to hit the boundary again,
then the hitting control turns on,.... Such a push—pull process goes progress
and keeps the state “sliding” on the boundary until the fuzzy control “well-done”
by learning.

According to the above theorem, the hitting controller can guarantee the
stability of system in the sense that all states are bounded. In general, the hitting
controller can be applied not only to the proposed MGA-based FSMC system,
but also to almost all fuzzy sliding mode control systems. For example, during
the design phase, the fuzzy rule-base (12) may be constructed based on certain
learning /tuning approaches. If the fuzzy control does not work well, the
membership functions and/or the rules should be adjusted. In such a
design /tuning stage, the unsuitable adjustments may cause the system to be
unstable. Thus, the hitting controller is applied to protect the system so that all
system states are inside the safe regions.

IV. EXPERIMENTAL RESULTS

The high precision table employed in the experiment is an XY table, as
shown in Figure 5. In our experiment, only one axis is used to demonstrate the
proposed control scheme. This table is made by NSK Inc. The specifications of
the tables are listed in Table 1. The table is driven by a dc motor with a low
noise linear amplifier. There is an encoder attached to the motor. The rotation
angle of the motor can be obtained by reading the encoder. Since the table is a
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Figure 5. The experimental environment of the high precision control system.

ball-screw type, the position of the table is in proportion to the counter.
Whereas the required precision is low, one can obtain the position of the table
by the encoder directly. However, as the required precision becomes higher and
higher, the error between encoder and exact table position becomes consider-
able. Therefore, a laser scale, which is a direct measurement device, is mounted
on the table for the sake of providing the actual position of the table. The laser
scale, also shown in Figure 5, is manufactured by FUTABA—its resolution is
100 nm. With the help of such a measurement device, the resolution of the table
has been promoted to a “submicron” level.

The main difficulty of such a precision positioning control problem is that
the mathematical model cannot easily be derived accurately. For example, the
friction that is caused by the sliding motion of the table will dominate the system
characteristics. The contacts between the steel balls and screw lead and between
the moving plate and its guides are two major sources of friction. Whereas the
required precision becomes higher and higher, the moving speed of the con-
trolled plate becomes slower and slower. Consequently, the friction force is
larger and larger. The friction is not only highly nonlinear and uncertain but
also hard to model. There are other different types of unmodeled factors that

Table I. Specifications of the experimental precision table.

Stroke 200 mm X 200 mm
Pitch 5 mm
Repeatability 0.003 mm
Backlash 0.001 mm

Resolution of the laser scale 100 nm
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would dominate in the tiny motion. It is the reason why we utilize the proposed
GA-based FSMC as a control strategy.

Before the MGA learning stage, the hitting control, which is considered as
a safety guard to monitor the system states, should be designed properly. Recall
the hitting control law (20); two design parameters fU and g, are required. In
the following, an experimental methodology is developed to estimate these two
values.

Define the state vector x = [e, ¢]', where e and é represent the error and
the error derivative (velocity) of the plant. Hence, the hitting control becomes

u, = —sign(s)[g[l(fU—F [A-é| + n)J

The main ideal of the proposed estimation method is shown in Figure 6. In this
motor-driven table, by experimenting, we find that when the input u keeps
constant, the moving velocity of the table almost remains constant. In other
words, the moving velocity will not change abruptly unless the control input
changes. The dashed-line represents the sliding function of the hitting con-
troller. The upper part |s| > s, is a forbidden zone that any system state should
not enter. The design of the hitting controller is to choose a sliding function
with different slopes and s,. A sliding function with a larger slope would require
a powerful motor driver, so it should be considered with system capabilities.

The estimation procedure is the following. First, if the table moves with
constant output voltage u,, it will move at constant velocity V1. As time
progresses, it will reach the cross point P. The hitting control, if designed
properly, should generate a suitable force and pull the state trajectory back to
the |s| <s, area. If the pushing force is not strong enough, like trajectories
P ~ P1 and P ~ P2, then it should be increased until the trajectory is pulled
back to |s| < s,.

Hence, if we know the smallest force of u,, say u; .;,, which can scarcely
bring the state trajectory back to [s| <s,, then we can solve two unknown

M s(e)> s,

\\\s(z):e'+c,'e=s,
\\

V2 LAY

v

Figure 6. Description of the proposed estimation method.
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variables fU and g, by the following two equations:

iy = —sign(s)[ g7 '(FY + 1AD-éD] + n)]
uffin = —sign(s)[ g2 (£ + AP -@l + m)]

AD and A@® are the slopes of two distinct sliding functions s and s@,
respectively, while () . and u{?,;, are the smallest forces to bring the state
trajectory back to [s®V] < 5§ and [s®| < s, respectively. But, without knowing
ul . the values of fU and g, can be estimated by finding the local values in

u, min?

various conditions by experimental testing. That is,

uf) = —sign(s)| g7 (f; + 1XD-él + )|

where i = 1,2,..., N, and N is the number of the testing points. Then the upper
bound of f, ie., f!, and the lower bound of g, i.e., g;, can be obtained by
fY=max(f) and g, = min(g,). In our experimental testing, a fixed initial
velocity with many different voltage changes has been made. The data are
collected and by arbitrarily choosing two sets of them, then values f; and g, can
be calculated. If we repeat the above procedure with other initial velocities, the
other set of f;s and g;s can be evaluated. Finally, the calculated f;s and g;s
are drawn in Figure 7. The x axis in Figure 7 is the value of f,, the y axis is g;.
Each point represents an estimation for f; and g,. Three groups with different
notations (o, +, and #) indicate three different initial velocities of 39.4 mm /sec,

x 10"

Initial Condition
o : 39.4mm/sec
* :28.3mm/sec
+:21.7mm/sec

25

Evduated g vdue, Min(gl.):1630.1

0 1000 2000 3000 4000 5000 6000
Evduated f vdue, Max(fu):4659.6

Figure 7. Experimental values of f; and g;.



1348 LIN, HUANG, AND CHEN

28.3 mm/sec, and 21.7 mm /sec, respectively. Finally, the estimation values of
fY and g, are given as

fY = max(f;) = 4659.6
and

g, =min(g;) = 1630.1

After this design stage, the MGA learning scheme can be applied in the
guarded bound. Once the table goes to touch the bound, the hitting control will
be responsible for taking the state to a safe place.

A compatible IBM PC is used to implement the GA-based self-learning
fuzzy controller. An interface card is equipped to receive the position feedback
and a D /A converter is used to send a control command to the dc servo. The
control program is implemented as an interrupt that has been triggered by a
timer. In every sample period, the interrupt subroutine will read the position
from the laser scale, and evaluate the control command. The experimental
results are shown in Figures 8 to 11. The fitness function, Figure 8, indicates
that the GA-based fuzzy controller performs better and better from generation
to generation.

In Figure 9, the position error seems to be reduced to zero. To view the
effect in slow motion, Figure 10 plots the error from 0.15 to 2 sec. We can see
the steady state error is —7.5 X 10~* mm, or equivalently, —0.75 wm. Figure 11
is the state trajectory.

Fitness value

0 20 40 60 80 100 120 140 160 180 200
Generation

Figure 8. The fitness function.
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..............................................

Position error, mm

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time, sec

Figure 9. The position error.

V. CONCLUSIONS

In this paper, a new approach called modulus genetic algorithm is de-
scribed. The numeric error, which arises by the encoding/decoding procedure in
conventional GAs, was avoided. In the modulus genetic algorithm, the encod-
ing /decoding procedure is not necessary. It has the following advantages: (1)
The evolution can be speeded up; (2) the numeric truncation error can be
avoided; (3) the precision of solution can be increased. The MGA was applied to

X 10-3

Position error, mm
o

-6

0 0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 2
Time, sec

Figure 10. The position error from 0.15 to 2 sec.
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velocity (mm/sec)

State Trajectory

N W’VWV‘ F/

-50
-2 0 2 4 6 8 10

error (mm)

Figure 11. The state trajectory.

resolve the learning problem for fuzzy sliding mode control systems. Further-
more, with a properly designed hitting controller, the stability of the learning
system can be guaranteed.

Finally, the MGA-based FSMC was applied to a high precision positioning

system. An XY table with a high-resolution laser scale (0.1 wm) was used as a
demonstrated plant. The experimental results indicated the practicability of a
proposed self-learning control strategy.
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APPENDIX A: AN OPTIMAL APPROACH TO DETERMINE
THE FITNESS FUNCTION

Given the system of (2) and the controller of (12), we define a quadratic

cost function:?

1 .=
J=5[0 (xT(£)Qx() +u™ (1) Ru(t)) dt (A1)
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where Q € W"*", Re N are two positive definite weighting matrices. The

objective in this section is to determine a suitable fitness function F such that

the genetic-learning algorithm can extract a fuzzy rule-base to minimize J.
Separating the cost function (A.1) into two parts yields

1 .o
L=5 [ [ (0] di (A2)

1 .=
7, Ej(;[uT(t)Ru(t)]dt (A3)

To minimize J,, we define an alternative cost function:
K
Jyy= Y. Ru* (A4)
k=1

On the other hand, to minimize J,, an optimal sliding surface is derived.
Consider again the sliding surface defined in (4). Without loss of generality,
let ¢, =1, ie,

n—1
s(x) =x,+ X cx;=x,+¢ce=0 (A5)
i=1

where ¢, =[c, ¢, - ¢,_;]" and =[x, x, -+ x,_,]". Assume there is a
control u#* which can drive the system to reach the sliding mode in a finite time
t,,i.e., s =0and § = 0 as ¢ > ¢,. Then, the original system (2) can be linearized
by u*, and the equivalent system is given as

[ 4] [o 1 0 - 0 | o I x ]
i 0 0 1 = 0 | 0 X,
= : 1 | : =dx
i 0 0 0 0 | 1 lx,,

X, _0 ! ) ) | _Cnfl_ L Xn |

(A.6)
Defining ¢ = x,, and rewriting (A.6), yields
£ Ay Ap||e

xX=|.]l=|", iy - AT
- l§ [421 Ay || € (A7)

in which the state vector x is partitioned into two parts; ¢ € R~ D*1 e R,
the system matrix A is divided into four submatrices; 4,, € R~ D<=V 4,



INTELLIGENT FSMC SYSTEM 1353
e ROV 4, € RI*"=D and 4,, € N. Hence, from (A.5) we have
£+l = (A.8)

Partitioning the weighting matrix of J,, i.e., O, in the same way as partitioning
A, we get -

A9
0, 0 (A9)

211 212}

where Q;, € R~ DX=D, lee‘h(” DXL 0y € MU and Q) € M.
Since Q is symmetric, so le Q21

Now, the original optimization problem 1s ready to be transferred to a
standard LQ one. Replace x in (A.2) with [¢T &]%, and substitute (A.9) into
(A.2) and we have

oo { K

§TQ12§+ §0ye+E60x¢
(Q - 00,07 0)e

(05 Crre + €) 0n(05'One + £) (A.10)
From (A.7), we have
g=Ayet4,¢
= (filu _412Q521221)§ +412(Q521221§ + f) (A.11)
Define
Ay=4y, _412Q521221
Qo = 211 - Q12Q2_21221 (A.12)
B=0%0ye+¢
Substitute A4, B into (A.11) and we get a pseudo linear system:

e=Aje+Ap B (A-l?’)

Again, substitute Q,, 8 into (A.10), and rewrite the cost function J, as a
standard quadratic form

1

E]; £'Que+ B Q22/3) (A.14)
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Obviously, Egs. (A.13) and (A.14) represent a standard LQ system®’ with pseudo
state ¢ and pseudo control B. From Ref. 28, if (4, 4,,) is stabilizable, then the
pseudo optimal control law of (A.13) for minimizing (A.14), B*, can be solved by
the famous LQ technique. That is,

B*=—y*Te (A.15)

where the optimal gain ¢* is given by

- T
Y* = (041, Py) (A.16)

and P, is the solution of the following algebraic Riccati equation (ARE):
égfo +Py A, — fo/ianz_zlfiﬁzfo + Qo =0 (A.17)

If (4,, A;,) is not stabilizable, the designer has to select a new weighting matrix
Q, and solve the ARE again. Compare the definition of 8 in (A.12) with the
optimal value of B8 obtained by (A.15) and we have

&= _(¢*T + Qz_zlgn)f = _Qz_zl(éngo + Qzl)é' (A.18)

Recall (A.8), the optimal sliding surface can be written as s* = & + ¢*'g = 0. By
definition, the coefficient vector of the optimal sliding surface ¢* can be easily
obtained from (A.18):

T

= [T ¢,|" = [(Qz—zl(él{zfo + 921))T 1] (A.19)

After deriving the optimal sliding surface, the mission left is to extract a
fuzzy rule base that can drive the state to achieve the optimal sliding mode as
good as possible. To accomplish such a goal, define an alternative cost function
for Ji:

Jo=t,+ ) s* (A.20)
Then, the complete alternative cost function for J is defined as
K
Jo=J,,+J,, =t + Y s*+Ru’ (A.21)
k=1

Finally, the fitness function for a GA-based optimal self-learning fuzzy sliding
mode controller is directly defined as
1
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APPENDIX B: PROOF OF THEOREM

Let p denote the Laplace operator. If X,(p) and S(p) represent the
Laplace transform of x; and s, respectively, then we have the following filter
equation:

1
n—1 +cn71pn72+

Xi(p) =5 “_+ClS(p) =T(p)S(p) (B.1)

Undoubtedly, the value of ¢;s can be carefully assigned so that the poles of the
transfer function T(p) are all negative real, i.c.,

T(p) =1/ TL(p+ ) (B2)

where \; € R* i=1,2,...,n — 1. Without loss of generality, let A, > A, > -+
> A,_;. From (B.1) and (B.2), s and x, can be viewed, respectively, as the input
and output signals of an (n — 1)th order filter, which is cascaded by (n — 1) first
order law-pass filters, as shown in Figure B.1.

S 1 | 1 . . 1 s X,
pt+i pt+i, 'p+ﬂ'n71

v
2

Figure B.1. The relationship of S and Xj.

(1) Consider the case of [s| > s, (i.e., @ = 1). Define a Lyapunov function

V=12 (B.3)
then, from (3) and (5), we have
V=s[f+clx] +sgu, (B.4)
That is,
V< |s|[|f| + Ig,T)_c,I] + sgu,, (B.5)

Substitute (2.1) into (B.5) and define m = gg; ' > 1; we have
VoISl = mfY) + (1 = m)leTx,I] = mals (B.6)

m > 1 implies V< —nlsl, or equivalently, ss < — n|s|l. Therefore, the sliding
condition (18) is satisfied.

The hitting control law (20) guarantees |s| to be decreased whenever s > s,,.
If the initial condition [s(x(0))| < s,, we always have |s| < s,. On the other hand,
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even if the initial condition |s(x(0))| > s,, |s| will be forced into the boundary
layer (i.e., |s| < s,) by the hitting controller in the finite time.

(2) With the hitting control law (20), the representative point will be kept
inside the prespecified boundary layer, [s| <s,. From Figure B.1, let
Z(p),Z)p),...,Z,_(p) denote the output of the 1st,2nd,...,(n — Dth filter,
respectively. Then we have

Z(p) = S(p) (B.7)

Pt

that is,
z(1) = [e M s( ) dr (B.8)
0
Since [s| < s, we have
2 5o [ €MD dr = (5,/X) (1= e M) <5,/4 =4, (BI)
0

Similarly, we can apply the same procedure to the 2nd,3rd, ..., ith filters, and
directly get

zi(1) <&y /Ai =5 l_llf\j = (B.10)
=
From Figure B.1, we have |x(¢)| = |z,_,(t)| and
n—1
(D)l <s/ TTA =28 (B.11)
j=1

From (3.2) and Figure 5, we can write

p
o= [Hf‘f(p ol s
—(L)Z )_ 1_&2 ) B.12
- P+)\n71 n72(p - p+)\n71 n72(p ( . )
Thus,

An—l
lx, (1)l < 1+A_)§"2=2§"2 (B.13)

n—1

Therefore, by applying the similar procedure to all states, it is easy to obtain

lx; ()l <27, = (2i_1 l_llAj) So = §; (B.14)
=
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