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Abstract

Time-series clustering typically entails clustering similar patterns across various
time scales or comparing various point trajectories. However, this study emphasises
to group data points based on their motions and forecast how the clusters will evolve
across a number of immediate time frames. To achieve this, we propose a DYNamic
Aggregation of Mutually-connected poInts clusTEring (DYNAMITE) based cluster-
ing algorithm for time series. DYNAMITE is based on the interaction between points
in a time series and it majorly consists of three components: (1) cluster initialization;
(2) calculation of mutually connected points; and (3) cluster updating.
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1 INTRODUCTION

Clustering is a widely-known unsupervised machine learning algorithm. The idea behind clustering is to form several groups
or clusters of unlabelled elements so that the data points of each cluster are similar to each other1. An ordered collection
of values for a variable that were taken at predetermined intervals of time is known as a time series2. Time series analysis
frequently involves forecasting future values in a time-series context as well as the recognition and application of patterns3.
In this regard, clustering alludes to the grouping of historical time series data into meaningful sets of consecutive or non-
consecutive points in order to detect trends or patterns. However, the study of a specific cluster, which can change over time,
isn’t given much attention in the literature. For grouping such changing time-dependent observations, we propose a DYNamic
Aggregation of Mutually-connected poInts clusTEring (DYNAMITE) based clustering algorithm for time series. Despite the
fact that ’DYNAMITE’ is based on time-dependent observations, it is not necessary to use time-dependent sequences. If one is
specifically interested in studying the evolution of clusters over a specified parameter, it is possible to accomplish this with our
proposed method.’DYNAMITE’ can be applied in instances such as clustering colonial bacteria growth, societal clustering of
people over time or study galaxy/constellation formation by different stars and planets over time.

Our Contributions: The main contributions of this work are: i) Initiate an unconventional time series clustering problem,i.e.,
grouping dynamic observations, ii) Propose a new methodology ‘DYNAMITE’ based on dynamic aggregation of observations to
address such problems and iii)‘DYNAMITE’ method can predict the clusters for immediate timeframes from the final stabilised1

instance. Clustering over a period of time using classical methods like Gaussian mixture model (GMM), Density-based Spatial
Clustering of Applications with Noise (DBSCAN)4, and K-means, which cluster the observations in each time frame, adds
computational complexity5.’DYNAMITE’ initiates with a classic DBSCAN model but minimises the time and computational
complexity owing to its predictive nature across brief time instances after stabilisation of the model. Further, Section II confers
the proposed framework and Section III concludes the paper and highlights future research directions.

1Stabilization is the condition of data points when they remain in the same position for specific variable frames. The user can adjust the value of the variable frame,
which can be thought of as a hyperparameter of the algorithm (its minimum value is 2).
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FIGURE 1 Proposed ’DYNAMITE’ Model Architecture. The figure shows how the clustering evolved from the Initial Stage(𝑡0)
to its Intermediate Form(𝑡1, 𝑡2, ..., 𝑡𝑛−1) and finally to the Stabilised Final Cluster (𝑡𝑛).
2 DYNAMITE: PROPOSED METHODOLOGY

‘DYNAMITE’ comprises 3 phases which are (1) initialization, (2) transition and (3) stabilisation. DBSCAN6 is used to cluster
the observations in the first phase (denoted as 𝑡0 in Figure 1 ) since it can detect the number of clusters automatically. The
Mutually-connected data points are determined in the second phase, and clusters are updated as 𝑡1 → 𝑡𝑛−1 (in Fig1 ). Stabilization
is the last phase, which is denoted by 𝑡𝑛 and occurs when the cluster stabilises and no notable changes occur. The detailed model
is described below:
2.1 Step I - Initialization
Each data point of the dataset is assigned to a specific cluster for 𝑡 = 𝑡0 using DBSCAN Clustering Algorithm. It divide
the dataset into 𝑘(𝐾1, 𝐾2, 𝐾3, ..., 𝐾𝑘) clusters on the basis of density. The density-based clustering algorithm4 has the ability
to cluster arbitrary shaped dataset in case of unknown data distribution. Due to its straightforward and effective features, the
standard density-based clustering algorithm known as DBSCAN is frequently employed for data cluster analysis6. The DBSCAN
algorithm divides each point into core, boundary and noise based on how densely it coexists with adjacent points. Core points
are the ones that has at least minPts (threshold value) number of points (including the point itself) in its immediate vicinity with
radius 𝜖. If a point can be reached from a core point and there are less points in its immediate vicinity than minPts, it is a border
point. Noise is a point that doesn’t have any neighbours around. The core points surrounded by the boundary points, constitutes
a valid cluster and the points are labelled as per their belonging to a cluster.

2.2 Step II - Calculation of Mutually Connected Points
After the initial clustering, ‘DYNAMITE’ follows the following steps: (1) Define the velocity vector 𝑉𝑖 for each of the data
points, (2) Consider a communication range and (3) Calculate all the mutually connected points in accordance to the movement
of point 𝑃𝑖 in a dynamic scatter plot, at a specified time as portrayed in Figure 2 .

At a given time frame 𝑡, the position vector of any point in a 2-Dimensional plane ( 𝑃𝑖) is 𝑥𝑖𝑡 �̂�+ 𝑦𝑖𝑡𝑗 . To calculate the velocity
vector of that point at 𝑡, the immediate prior time frame 𝑡 − 1 is taken into account , at which the position vector of the point 𝑃𝑖
is 𝑥𝑖𝑡−1 �̂� + 𝑦𝑖𝑡−1𝑗. From the above equations, the velocity vector 𝑉𝑖 of point 𝑃𝑖 can be defined as:
𝑉𝑖 = 𝑥𝑖𝑡 �̂�+𝑦𝑖𝑡𝑗−𝑥𝑖𝑡−1 �̂�+𝑦𝑖𝑡−1𝑗 ⇒ 𝑉𝑖 = (𝑥𝑖𝑡−𝑥𝑖𝑡−1 )̂𝑖+(𝑦𝑖𝑡−𝑦𝑖𝑡−1)𝑗 ⇒ ⃖⃖⃗𝑉 𝑖𝑡 = 𝑉𝑥𝑖𝑡

�̂�+𝑉𝑦𝑖𝑡
𝑗 𝑤ℎ𝑒𝑟𝑒, 𝑉𝑥𝑖𝑡

= 𝑥𝑖𝑡−𝑥𝑖𝑡−1 , 𝑉𝑦𝑖𝑡
= 𝑦𝑖𝑡−𝑦𝑖𝑡−1

Here, the directional vector ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 from 𝑃𝑖𝑡 to 𝑃𝑗𝑡 can be represented as: ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 = (𝑃𝑗𝑡 − 𝑃𝑖𝑡) = 𝑥𝑗𝑡 �̂� + 𝑦𝑗𝑡𝑗 − 𝑥𝑖𝑡 �̂� − 𝑦𝑖𝑡𝑗 =
(𝑥𝑗𝑡 − 𝑥𝑖𝑡 )̂𝑖 + (𝑦𝑗𝑡 − 𝑦𝑖𝑡)𝑗 = 𝑟𝑖𝑗𝑥 �̂� + 𝑟𝑖𝑗𝑦𝑗 where, 𝑃𝑗𝑡 = Positional vector of point 𝑗 at time 𝑡(𝑖 ≠ 𝑗). If the dot product7 of velocity
vector ⃖⃖⃖⃗𝑉𝑖𝑡 and the directional vector ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 is taken, we get:

⃖⃖⃖⃗𝑉𝑖𝑡 ⋅ ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 = 𝑉𝑖𝑡 ⋅ 𝑟𝑖𝑗𝑡 ⋅ 𝑐𝑜𝑠𝜙𝑖 (1)

where 𝜙𝑖 refers to the angle inscribed between velocity vector of point 𝑃𝑖 and the directional vector from point 𝑃𝑖𝑡 to 𝑃𝑗𝑡 .
Equation 2 showcases the value of the angle 𝜙𝑖. The Communication Range is conceptualised as an angle 𝜃 on either side of
the vector 𝑉𝑖 , as shown in Figure 3 (a). 𝜃 here acts as the boundary which facilitates the interraction between points. For every
data point 𝑃𝑗 falling in that Communication Range, it is checked whether point 𝑃𝑖 falls under their communication range or not.
If so, then all of these points are considered to be Mutually Connected Data-points.

If 𝜙𝑖 > 𝜃 ⇒ point lies outside of the Communication Range.
Else 𝜙𝑖 ≤ 𝜃 ⇒ point lies inside the Communication Range.
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FIGURE 2 (a) Visualisation of mutually connected data points in accordance to our proposed ’DYNAMITE’ methodology. (b)
Position of mutually connected data points in subsequent time frames.

Different communication ranges are obtained by adjusting the angle 𝜃, which in turn, alters the clustering performance of the
algorithm. All Mutually Connected Data-points can be achieve by checking 𝜙𝑗 ≤ 𝜃. By validating the condition in accordance
with Equation 2 one can find all the Mutually Connected points for 𝑃𝑖 at time frame 𝑡.

𝑐𝑜𝑠𝜙𝑖 =
(𝑥𝑗𝑡 − 𝑥𝑖𝑡)𝑉𝑥𝑖𝑡

+ (𝑦𝑗𝑡 − 𝑦𝑖𝑡)𝑉𝑦𝑖𝑡
√

𝑉 2
𝑥𝑖𝑡

+ 𝑉 2
𝑦𝑗𝑡

√

(𝑥𝑗𝑡 − 𝑥𝑖𝑡)
2 + (𝑦𝑗𝑡 − 𝑦𝑖𝑡)

2
𝑎𝑛𝑑, 𝜙𝑗 = 𝑐𝑜𝑠−1

(𝑥𝑖𝑡 − 𝑥𝑗𝑡)𝑉𝑥𝑖𝑡
+ (𝑦𝑖𝑡 − 𝑦𝑗𝑡)𝑉𝑦𝑖𝑡

√

𝑉 2
𝑥𝑗𝑡

+ 𝑉 2
𝑦𝑗𝑡

√

(𝑥𝑖𝑡 − 𝑥𝑗𝑡)
2 + (𝑦𝑖𝑡 − 𝑦𝑗𝑡)

2
(2)

For 3-Dimensional space, the velocity vector corresponding to point 𝑃𝑖 at time 𝑡 is: ⃖⃖⃖⃗𝑉𝑖𝑡 = 𝑉𝑥𝑖𝑡
�̂�+𝑉𝑦𝑖𝑡

𝑗 +𝑉𝑧𝑖𝑡
�̂� 𝑤ℎ𝑒𝑟𝑒, 𝑉𝑥𝑖𝑡

=
𝑥𝑖𝑡 − 𝑥𝑖𝑡−1 , 𝑉𝑦𝑖𝑡

= 𝑦𝑖𝑡 − 𝑦𝑖𝑡−1 , 𝑉𝑧𝑖𝑡
= 𝑧𝑖𝑡 − 𝑧𝑖𝑡−1 and the directional vector ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 from 𝑃𝑖𝑡 to 𝑃𝑗𝑡 can be represented as:

⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 = (𝑃𝑗𝑡 − 𝑃𝑖𝑡) = ( ⃖⃖⃖⃖⃖⃖⃗𝑂𝑃𝑗 − ⃖⃖⃖⃖⃖⃖⃗𝑂𝑃𝑖) = 𝑟𝑖𝑗𝑥 �̂� + 𝑟𝑖𝑗𝑦𝑗 + 𝑟𝑖𝑗𝑧 �̂� 𝑤ℎ𝑒𝑟𝑒, 𝑟𝑖𝑗𝑥𝑡 = (𝑥𝑗𝑡 − 𝑥𝑖𝑡) , 𝑟𝑖𝑗𝑦𝑡 = (𝑦𝑗𝑡 − 𝑦𝑖𝑡) , 𝑟𝑖𝑗𝑧𝑡 = (𝑧𝑗𝑡 − 𝑧𝑖𝑡)

FIGURE 3 Graphical representation of Communication Range with region of interest in (a) 2-Dimension (b) 3-Dimension.

Algorithm 1 [𝑆𝑚, 𝑚𝑡] = CalMutualCP(𝑃𝑖, 𝑃𝑗)
Input: 𝑃𝑖, 𝑃𝑗(𝑗 ← (1 → 𝑛)) Output: Set of Mutually-connected points 𝑚𝑡 ← 0 𝑆𝑚 ← Set of Mutually-connected

points

for 𝑖 ≠ 𝑗 do ⃖⃖⃖⃗𝑉𝑖𝑡 ⋅ ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 = 𝑉𝑖𝑡 ⋅ 𝑟𝑖𝑗𝑡 ⋅ 𝑐𝑜𝑠𝜙𝑖; ⊳ Equation 1

if 𝜙𝑖 ≤ 𝜃 then ⃖⃖⃖⃗𝑉𝑗𝑡 ⋅ ⃖⃖⃖⃖⃗𝑟𝑗𝑖𝑡 = 𝑉𝑗𝑡 ⋅ 𝑟𝑗𝑖𝑡 ⋅ 𝑐𝑜𝑠𝜙𝑗 ; ⊳ Equation 2

if 𝜙𝑗 ≤ 𝜃 then 𝑆𝑚 ← [𝑆𝑚, 𝑃𝑗] 𝑚𝑡 = 𝑚𝑡 + 1
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Therefore the angle 𝜙𝑖, expressed between the directional vector ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 from point 𝑃𝑖𝑡 to 𝑃𝑗𝑡 and velocity vector ⃖⃖⃖⃗𝑉𝑖𝑡 of point 𝑃𝑖

is shown in Equation 3. According to Figure 3 (b), a 3D cone2 is considered around the velocity vector ⃖⃖⃖⃗𝑉𝑖𝑡 with a semi vertical
angle 𝜃 to be the Communication Range of 𝑃𝑖𝑡 . To determine whether the point 𝑃𝑗𝑡 falls inside this cone, check if 𝜙𝑖 ≤ 𝜃 or not.
Similar to 2D plane, in 3D space, each point 𝑃𝑗 falling inside the communication range of 𝑃𝑖 is evaluated whether point 𝑃𝑖 falls
under their communication range or not. By calculating all such points all the Mutually Connected Data points for 𝑃𝑖 at time
frame 𝑡 are obtained. It is achieved by checking if 𝜙𝑗 ≤ 𝜃 where,

𝑐𝑜𝑠𝜙𝑖 =
⃖⃖⃖⃗𝑉𝑖𝑡 ⋅ ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡

|

⃖⃖⃖⃗𝑉𝑖𝑡 | ⋅ |⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 |
𝑜𝑟, 𝜙𝑖 = 𝑐𝑜𝑠−1

𝑟𝑖𝑗𝑥𝑡𝑉𝑥𝑖𝑡
+ 𝑟𝑖𝑗𝑦𝑡𝑉𝑦𝑖𝑡

+ 𝑟𝑖𝑗𝑧𝑡𝑉𝑧𝑖𝑡
√

𝑉 2
𝑥𝑖𝑡

+ 𝑉 2
𝑦𝑖𝑡

+ 𝑉 2
𝑧𝑖𝑡

√

𝑟2𝑖𝑗𝑥𝑡 + 𝑟2𝑖𝑗𝑦𝑡 + 𝑟2𝑖𝑗𝑧𝑡

𝑎𝑛𝑑, 𝜙𝑗 = 𝑐𝑜𝑠−1
𝑟𝑗𝑖𝑥𝑡𝑉𝑥𝑗𝑡

+ 𝑟𝑗𝑖𝑦𝑡𝑉𝑦𝑗𝑡
+ 𝑟𝑗𝑖𝑧𝑡𝑉𝑧𝑗𝑡

√

𝑉 2
𝑥𝑗𝑡

+ 𝑉 2
𝑦𝑗𝑡

+ 𝑉 2
𝑧𝑗𝑡

√

𝑟2𝑗𝑖𝑥𝑡 + 𝑟2𝑗𝑖𝑦𝑡 + 𝑟2𝑗𝑖𝑧𝑡
(3)

Similarly for n-Dimensional space, the velocity and directional vector is represented as:

⃖⃖⃖⃗𝑉𝑖𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑉𝑥1𝑖𝑡
𝑉𝑥2𝑖𝑡
⋯
𝑉𝑥𝑛𝑖𝑡

⎤

⎥

⎥

⎥

⎥

⎦

𝑎𝑛𝑑 ⃖⃖⃖⃖⃗𝑟𝑖𝑗𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑟𝑖𝑗𝑥1𝑡
𝑟𝑖𝑗𝑥2𝑡
⋯

𝑟𝑖𝑗𝑥𝑛𝑡

⎤

⎥

⎥

⎥

⎥

⎦

𝑤ℎ𝑒𝑟𝑒, 𝑉𝑥𝑛𝑖𝑡
= 𝑥𝑛𝑖𝑡 − 𝑥𝑛𝑖𝑡−1 𝑎𝑛𝑑 𝑟𝑖𝑗𝑥𝑛𝑡

= 𝑥𝑛𝑗𝑡 − 𝑥𝑛𝑖𝑡 (4)

Therefore, the angle 𝜙𝑖 can be represented as in equation 5. Here, the points within Communication Range of point 𝑃𝑖 are
determined by checking whether 𝜙𝑖 ≤ 𝜃. For every such point 𝑃𝑗 , condition 𝜙𝑗 ≤ 𝜃 is verified, which in turn provides all the
Mutually-Connected Data-points in n-Dimensional space. Equation 5 demonstrates the value of 𝜙𝑗 .

𝜙𝑖 = 𝑐𝑜𝑠−1
∑𝑛

𝑛=1 𝑉𝑥𝑛𝑖𝑡
𝑟𝑥𝑛𝑖𝑗𝑡

√

∑𝑛
𝑛=1 𝑉 2

𝑥𝑛𝑖𝑡

√

∑𝑛
𝑛=1 𝑟2𝑥𝑛𝑖𝑗𝑡

𝑎𝑛𝑑, 𝜙𝑗 = 𝑐𝑜𝑠−1
∑𝑛

𝑛=1 𝑉𝑥𝑛𝑗𝑡
𝑟𝑥𝑛𝑗𝑖𝑡

√

∑𝑛
𝑛=1 𝑉 2

𝑥𝑛𝑗𝑡

√

∑𝑛
𝑛=1 𝑟2𝑥𝑛𝑗𝑖𝑡

(5)

2.3 Step III - Updation of cluster :
Let𝑚𝑡𝑖 represents all the mutually connected data points for each specific point 𝑃𝑖 at time frame 𝑡, and then take into consideration
a distribution based on distance, starting with the closest; where point 𝑃𝑖 and point 𝑃𝑗 are separated distance: 𝑟𝑖𝑗 =

√

∑𝑛
𝑛=1 𝑟2𝑥𝑛𝑖𝑗𝑡

.
The Distance of Socialisation may be defined as the distance from the origin up to the median (i.e. 𝑟𝑖𝑗 ≤ 𝑀𝑖 where 𝑀𝑖 =

Median of all the distances 𝑟𝑖𝑗) of the distribution since these are the social connections that have the greatest influence at that
specific point.

Weights Initialization : All points up to the Distance of Socialization have their weights initialised using any monotonically
decreasing function,as Exponential (𝜆𝑖𝑒−𝑛𝑟𝑖𝑗 ), Algebraic (𝜆𝑖

1
1+𝑟𝑛𝑖𝑗

), Logarithmic (𝜆𝑖 ln
𝑛𝑟𝑖𝑗+𝑒
𝑛𝑟𝑖𝑗+1

), and Trigonometric (𝜆𝑖 tan
𝜋

𝑛|𝑟𝑖𝑗 |+4
)

where 𝑛= Number of dimension, 𝑟𝑖𝑗 = Distance between 𝑖th and 𝑗th observation in relation to the distance from the corresponding
points. This Weight initialization is shown in Figure 4 . Since it depicts the velocity at which the data points are travelling at
time instant 𝑡, 𝜆 is inversely proportional to the length of the directional vector 𝑉𝑖 as in equation 6.

𝜆𝑖 ∝
1
|

|

𝑉𝑖
|

|

⇒ 𝜆i =
𝜆0
|

|

𝑉𝑖
|

|

(6)

where, 𝜆0 = Social Strength Index is a hyperparameter provided by the user 𝜆0 ∈ [0, 1]. Social Strength Index determines
whether the observations are Sociophilic3 or Sociophobic4 in nature. For Sociophobic instances, 𝜆0 → 0. Contrasted with it, for
Sociophilic instances, 𝜆0 → 1.

Consider the initialised weights 𝑤𝑗 with regards to their distances and sum up all the values for each particular cluster 𝐾𝑛, as
𝑊𝑃𝑖

(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐾𝑛) =
∑𝑘

𝑛=1 𝑤𝑗(𝐾𝑛). Then we determine the probability 𝑝𝑃𝑖
of a point 𝑃𝑖 for being in a particular cluster 𝐾𝑛 as

demonstrated below [Eq. 7]:

𝑝𝑃𝑖
(𝐾𝑛) =

𝑊𝑃𝑖
(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐾𝑛)

∑𝑘
𝑛=1 𝑊𝑃𝑖

(𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐾𝑛)
(7)

2When a 2D angle is rotated with respect to a central axis, it generates a 3D cone. Thus, a cone has been considered to determine a 3D communication range.
3In Sociophilic observations, the distance between observations heavily influences the clusters.
4Sociophobic clusters are indifferent of the distance between observations.
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FIGURE 4 Weights initialization according to different monotonically decreasing functions.
The point 𝑃𝑖 is assigned it to the particular cluster with maximum probability [Eq 8], and the cluster information for all data
points 𝑃𝑖 is then updated accordingly.

argmax
𝑛

(𝑝𝑃𝑖
(𝐾𝑛) ) (8)

2.4 Step IV - Weights Updation
Moving on to the next time frame 𝑡𝑖+1 , for all the socially connected points of a point 𝑃𝑖 , we scrutinize whether they are still
mutually connected or not [as in Fig. 2 ]. Further we check if the velocity of the point in the next time instance is same or not.

If Yes: The change in distance between the data points Δ𝑥 is assessed and the weights are updated as follows:
when Δ𝑥 > 0 ∶

𝑤𝑛𝑒𝑤 ← 𝑤𝑜𝑙𝑑 − 𝛼
|

|

|

|

Δ𝑥
𝑥

|

|

|

|

(9)

when Δ𝑥 < 0 ∶
𝑤𝑛𝑒𝑤 ← 𝑤𝑜𝑙𝑑 + 𝛼

|

|

|

|

Δ𝑥
𝑥

|

|

|

|

(10)

when Δ x = 0 ∶
𝑤𝑛𝑒𝑤 ← 𝑤𝑜𝑙𝑑 (11)

where 𝛼 is interaction parameter ∈ [0, 1].
Else: The previous mutually connected points are discarded and weights of the new points are initialized from the initial

weight distribution.
The weight-bias updation formulae used in Artificial Neural Networks (ANN)8 heavily impact the weight update as seen in

equations 9 10 11. The interaction parameter(𝛼) acts similar to the learning rate in ANN methodology which can be fine-tuned
by the user depending on their datasets. In Fig. 2 (b), the displacement of point 𝑄 from 𝑄𝑡 to 𝑄𝑡+1 has varying influence(weight)
with respect to point 𝑃 . This variation is introduced in the model using the interaction parameter(𝛼).

If: Displacement of point 𝑄 has negligible influence on its weight over point 𝑃 , 𝛼 ≈ 0
Else if: Displacement of point 𝑄 has high influence on its weight over point 𝑃 , 𝛼 ≈ 1
Step - IV is repeated for the time frame 𝑡𝑖+1 and subsequent others with updated weights until the dataset stabilizes, The change

in number of Transitioning Points5 ≤ 𝜖, where 𝜖 is a predefined threshold provided by user (Stabilization of Observations).

3 CONCLUSION AND FUTURE WORKS

In this paper, the transition of a cluster of points over time was discussed and proposed a novel method to predict how the
clusters will evolve across a number of immediate time frames. Interactions between observations according to their distances
is the foundation of the methodology. As a result, compared to conventional clustering algorithms like DBSCAN, K-means,
and GMM, the clusters may be predicted for a brief period of time when the data points become stable, hence, reducing time
and computational complexity. The model has a number of hyperparameters that can be fine tuned allowing the model to be
optimised for the specific environment. ’DYNAMITE’ methodology can be applied in any parametric scenario to track how
the cluster evolves in relation to the parameterized variable. To sum up, we can conclude that the theoretical formulation of
the aforementioned model enables the recommended technique to anticipate cluster evolution. In future work, ’DYNAMITE’

5The points changing its location in immediate time frames.
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Algorithm 2 𝐾𝑛 = ClustUpdate(𝑆𝑚, 𝑤𝑗 , 𝐾𝑝𝑖)
Input:Set of𝑆𝑚,𝑤𝑗 , Initial Clusters Output: Updated cluster 𝑤𝑗 ←Communication strength; 𝑛 ←No. of observations

𝐾𝑃𝑖
← Initial cluster of 𝑃𝑖 𝑆𝑚𝑖

← 𝑆𝑚 of 𝑃𝑖; ⊳ 𝑆𝑚 from Algorithm 1

for 𝑖 ← (1 → 𝑛) do
for 𝑗 ∈ 𝑆𝑚𝑖

do
𝑟𝑖𝑗 = |⃖⃖⃖⃗𝑟𝑖𝑗|; 𝑅𝑖𝑗 ← [𝑅𝑖𝑗 , 𝑟𝑖𝑗] 𝑀𝑖 ← Median of 𝑅𝑖𝑗

while 𝑟𝑖𝑗 ≤ 𝑀𝑖 do 𝑊𝑃𝑖
(𝐾) ←

∑

𝑤𝑗(𝐾);
𝐾𝑛 ← max(𝑊𝑃𝑖

(𝐾)); ⊳ Equation 8 𝐾𝑃𝑖
← 𝐾𝑛

Algorithm 3 𝐾𝑇 = WeightUpdate(𝜖, 𝐾𝑡, 𝑆𝑚)
Input: 𝜖, 𝐾𝑡, 𝑆𝑚 Output: Final Cluster 𝜖 ← Threshold value 𝑁𝑡 ← No. of Transitioning points 𝐾𝑡 ← Cluster of pt.

𝑃 at 𝑡 𝑛 ←No. of observation

while 𝑁𝑡 ≤ 𝜖 do
for 𝑖 ← (1 → 𝑛) do 𝑆𝑚𝑡+1

← 𝑆𝑚 of 𝑃𝑖 for (𝑡 + 1); ⊳ Algorithm 1

for 𝑗 ≠ 𝑖 do
if 𝑗 ∈ 𝑆𝑚𝑡+1

and 𝑉𝑗𝑡+1 = 𝑉𝑗𝑡 then Δ𝑥 ←Displacements of point 𝑃𝑗 𝑤𝑗 ← 𝑤𝑛𝑒𝑤; ⊳ According to Equations 9 10 11

else 𝑤𝑗 ← Communication strength; 𝐾𝑡+1 ← ClustUpdate(𝑆𝑚𝑡+1
, 𝑤𝑗 , 𝐾𝑡); ⊳ Algorithm 2

if 𝐾𝑡 ≠ 𝐾𝑡+1 then 𝑁𝑡+1 ← 𝑁𝑡+1 + 1 𝑁𝑡 ← 𝑁𝑡+1

can be implemented this entire theoretical methodology as a Python module to test it on some real world datasets. Further, the
following open issues could be explored5: (1) identifying the datasets and use-cases where the model performs well. (2) Real-
time training of ’DYNAMITE’ will be tested in future so that the created model should have the provisions for handling situations
in which new clusters arise while the model is being run. (3) the explainability and interpretability of the ’DYNAMITE’ can be
experimented for better detailing of the algorithm5.
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