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Summary

Recent rapidprogress inmachine learning (ML), particularly so-called ‘deep learning’,

has led to a resurgence in interest in explainability of artificial intelligence (AI) sys-

tems, reviving an area of research dating back to the 1970s. The aim of this article is

to view current issues concerningML-basedAI systems from the perspective of clas-

sical AI, showing that the fundamental problems are far from new, and arguing that

elements of that earlier work offer routes to making progress towards explainable

AI today.
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1 Introduction

An explanation is commonly defined as a reason or justification given for an action

or belief. Typically, an explanation provides new information linked to the thing that

it is intended to explain and, as with all information, is subject to interpretation by

its recipients. In psychological terms, explanations are characterized by a variety

of models and schemas, including causal structures, domain-specific patterns (e.g.,

scientific explanations), and cultural schemas (Keil (2006)).

Artificial intelligence (AI) is concernedwith the creation of computer systems (or

‘agents’) that take actions or express beliefs based on processes that, if exhibited by

a natural agent, would be considered as ‘intelligent’ (Russell and Norvig (2010)). It

therefore follows that the generation of explanations has always been a key issue

in AI: developers and users of AI systems need to be able to obtain reasons or jus-

tifications for the actions or outputs of the machine, and often expect the system to

generate explanations that exhibit traces of ‘intelligent processing’. Aswith all expla-

nations, those fromanAI systemare subject to interpretation, and therefore need to

use communicable representations such asmathematical, logical, linguistic, or visual

forms.

The interest in explainability of AI systems is naturally linked to surges of inter-

est in AI. The ‘classical’ period of progress in AI — from the 1970s to early 1990s —

featured a corresponding phase of interest in methods for explanation generation

in largely symbolic reasoning systems, including so-called ‘expert systems’ (Jackson

(1999)). Significant progress was made on explainability during this period, with

solid principles established, but the problem was not considered to have been com-

pletely solved.

The recent rapid progress in machine learning (ML), particularly so-called ‘deep

learning’ (LeCun et al. (2015)), has led to a resurgence in interest in explainability.1

Issues of transparency and accountability have been highlighted as specific areas of

concern (Diakopoulos (2016)). A high-profile instance of this issue was seen in the

case of Google’s Flu Trends (GFT) system, exemplifying both the strength and weak-

ness of ‘big data’ approaches (Lazer et al. (2014)). After an initial period where the

GFTalgorithmperformedextremelywell using data generated fromweb searches in

comparison with official flu statistics, a subsequent failure in performance naturally

begged an explanation: why did GFT fail? The conclusions of Lazer et al. (2014)’s

analysis identify lack of transparency as the key issue: theworkings of theGFT algo-

rithm were opaque (a ‘black box’), as was its sensitivity to particular patterns in the

data (e.g., specific search terms). In short, not only was there no identifiable answer

to thatwhy question, themore significant problemwas that therewas no identifiable

means of asking the question of the GFT system.

Algorithmic transparency is increasingly viewed from a legal and ethical stand-

point as well as a technical one. There is growing concern around issues of fairness

1Notably, the recently-announced DARPA program in Explainable Artificial Intelligence (XAI) is

largely focused on interpretability ofML approaches:

https://web.archive.org/web/*/https://www.darpa.mil/program/explainable-artificial-intelligence
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inmachine decisionmaking, particularly arising frombiases in the data onwhichma-

chine learning or statistical decision-support algorithms are trained (Olhede andRo-

drigues (2006)). These issues are particularly problematic from a societal perspec-

tive where the algorithmic biases relate to characteristics associated with equality

and diversity, e.g., gender, race, or religion (Caliskan et al. (2017)). Moreover, there

are international efforts to enshrine algorithmic decisionmakingwithin legal frame-

works; for example, the European Union’s proposed General Data Protection Reg-

ulation is due to come into force in 2018, creating a ‘right to explanation’ entitling

an individual to receive an explanation of any decision made by an algorithm about

them (Goodman and Flaxman (2016)).

The aim of this article is to view these current issues concerning ML-based AI

systems from the perspective of classical AI, showing that the fundamental prob-

lems are far from new, and arguing that elements of that earlier work offer routes to

making progress towards explainable AI today. Section 2 reviews progress in expla-

nation generation during the1970s–1990s knowledge-based systems era. Section3

examines current thinking around explainability (nowmore commonly termed inter-

pretability) inML. Section 4 argues that solutions to the interpretability in the mod-

ern context can draw on classical approaches to the original explainability problem.

Section 5 concludes the paper by suggesting an agenda andway forward.

2 Perspective: Explanation in Classical AI Systems

Even in the earliest AI systems of the 1960s and 1970s, the generation of expla-

nations was identified as a key issue. Initially, the focus was on providing mecha-

nisms for users to obtain traces of the reasoning performed by a system. This ap-

proach is exemplified by the rule traces generated by the explanation component of

theMYCIN expert system (Buchanan and Shortliffe (1984)). Even at this early stage,

it was realized that there were two distinct kinds of stakeholder requiring explana-

tions:

• developersof anAI system, needing assistance in debugging the softwarebybe-

ing able to verify the correctness or otherwise of rule firing sequences leading

to a conclusion;

• users of the system, seeking assurance that they could trust the output from

the software by inspecting the chain of reasoning supporting a particular con-

clusion.

Both kinds of stakeholder were essentially requiring that the AI system have a

degree of transparency in itsworkings, i.e., the opposite of opacity. Commonly, in soft-

ware engineering, opaque systems are referred to as ‘black boxes’ while transparent

systems are called ‘glass boxes’ (Beizer (1995)).
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MYCIN: AskingWHY andHOW

MYCIN offered two mechanisms aimed at promoting transparency, depending on

whether the systemwas in themode of offering a conclusion (as the result of a chain

of rule firings) or asking a question (as part of a backward chaining inference pro-

cess). In the former case, a user could ask HOW in response to a conclusion, and re-

ceive a trace of the rules fired, alongwith the certainty factors (Buchanan and Short-

liffe (1984)). In the latter case, a user could ask WHY in response to being asked a

question by the system, inwhich caseMYCINwould provide a trace of the currently-

active goal and sub-goals in the backward chaining process.

The earlyMYCINwork also highlighted other key challenges in generating expla-

nations in AI systems. Firstly, the comprehensibility of explanations in terms of rule

traces is lower when chains are long, hindering transparency (generally, MYCIN in-

ference chains were relatively short due to the system having a small search space).

From the developer’s perspective, the value of HOW explanations proved very lim-

ited, as the harder debugging cases involved complex and unexpected rule interac-

tions (Davis (1980)), leading to research in knowledge base verification and valida-

tion (Suwa et al. (1982)). Indeed, verification and validation are closely linked to ex-

planation: verification, being concerned with whether the system is implemented

correctly, is tied to a developer’s need for explanation — e.g., rule traces in the sim-

plest case; validation, being concerned with whether the system correctly meets its

requirements, is associated with the user’s need for explanation — e.g., assurance

that the system properlymodels its intended problem domain (O’Keefe andO’Leary

(1993)).

A second key challenge highlighted by the earlyMYCINwork on explanationwas

that transparency was restricted only to particular parts of the system, specifically

the rule base containing explicitly-encoded symbolic knowledge acquired from do-

main experts. This part of the systemwas specifically engineered to be comprehen-

sible by human experts in the problem domain, at least in terms of relatively small

sets of rules and rule interactions as noted above. Other components of the sys-

tem, e.g., LISP program code designed to produce lists of drug recommendations,

were opaque to users and played no part in generating HOW and WHY explana-

tions. These parts encoded knowledge implicitly rather than explicitly. Moreover, the

more opaque aspects of an AI system often corresponded to artefacts arising from

the programming of the system (Swartout (1983)). While improved transparency in

these aspects would assist developers in debugging the system, revealing them to

users would be confusing and unhelpful.

UsingMeta-Knowledge in Explanation Generation

In view of the opacity of parts of the MYCIN system, and in an effort to reduce the

role of programming artefacts in system design, the NEOMYCIN project attempted

to encode additional types of knowledge explicitly, including meta-rules for control

of reasoning and taxonomic information, e.g., of diseases (Clancey (1987)). The for-

mer differentiated various kinds of knowledge including causal rules, rules connect-
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ing data tohypotheses, and ‘screening’ rules that restrict the search spaceunderpar-

ticular conditions. All of these type of knowledge could play useful roles in generat-

ing HOW andWHY style explanations in NEOMYCIN. The important lesson here is

that explanations require context in terms of eitherwhat the system is currently try-

ing to do (WHY) or how it did it (HOW). A key claim for the NEOMYCIN approach

was that the approach was intended to simulate human problem solving and was

thus a form of cognitive modelling in the sense of Newell (1990).

A broader perspective on context in explanation generation was taken in CEN-

TAUR, where frames called ‘prototypes’ were used in addition to rules to organize

the knowledge base of the system in terms of elements of a deductive process. The

CENTAUR approach afforded the system explicit representation of the relationship

between data and hypotheses including:

• hypotheses consistent with (i.e., suggested by) data items;

• data items inconsistent with hypotheses (‘errors’ or ‘surprises’);

• data items unaccounted for by any hypotheses (residuals).

In this respect, CENTAURwas arguably the first AI system to be designed for ex-

plainability, rather than explanation being considered as an add-on feature.

The Explainable Expert Systems Project

In the early 1990s, the Explainable Expert Systems (EES) project further developed

the theme of using meta-knowledge for explanation generation, focusing on three

key principles (Swartout et al. (1991); Paris (1993)): (i) separation of terminologi-

cal and declarative domain knowledge from procedural problem-solving knowledge

that would be compiled into a run-time system using (ii) transformations that explic-

itly captured design rationale (e.g., enhancing maintainability or human readability

of the transformed knowledge) accessible to a user via (iii) a dialogue-based inter-

action module that could create explanations, justifications and paraphrases of the

system actions and corresponding rationale.

The first principle in EES (separation of terminological and declarative domain

knowledge from procedural problem-solving knowledge), in line with the previous

NEOMYCIN and CENTAUR thinking, was also compatible with the shift in attention

in knowledge-based systemswork in the 1990s towards a focus on reusable domain

ontologies (Gruber (1994)) and problem-solving methods (Schreiber et al. (1999))

though generally those two sub-fields did not focus specifically on explanation gen-

eration. It is also worth noting that, while a strength of the EES approach was ex-

plicit representation of design rationale, concerns such as maintainability — while

undoubtedly aspects of system transparency— are ofmore relevance to developers

than users. Arguably the earlier NEOMYCIN work, emphasizing framing explana-

tions in terms of cognitive models, was a more relevant approach to meeting users’

needs for system explanations.
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Figure 1: Explainable Expert System framework (adapted from Paris (1993))

The EES work also highlighted the interactive and dialogue-based nature of ex-

planation generation, going far beyond the simpleWHY andHOW interactions sup-

ported by MYCIN. Using a planner, a set of heuristics, and a natural language (NL)

generation system, the EES user interaction module was able to interpret queries

such asWHY in context and generate appropriateNL responses based on the design

history linked to the expert system.

Summary and SomeDesiderata

In conclusion, the classical perspective from the 1960s to 1980s offers a number of

desiderata on explanation generation in AI:

1. Explanation generation is an intrinsic designed-in feature of an AI system, not

a bolt-on.

2. There are two types of stakeholder requiring explanations from anAI— devel-

opers and users — but the needs of these two constituencies are not the same.

3. Interactivity and dialogue is a key element of explanation generation, and a

useful distinction can be drawn between what MYCIN termed ‘how’ and ‘why’

explanations: the former questionswhat the system is doing or intends to do, the

latter questionswhat the system did.

4. Explanations need to cover both the ‘know how’ and ‘know what’ of a system

— the former is commonly opaque; the latter can be opaque also, especially in

a complex system.

5. Cognitive modelling as a basis for explanation generation (framing explana-

tions in terms of reasoning processes that resemble those of human experts)
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is seen as a means of promoting system transparency for users, while captur-

ing of software design rationale is a key issue for explanations to developers.

Having reviewed the classical perspective on explanations in AI systems, the fol-

lowing section considers current concerns and approaches in the context of the re-

cent rapid progress inML and deep learning.

3 Interpretability inML-based AI Systems

By common definition, an interpretation is the action of explaining the meaning of

something. That is, an interpretation generates an explanation, and the two terms

are thus closely associated. Since the late 1990s, the term ‘interpretable’ has been

favoured over ‘explainable’ in the ML context. Where ML was viewed as a ‘knowl-

edge discovery’ tool, it naturally followed that the discoveries generated by an ML

system needed to be interpretable to users in terms of domain knowledge; to this

end, researchers focused upon how to exploit domain knowledge as both input to

the learning process and in the generation of interpretations of its output (Bratko

(1997)). Moreover, as in the classical AI consideration of explanations, interpreta-

tions in ML were seen as critical in building user trust in the system (Ridgeway et al.

(1998)).

Despite this long-term interest in interpretability of ML-based AI systems, a for-

mal, commonly-agreed definition of the term has remained elusive. Lipton (2017)

observes that a key issue in defining interpretability formally is that the concept is

not monolithic. This observation essentially echoes the 1970s realization that the

kindsof explanations requiredof anAI systembydevelopers arequitedifferent from

those required by end users. Moreover, developers may have differing needs, e.g.,

verifying the performance or robustness of a system, and end-users will have differ-

ent perspectives, e.g., better understanding a reported ‘discovery’ (Bratko (1997)) or

determining the fairness of a decision (Diakopoulos (2016); Olhede and Rodrigues

(2006)).

Doshi-Velez and Kim (2017) link interpretability to the need for an ML system

to satisfy auxiliary criteria, i.e., criteria that are in part qualitative and cannot be sat-

isfied by improved training (unlike, say, accuracy). While many examples are given

by the authors (and others, e.g., Lipton (2017)) — including being nondiscriminatory

(as in fairness), safety (Otte (2013)), and satisfying a user’s right to explanation (as in

Goodman and Flaxman (2016)) — there does not yet appear to be a comprehensive

typology of these kinds of auxiliary criteria.

Towards Transparency in Deep Learning Systems

As with classical AI concerns regarding explainability, transparency is a key issue in

interpretability of ML systems, but the problem is exacerbated with deep learning

systems by the sub-symbolic nature of these approaches. For example, while a trace

of rule firings in a classical AI system may or may not be informative to a developer
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or end-user, a set of weights in a multi-layer neural network is unlikely to be infor-

mative to anyone. This has led researchers to argue that intelligibility ofMLmodels is

a necessary property for transparency (Lou et al. (2012)): the ability for a human to

understand howa learnedmodelworks. In classical AI, we saw that attention shifted

from examining rule traces to focusing on the meta-knowledge that controlled and

guided inference. This was an attempt to frame explanations in terms of algorithmic

transparency, providing confidence that the system was behaving ‘sensibly’ in gen-

eral, rather than at the level of specific rule firing sequences. The problem is, how-

ever, that algorithmic transparency for deep learning systems is not achievable given

our current understanding of these systems, becausewe cannot prove that theywill

work on unseen problems (Lipton (2017)).

In the absence of algorithmic transparency for deep learning ML, researchers

have instead opted to focus on finding equivalences to ‘traces’. The most common

example of this approach is in image classification systems, to associate an output

class with the parts of an input image that had the greatest weight in determining

the classification. For example, the LIME approach identifies ‘super-pixels’ (contigu-

ous regions of similarly-weighted pixels) in an input image that contribute positive

weight towards a particular output class, with the intuition that these regions are

significant in making the model predict that the class may be present in the image

(Ribeiro et al. (2016)). This approach has the advantage that the super-pixels will be

in andof themselvesmeaningful to a human, especially in relation to thewhole of the

original image.

Similarly-motivated approaches include the use of heat maps to visualize the rel-

ative weighting of parts of an image at the pixel level in terms of a ‘hot to cold’ scale

where ‘hottest’ = most highly weighted (Montavon et al. (2016)) and class maps to

highlight the parts of an image most associated (in weight terms) with each of sev-

eral possible output classes (Kumar et al. (2017)). The latter is interesting because,

while the classifier will generally output the most highly predicted class, a class map

will provide a visualization of the parts of the image that could have led the classifier

to predict a different output (i.e., ‘I think it’s X because of regionA; however, regionB

suggested it might be Y and region C suggested it might be Z’). This richer context to

the interpretation provided by a class map arguably gives a user improved intelligi-

bility of how the classifier works, and therefore a greater impression of algorithmic

transparency.

These approaches for ‘tracing’ input to output relationships in deep learning ML

systems are not confined to imagery. Similar techniques can be used to identify the

most salient (highest weighted or most predictive) text features or fragments. For

example, Lei et al. (2016) propose an approach that extracts coherent phrases from

input text that are sufficient to predict the same output as the full input. These ex-

tracts are offered as rationale for the classification and, like the image regions se-

lected by LIME, heat maps, or class maps, aremeaningful to humans.

8



Transparency vs Post-Hoc Interpretations

Akeydistinction is drawn in current thinking in termsof explaining the classifications

of modern ML systems between true transparency and post-hoc interpretations or

explanations (Lipton (2017)). This distinctionwas not present in the classical era be-

cause algorithmic transparency was seen as achievable for those kinds of AI system.

While transparency aims to reveal how a system actually reached its conclusion, a

post-hoc interpretation seeks to explain an output without reference to the inner

workings of the system. Post-hoc interpretations have become popular as an ap-

proach in the context of deep learning because algorithmic transparency is seen as

being unachievable for these systems.

Techniques for generating post-hoc interpretations include visualizations, NL ex-

planations, and retrieval of salient examples. Technically, heat maps and class maps

are a form of post-hoc interpretation since they visualize (by use of colour) signif-

icant parts of the input image. Use of natural language caption generation is also

a form of post-hoc interpretation. For example, Hendricks et al. (2016) propose a

method that uses a dual neural network system: one sub-system learns to classify

images, and a second sub-system generates text explanations on the basis of textual

background knowledge that describes discriminating features of each output class.

Thus, the explanations generated by the second sub-system tend to include text de-

scriptions of those discriminating features, when they are detected in an input im-

age. This approach attempts to combine aspects of transparency (highly-weighted

features leading to a classification) with post-hoc explanation (textual renderings of

discriminant features) though, because deep neural networks are employed, there

can be no guarantees that the ‘right words’ are always associatedwith the ‘right fea-

tures’.

It is, however, worth noting at this point that these kinds of post-hoc interpre-

tation techniques are analogous to what humans do when asked to explain classifi-

cation decisions. As noted by Lipton (2017), ‘To the extent that we might consider

humans to be interpretable, it is [post-hoc] interpretability that applies.’ In a sense,

seeking fully-transparent interpretations from a deep learning based AI system is

holding the system to a higher standard than the one to which humans can be held.

Retrieval of examples is another technique employed in generating post-hoc ex-

planations, taking inspiration from the behaviour of human experts, e.g., doctors and

lawyers, who often frame explanations by referring to case studies. For example,

Caruana et al. (1999) demonstrated howcase-based reasoning could be used to gen-

erate explanations for a neural network by using the latter as a means of comput-

ing the distance metric for case retrieval. Again, the advantage is that the cases are

meaningful to humans though, as with all post-hoc approaches, the explanations of-

fer limited insight into how the classifier actually made its decision.

ML Interpretability and Expert Knowledge

Asdiscussed in Section1, thenotionof explanation is often associatedwith causality,

and a significant part of the classical AI explanation work examined in Section 2 fo-
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cused on introducingmeta-knowledge to capture causal rules and deductive chains.

While causality has been highlighted as a desirable feature for interpretability ofML

models (Lipton (2017)), relationships learned by ML systems are not assured to be

causal. Indeed, the current state-of-the-art in ML is weak at learning causal mod-

els of the world that support understanding (Lake et al. (2016)). Moreover, the ten-

sion between correlation and causation is a well-known issue in ‘big data’ work (Di-

akopoulos (2016)). The problemof deriving causal associations has been extensively

studied but establishing causality generally relies on availability of prior background

knowledge (Pearl (2009)), which commonly does not feature in ‘big data’ systems.

Ross et al. (2017) propose an approach that, while not aiming to assure causal ex-

planations, attempts to avoid offering spurious correlations by applying constraints

during training that specifywhether or not an input feature is relevant to the classifi-

cationof that input, according to ahumanexpert. The learnedmodel is thus intended

to be ‘right for the right reasons’: explanations from such a model are optimized for

correctness. Again, the approach relies on the availability of background knowledge

in the form of human experts’ opinion.

Recentwork byDoshi-Velez andKim (2017) proposes a three-level taxonomy for

evaluating interpretations in ML systems, where the levels are in descending order

of cost:

Application-grounded evaluation involves humans performing real tasks requiring

domain expertise, e.g., medical diagnosis or financial decisions. The gold stan-

dard for comparison here is with human-produced explanations to assist other

humans trying to complete the task. The relative quality and cost of machine-

produced vs human-produced explanations is compared.

Human-grounded evaluation involves real humansperforming simplified tasks that

can be carried out by non-experts thereforemaking subject recruitment easier

at the expense of some external validity. Commonly, the purpose here is to test

some aspect of the explanation unrelated to the subject matter, such as speed

of reaching a decision, or avoiding cognitive bias.

Functionally-grounded evaluation involves no humans and uses proxy tasks (ide-

ally derived from one or other of the above types of evaluation) together with

formal metrics as proxies for explanation quality. This method avoids the need

for ethical review and is often used in the earlier stages of assessing an ML

approach, where the system has not yet reached maturity. Most of the tech-

niques described in the previous two subsections utilized this kind of evalua-

tionmethod. Humanexpertise is implicitly or explicitly factored into thedesign

of the proxy tasks andmetric.

Summary and SomeDesiderata

In conclusion, current thinking regarding interpretability ofML-basedAI systems of-

fers a number of desiderata:
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1. Aswith classical AI systems, transparency is the ideal for interpretability; how-

ever, full transparency (particularly algorithmic transparency) is not achievable

given the state-of-the-art in deep learning, so post-hoc interpretations will in

many cases be the best-available option. Nevertheless, it is important to utilize

as much transparency as possible as a basis for generating post-hoc interpre-

tations (for example, generating NL explanations on the basis of salient input

image regions or features).

2. Interpretations depend on user’s requirements in terms of auxiliary criteria

such as safety, legal accountability (e.g., ‘right to explanation’) or knowledge

discovery. As with classical AI systems, different groups of users will have dif-

ferent requirements. The auxiliary criteria are qualitative and resistant to for-

mal definition; nevertheless, works needs to be done to elucidate them bet-

ter, so that users can specify their interpretation requirements more system-

atically, and systems can be evaluatedmore robustly.

3. Interpretations in many cases will depend on domain knowledge, e.g., back-

ground or prior knowledge. Examples include meta-knowledge of salient or

discriminant features to guide the pertinence of explanations, prior knowledge

to frame causal explanations, and knowledge that frames classifications for use

in case-based retrieval of examples. Acquisition, curation, and re-use of such

domain knowledge needs to be considered more systematically as part of en-

gineeringML-based AI systems.

Having examined perspectives on explanation in AI from the classical era to the

presentML-dominated period, the next section draws elements of both together, of-

fering a systems architecture for hybridML / knowledge representation and reason-

ing AI systems.

4 Explanation in AI: A Dual SystemApproach

The organization of the previous two sections was intended to emphasize distinc-

tions (and some parallels) between the perspectives on explanation in classical AI —

with its emphasis on knowledge representation and reasoning — and modernML—

with its emphasis on deep learning. The presentation therefore may have implied a

false dichotomy between the two. In actuality, there is significant acknowledgement

that AI systems require an integration of reasoning and learning, and there is grow-

ing interest in approaches seeking to combine the two. An important motivation for

this is to address the weak state of ML in dealing with causal relationships (Bottou

(2014)) and to integratemodel-buildingwith pattern recognition (Lake et al. (2016)).

How exactly to combine reasoning andmodel-buildingwithML is a topic of some

debate. Some researchers favour approaches that seek to utilize vector-space rep-

resentations instead of classicalmanipulation of symbolic expressions (Guha (2015);

LeCun et al. (2015)). Others argue for building reasoning capabilities in a bottom-up
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Figure 2: A framework for explainable AI systems

manner, from a rich set of primitive learning operators (Bottou (2014)). A key as-

pect of these discussions is the issue that, unlike deep learning systems, humans are

capable of learning from small amounts of data (Lake et al. (2016)), and knowledge

representation-based systems offer this property of what Guha (2015) calls ‘teach-

ability’. Recent work aiming to integrate deep learning and Bayesianmodels within a

uniformprobabilistic framework appears promising in this context (Wang andYeung

(2016)). Such a model is amenable to user input (i.e., it is teachable), and some initial

work has been done in this area, referred to as collaborative deep learning (Wang

et al. (2015)).

Of course, all of these approaches, while offering means to integrate ML with

knowledge representation and reasoning, comewith an important caveat: the inter-

pretability problem for such a integrated approachwill also need to be addressed.

An ExplainableML Framework

Figure 2 draws on the classical EES framework (Figure 1) to propose an architecture

for explainableML-basedAI systems. A systemgeneratormodule (with essentially the

same role as the compiler in EES) builds a dual systemwith two parts— amodel part,

comprisingmodels of the world, and a neural network part — from a set of inputs in-

cluding training data, domain knowledge, and meta-knowledge. A run-time module

uses the dual system to derive classifications and inferences, while also providing in-

put to the interactionmodule that provides output to the end-user also allows them

to seek explanations.

To show how the framework is intended to operate, we consider a number of ex-

ampleML-based AI systems using techniques from the previous section:

Basic transparency: super-pixels, heatmaps, class maps Our simplest example is a

deep learning image classification system where the only available explana-
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tion is in the form of LIME-style super-pixels extracted from the input image.

Training examples are provided to a deep learning algorithm that is part of the

system generator, along with the meta-knowledge requirement that the gen-

erated systembe capable of offering super-pixel regions as explanations. Here,

themodel part of the dual system is empty. The generated system is able to in-

form the interaction module that it is able to answer basic ‘Why do you think

it is X?’ queries; it does so via the super-pixel computation capability built-into

the neural network part of the generated system and captured by the run-time

module.

The case is similar where heatmaps are to be generated, but slightly different

where class maps are used since then the generated system is able to inform

the interaction module that it is capable of answering ‘Why do you think it is

X?’ and also ‘Why do you not think it is Y?’ queries by drawing on the relative

feature weights generated by the neural network at run-time.

‘Right for the right reasons’ Here, the input to the system generator module must

includeknowledgeacquired fromdomain experts that specifieswhether or not

an input feature is relevant to a particular output class. Meta-knowledge in-

cludes the requirement that the generated system be trained to optimize ex-

planations for correctness in terms of the background knowledge. The model

part of the generated system will include this domain knowledge. When an-

swering ‘Why do you think it is X?’ queries, the interaction module will draw

on both the model part of the system as well as the weights computed by the

run-timemodule from the neural network part.

Note that the interaction module can also allow the end-user to explore the

model of relevant features per output class, to gain insights into what the sys-

tem ‘knows’, as an additionalmeans of building trust between user and system.

Thus, in some cases the interaction module will draw on both the model and

neural network parts of the system, while in other cases the model part alone

may suffice to provide a user with useful explanations.

Causal explanations Leaving aside the challenges in learning causal relationships

discussed in Section 3 and in Pearl (2009), to the extent that progress is likely

to be made in this area in future (Lake et al. (2016) offer a detailed discussion

of prospects and approaches in relation to deep learning) the dual system ap-

proach provides a means of capturing learned causal knowledge in the model

part of the system, linked to elements of the neural part of the system. It is un-

clear at present what is the best approach for capturing such linkages, though

thework onBayesian deep learning appears to be a promising direction (Wang

and Yeung (2016)).

In this case,meta-knowledgewill capture the requirement to learn causalmod-

els, and may specify particular features or classes to constrain the learned re-

lationships (in relation to the domain knowledge). Early 1990swork on knowl-

edge discovery also points to the role in background domain knowledge as an
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input to a ML system to support explanation generation (Bratko (1997)). The

enriched model parts of a generated system in this case will afford deeper in-

teractionswith the end-user in terms of elucidating and justifying causal expla-

nations. The possibilities here resemble the capabilities of systems like CEN-

TAUR in Section 2where users could explore deductive processes and identify

input data that was consistent or inconsistent with hypotheses.

Case-based explanations by example Framing a collection of ‘exemplary’ classifica-

tions as cases for retrieval as explanations would use a similar approach to

causal explanations in termsof usingmeta-knowledge to specify frames for the

cases, domain knowledge of pertinent features and ontological relationships,

and distance metrics for retrieval of pertinent examples. Cases would form

part of the model element of the generated system, and interactions would be

further enriched to support queries such as, ‘Showmeexamples of X’. Retrieval

of examples will in some cases be subject to privacy requirements, however.

For example, it may be acceptable to use imagery from a particular patient’s

case in offering an explanation in a medical diagnosis system provided that no

personal data is revealed.

Satisfying auxiliary criteria The final example concerns auxiliary criteria relating to

background knowledge such as safety-critical elements or features relating to

characteristics associatedwith equality and diversity, e.g., gender, race, or reli-

gion. The framework supports capturing such criteria in terms of background

knowledge for the learning system, incorporating the criteria in themodel part

of the system, and supporting end-user queries relating to the criteria. How-

ever, given the extremely challenging problemof definingmany of the auxiliary

criteria objectively, how to capture these in the model part of the generated

system is an open problem.

Discussionw.r.t. Explanation Desiderata

Considering the above framework against the desiderata for AI systems identified in

Section 2:

1. The framework ensures that explanation-generation is an intrinsic, designed-

in feature of the generated system, accessible to end-users via the interaction

system.

2. A variety of stakeholders are catered-for by the framework: their distinct re-

quirements in terms of kinds of explanation (transparency and ad-hoc) can be

specified as meta-knowledge input, and they can access explanations via the

interaction system.

3. The interaction system supports a variety of dialogues, appropriate to the ex-

planation mechanisms built into the generated system, specified by the meta-

knowledge inputs.
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4. The dual system distinguishes between ‘know what’ (model) and ‘know how’

(neural network) knowledge levels. As with classical systems, the former is

less opaque (its opacity ismore a function of system complexity than represen-

tation) while the latter is far more so; nevertheless, transparency-based and

post-hoc explanations can be generated for both parts.

5. The question of to what extent cognitivemodelling plays a useful role in expla-

nationgeneration for deep learning-basedAI systems is an interestingone, and

is boundupwith thediscussionof towhat extent such systems are biologically-

inspired (see Eliasmith (2015) for detailed discussion on this matter). At the

simplest level, the framework caters for addressing causal relationships and

model-based explanations, which provides at least a basis for explanation in

terms of ‘higher-level’ reasoning processes.

Next, considering the framework against the ML system explanation desiderata

from Section 3:

1. The framework is designed to support the generation of both transparency-

based and post-hoc explanations as shown in the example cases above. The

first two cases (Basic Transparency and ‘Right for the right reasons’) are focused

more on transparency, while the latter three have significant post-hoc aspects

(thoughwith a basis in transparency).

2. The framework, while not solving the issue of formally defining auxiliary cri-

teria, makes them a designed-in feature in terms of meta- and domain knowl-

edge.

3. Similarly, the framework is explicitly designed to exploit domain knowledge in

generating a systemwith explanation capabilities.

5 Conclusion and FutureWork

The framework described in the previous section is largely conceptual at present,

but we are building its various components in current research (Chakraborty et al.

(2017); Nottle et al. (2017)). The key stages in a roadmap for realizing the framework

are:

• Development of a service-oriented approach to providing explanation mech-

anisms for ML systems. Most of the state-of-the-art approaches described in

Section 3 are available as open source software, so the next stage would be to

wrap them as APIs.

• Systematic definitionof a typology of auxiliary criteria for assuranceofML sys-

tems, encompassing fairness, transparency, and accountability aspects, along

with robust metrics for each.
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• Research and development of protocols to support explanation-seeking dia-

logues between users and AI systems.

An area that has not been considered in the preceding discussion is the need

for machine-to-machine explanation, which is becoming a more important issue in

the Internet of Things (IoT) context, especially where IoT technologies are to be de-

ployed in safety-critical application domains (Fraga-Lamas et al. (2016)). The differ-

ence between explanations generated for human consumption and those generated

formachine consumption is an area that researchers arebeginning to consider (Dhu-

randhar et al. (2017)); ultimately, however, it is likely that futureAI systemswill need

to provide both kinds of explanation.
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