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Systems
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Abstract

In this work, two machine learning (ML)-based structures for joint detection-channel estimation

in OFDM systems are proposed and extensively characterized. Both ML architectures, namely

Deep Neural Network (DNN) and Extreme Learning Machine (ELM), are developed to provide

improved data detection performance and compared with the conventional matched filter (MF)

detector equipped with the minimum mean square error (MMSE) and least square (LS) channel

estimators. The bit-error-rate (BER) performance vs computational complexity trade-off is analyzed,

demonstrating the superiority of the proposed DNN-OFDM and ELM-OFDM detectors methodolo-

gies.

Index Terms

Machine learning, neural networks, OFDM, detection, deep learning, DNN, ELM, MMSE, LS,

BER.

I. INTRODUCTION

The conventional orthogonal frequency-division multiplexing (OFDM) system is a multi-

carrier scheme widely utilized in communication systems due to its capacity to combat

frequency-selective fading in wireless channels. Besides, Artificial intelligence (AI) and

machine learning (ML) are relevant approaches in the current complex, highly demanded
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radio access scenarios, combined with the spectrum scarceness. The ML resources and tech-

niques can be applied to improve the performance-complexity trade-off of OFDM systems,

specifically on the receiver side. In this work, two AI-based methods, specifically a DNN-

based and an ELM-based jointly symbol detection and pilot-assisted channel estimation are

investigated; both techniques are compared with the conventional linear estimation methods,

such as least square (LS) and minimum mean square error (MMSE) [1], [2].

ML techniques have been widely used in different telecommunication applications as a

satisfactory predictor in OFDM system [3]–[5], as a near-optimal signal detection in OFDM

with index modulation (OFDM-IM) [6], and as a channel estimator for massive MIMO [7]. In

[3], the authors discuss the deep learning (DL) applicability for channel estimation and signal

detection in OFDM systems. The DL-based prediction technique is explored to implicitly

estimate the channel state information (CSI) and then detect the transmitted symbols using

the estimated CSI. For that, the deep learning model is first trained offline using the data

generated by simulation based on channel statistics and then used for recovering the online

transmitted data directly.

Deep neural network (DNN) is a type of artificial neural network presenting a large

number of hidden layers and hyper-parameters into its composition, i.e., DNN implies high

computational operations in contrast to Extreme Learning Machine (ELM) that has simply one

hidden layer [8]. In intricate telecommunication scenarios, specifically in the 5G and beyond

systems, authors in [4] propose a different architecture for the OFDM receiver aided by

ELM technique. Besides, a multi-ELM, i.e., a parallel multiple split complex ELM structure

is proposed in [5]. In [6], a DL-based detector structure for OFDM with index modulation

(OFDM-IM) is proposed, termed DeepIM. The authors deploy a deep neural network with

fully connected layers to recover data. Aiming to enhance the DeepIM performance, the

received signal and channel vectors are pre-processed based on the domain knowledge before

entering the network. Data sets available by simulations are deployed to train offline the

DeepIM aiming at optimizing the bit error rate (BER) performance. After that, the trained

model is deployed for the online signal detection.

Contributions. We propose and analyze the deployment of promising ML tools applied

through jointly detection and channel estimation in OFDM systems. i) First, we have adopted

and analyzed two ML-based topologies for OFDM data detection and channel estimation:

a DNN-based and ELM-based OFDM joint detector and channel estimator. ii) We have

deployed and characterized existing models by applying them to more complex scenar-
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ios, including multi-user systems, realistic path-loss, and short-term fading wireless channel

configurations. iii) Extensive numerical results characterizing the performance-complexity

trade-off for both ML-based OFDM detectors, demonstrating that such an approach is quite

competitive.

Notations. Italic lowercase or capital letters are scalars, boldface capital letters denote the

frequency-domain vectors meanwhile boldface lowercase letters are vectors in the time do-

main. Operators E[·], (·)T , (·)H and (·)† denote the statistical expectation, a vector or matrix

transpose, Hermitian and Moore-Penrose pseudo-inverse, respectively; |A| holds for the

cardinality of the set A, � denotes the element-wise multiplication, � denotes the element-

wise division, and ~ represents the convolution operation.

II. SYSTEM MODEL

Assuming an OFDM system with a set U = {1, . . . , U} users, a number of Nc sub-

carriers and the duration of the cyclic prefix Tg, a transmitted signal in frequency domain

can be defined as X = [X1, . . . , XNc ]
T , leading to a received signal Y = [Y1, . . . , YNc ]

T ,

with multi-path channel H = [H1, . . . , HNc ]
T , and zero-mean Gaussian noise samples Z =

[Z1, . . . , ZNc ]
T described by complex random variables Zi ∼ CN (0, σ2), where σ2 is the noise

power in each OFDM sub-channel. The received signal in the frequency and time domain

can be written, respectively:

Y = X�H + Z, and y = x ~ h + z (1)

where y, x, h and z means IDFT of Y, X, H and Z respectively. In the considered path-loss

model the received signal power decays according to dηk, where dk is the distance between BS

and the kth user, while η represents the path-loss exponent. Hence, the transmitted power per

sub-carrier and the average receiver power per subcarrier (P ) are related by: P = d−ηu · PT

Nc
,

where PT is the total power available at transmitter side. Besides, since more than one user

sharing the same sub-channel is admitted, resulting in an OFDM system operating under

inter-user interference (IuI), in Section IV we proceed with sub-carrier selection to know

what sub-carriers sub-set results in smaller IuI, aiming to maximize the SINR in the kth

sub-carrier.

LS OFDM Channel Estimation. As aforementioned, firstly we assume that an OFDM

pilot symbol is transmitted (channel estimation mode) and then OFDM data symbols can be

transmitted (data mode) inside the channel coherence time (∆t)C interval; this composition

form an OFDM frame. Inside an OFDM frame, the channel state information (CSI) is
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unchangeable but it changes from one frame to another. One common technique for OFDM

channel estimation is the least-squares (LS) method [1]. This technique is the simplest way

to estimate the state of the channel; as a result, it is possible to estimate the OFDM symbols

inside the same (∆t)C time interval. Once Xp = [X1, . . . , XNpilot
c

]T and Yp = [Y1, . . . , YNpilot
c

]T

are the transmitted and received OFDM pilot vectors, respectively, with Npilot
c the number

of sub-carriers reserved to the pilots in the OFDM frame, then the LS channel estimation

in the pilot OFDM sub-channels, and the data detection based on LS channel estimator are

obtained, respectively, by:

H̃
LS

= Yp � Xp, and X̃d = Yd � H̃
LS
, (2)

where Ndata
c is the number of sub-carriers destined to data symbol in the OFDM frame; X̃d

and Yd are the recovery data and received data vectors, respectively.

MMSE OFDM Channel Estimation. The MMSE channel estimator is considered a better

linear solution than the aforementioned LS channel estimation due to the weight (regular-

ization) channel matrix inversion, which is optimized in the same way as the LS solution

according to the minimum mean square error problem. However, the development of the

MMSE solution requires the knowledge of the signal-to-noise ratio (SNR), being the channel

estimate obtained from the LS solution as [1]:

H̃
MMSE

= R
HH̃LS

[
RHH + I 1

γ̄

]−1

H̃
LS
, (3)

where RAB denotes the cross-correlation matrix between matrices A and B, i.e., RAB =

E[ABH ]; the pre-processing SNR at the receiver side is defined as γ̄ , P
σ2 , with P the average

power per sub-channel at receiver side.

III. ML-BASED OFDM DETECTION SCHEMES

In the context of machine learning, the training occurs by generating random data com-

municating across a channel that arrives at the receiver, and then that data is part of a data

set containing labels and features. This paper presents an analysis and comparison of two

different ML-based detectors that are promising for realistic OFDM system scenarios. The

deployed OFDM system model is depicted in Fig. 1; the DNN and ELM architectures are

described in the following.

DNN-based Detection. The DNN is an architecture composed by 2 ·Nc input nodes being

a real and imaginary part of OFDM frame, where Nc = Npilot
c + Ndata

c . This model has
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exclusively 3 hidden layers, Fig. 2, in which each layer is composed of 500, 250, and 120

neurons, respectively, in the same way as adopted in [3].

The proposed DNN-based OFDM detector is exclusively inspired in offline training strat-

egy, i.e., for the training stage, the DNN inputs (features) are composed by the real and

imaginary part of OFDM symbols that arrives at the receiver, while the outputs (labels) are

estimates for the transmitted bits. The DNN outputs are obtained from a non-linear function

of input nodes:

X̂DNN = f(Y, θ) = fL−1(fL−2(...f 1(Y))) (4)

where θ is the set of bias and weights and L means the number of layers. The bias and weight

coefficients are optimized in the training stage. The DNN model has the goal of minimizing

the mean squared error (MSE) loss function, defined by:

Floss =
1

L

L∑
k=1

[
X̂(k)−X(k)

]2

(5)

where X̂(k) denotes the predictions, X(k) the data symbol, and L is the number of data

samples in the estimation data set.

DNN Training. The training step is responsible for the DNN to learn the channel char-

acteristics; hence the data set must be known and sufficiently large, beyond it should be

transmitted in a fraction of the channel coherence time (∆t)C interval to allow the system

attains suitable accuracy in the channel estimate process. Once trained, the network may be

utilized to decode data to any online transmission scheme (test stage), also assuming the

same parameters utilized previously at the training stage.

Extreme Learning Machine (ELM) based Detection. The ELM network has other important

feature that differs from DNN, its architecture is subdivided into Nc sub-networks, i.e., in

the OFDM context, a sub-network is deployed to treat the signal of each sub-carrier. Fig.

3 depicts an ELM topology for each OFDM sub-carrier. The parameters of hidden nodes

of ELM must be randomly generated, and afterward, they should be fixed to determine the

output layer weights according to [4], [5]. ELM architecture has 2 input nodes, the real and

imaginary parts of the nth sub-channel. In OFDM systems, the ELM architecture assumes

that the data and pilots are time-division multiplexed, i.e., inside a channel coherence time

(∆t)C interval, there are I transmitted pilots and K transmitted data symbols. This is a

primordial feature once the channel can be assumed invariant into the (∆t)C interval. Still,

the noise and possibly co-channel interference at the receiver side are variant in time. The
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data set provided by I pilots is helpful for the network to learn about statistics from noise

plus interference.

The hidden layer from ELM has an activation function applied to the data from the input

layer, Fig. 3, where the output of `th hidden node is given by:

oi,L = g(aTi · Yi + bL) (6)

where L means the number of hidden neurons, ai is a column vector of weights with

dimension 2 × 1, while bL means the bias from `th hidden node and Yi ∈ R2×1 is the

transmitted data. The jth hidden layer matrix O ∈ RI×L is given by:

Oj =


g(aT1 · Y1 + b1) · · · g(aTL · Y1 + bL)

... · · · ...

g(aT1 · YI + b1) · · · g(aTL · YI + bL)

 (7)
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Different from DNN, the ELM topology can be trained in a non-iterative mode in order

to minimize a training error function:

B̂ = min
B∈RL×2

∥∥∥OB−Xpilot

∥∥∥ = O†Xpilot (8)

where B̂ is a L×2 dimensional matrix denominated output weight matrix. Once the training

stage is completed for each sub-network (sub-carrier), then ELM can operate, i.e. the ELM-

OFDM detector can estimate the data by:

X̂ELM = OB̂ (9)

Eqs. (4) and (9) explicitly provide estimates of the transmitted signal (OFDM data detec-

tion). Although the OFDM channel estimation intrinsically occurs inside the ML detection

step, explicitly, we do not proceed with the channel estimation step. In this sense, the proposed

ML-based techniques are also suitable for non-coherent signal detection since such schemes

explicitly neither require channel state information knowledge at the transmitter nor the

receiver.

IV. SUB-CARRIER SELECTION FOR MAXIMIZING SINR

We describe a method for sub-carrier selection and allocation aiming at maximizing the

signal-to-interference plus noise ratio (SINR) across the users. Hence, in this work, we fix a

pre-defined value for the maximum number of sub-carriers per user, Ncpu, and the number of

sub-carriers that can support two OFDM users simultaneously subject to equal interference

level in those subcarriers. Notice that in the adopted system model, we have admitted more

than one user sharing the same sub-channel, resulting in an OFDM system operating under

inter-user interference. Also, to facilitate the analysis, but without loss of generality, we

have defined and selected an equal number of sub-carriers per user that generate the lesser

interference over other users, N eq
cpu. Our principal goal is to allocate as best as possible the

sub-carriers among the users in such a way that maximizes the SINR (optimization metric)

in the kth sub-carrier subject to interference in a given OFDM frame, which can be written

as:

SINRu(k) =
Pu(k)|Hu(k)|2

Pj(k)|Hj(k)|2 + σ2
, j 6= u; ∀k = 1, . . . , Ndata

c , ∀u ∈ U ; (10)

with Pu(k) =
PT

Ndata
c

, and Pj(k) =

 PT

Ndata
c

, if j ∈ Ju
0 otherwise
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where Ju represents the sub-set of users interfering in the kth subcarrier of user u. Notice

that Pu(k) = PT

Ndata
c

indicates equal power allocation (EPA) policy across the users, where

Pj(k) = PT

Ndata
c

means the EPA policy also for the jth interfering user in the kth sub-carrier;

Hu(k), Hj(k) mean the channel response for the uth and jth user in the kth sub-carrier,

respectively. A pseudo-code for subcarriers selection aiming at maximizing the SINR, eq.

(10), is depicted in Algorithm 1. U \ Ju is the set difference; i.e., it is the set of all those

elements that are in U but not in Ju.

Algorithm 1 Sub-carrier Selection for SINR maximization

1: for u = 1, 2, . . . , |U \ Ju| do

2: for k= Ncpu(u− 1) + 1 :Ncpu(u− 1) +Ncpu do

3: Evaluate the kth SINR for uth user as in (10);

4: end for;

5: Sort all SINR’s for uth user according to the descending order;

6: Select the first N eq
cpu SINR’s;

7: end for

V. SIMULATION RESULTS

Numerical results in terms of performance vs complexity trade-off for DNN and ELM

are analyzed. The parameters for learning DNN-OFDM and ELM-OFDM architectures are

summarized as follows, Fig. I.

OFDM System – Transmitter Antenna: nT = 1; Receiver Antenna: nR = 1; Modulation

Order (M -QAM): M = 4, 16, 32; Number of Users: U = 4; Sub-carriers: Nc = 64; Pilots

Number: Npilot = 64, 32, 16 and 8; Cyclic Prefix: Tg = 25% and 0%, (Fig. 6); Estimation

Methods: LS e MMSE.

Sub-carrier Interference & Power Allocation – Equal Power Allocation (EPA): Pu(k) =

PT

Nc
; Max. #sub-carriers/user: Ncpu = 16; Interfering sub-carriers/user: N eq

cpu = 4.

NLoS Channel – Cell radius: 500 m; Total Power: PT = 1 mW; SNR range: γ̄ ∈ [5; 25]

dB; LoS Channel Model: Rayleigh; Path Loss coefficient: η = −3; Path Loss model: d−ηu ;

Coherence Time: (∆t)C = 5 ms;

DNN Architecture – Hidden Layer: 3; Input Neuron: 256; Hidden Neurons: 500, 250 and

120; Output Neurons: 64; Activation Function: 3 Relu and 1 Sigmoid; Optimizer: Adam;

Loss Function: MSE; Epochs: 103; MCS realizations: 104;

ELM Architecture – Hidden Layer: 1; Input Neurons: 2 ; Hidden Neurons: L = 50;
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Output Neurons: 2; Sub-Network: 64; Activation Function: Radbas; Pilots symbols: I =

50, 100, 200; Data symbols: K = 400; and MCS realizations: T = 103.

We analyze the influence of several parameters, such as the number of pilots, the number

of users, and the SNR training on the BER performance is analyzed. The analytical average

BER performance is given by [9]: BERtheo = αM

2

[
1−

√
0.5βMγ̄

1+0.5βMγ̄

]
, where αM and βM are

constants that depend on the modulation type, i.e. αM is the number of nearest neighbors to

a constellation at the minimum distance, and βM is a factor relating the minimum distance to

the average symbol energy [9]. For 4-QAM results BERtheo = 1
2

[
1−

√
γb

1+γb

]
, where γb = γ̄

2
.

Channel Estimation Task. In this sub-section, we have analyzed the numerical results related

to both channel estimation methods through the normalized mean square error (NMSE)

metric, which can be defined as

NMSE =

∑S
i=1

∣∣∣H(i)− H̃(i)
∣∣∣2

SHVHH
V

(11)

where HV = vec ([H(1)H(2) . . . H(S)]), with vec(·) operator indicating the vectorization of

a matrix, which converts the (Nc × S) OFDM channel samples matrix into the HV channel

frequency domain column vector (NcS × 1); finally, S is the number of channel estimate

samples performed in the channel coherence time interval. Under medium to high SNR, both

linear channel estimators methods are suitable, e.g., for γ̄ = 20 dB, the NMSELS = 52×10−4,

with an order of magnitude in favor or the MMSE method.

Number of Pilots. The DNN architecture has the advantage of attaining a good performance

when compared with the classical channel estimators, such as MMSE and LS, the DNN make-

up for the information lack made by interpolation in LS and MMSE methods as depicted

in Fig. 4. The attainable BER for the DNN-OFDM detector is comparable to the BER

from MMSE and LS for all SNR regions. Such a BER is similar to that achieved by the

MMSE receiver assuming the same block-type size and arrangement, evidencing that the DNN

approach is promising. Also, Fig. 4.(b) reveals that DNN-detector under a reduced number of

pilots (8-pilots for DNN vs. 16-pilots MMSE vs. 8-pilots LS) outperforms the conventional

estimation methods, i.e., the DNN-OFDM detector presents desirable robustness against the

incomplete pilot’s size.

Impact of the Number of Users. So far, we have considered 4 users in the cell; hence, we

equally spread Ncpu = Nc/U sub-carriers per user. However, this model does not challenge

the DNN, since, in this scenario, there is no inter-carrier interference. In this way, we have

increased the number of active users inside the cell, aiming at verifying how DNN deals
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Table I: Simulation Parameters – Channel, System and DNN and ELM parameters.

Parameter Value

OFDM System

# Transmitter Antenna nT = 1

# Receiver Antenna nR = 1

# Modulation Order (M -QAM) M = 4, 16, 32

# Number of Users U = 4

# Sub-carriers Nc = 64

# Pilots Number Npilot = 64, 32, 16 and 8

# Cyclic Prefix Tg = 25% & 0%, (Fig. 6)

Estimation Methods LS e MMSE

Sub-carrier Interference & Power Allocation

Equal Power Allocation (EPA) Pu(k) = PT
Nc

Max. # sub-carriers/user Ncpu = 16

# Interfering sub-carriers/user Neq
cpu = 4

NLoS Channel

# Cell radius 500 m

Total Power PT = 1 mW

SNR range γ̄ ∈ [5; 25] dB

Channel Model Rayleigh

Path Loss coef. η = −3

Path Loss model d−ηu

Coherence Time (∆t)C = 5 ms

Parameter Value

DNN Architecture

# Hidden Layer 3

# Input Neuron 256

# Hidden Neurons 500, 250 and 120

# Output Neurons 64

Activation Function 3 Relu and 1 Sigmoid

Optimizer Adam

Loss Function MSE

# Epochs 103

# MCS realizations 104

ELM Architecture

# Hidden Layer 1

# Input Neurons 2

# Hidden Neurons L = 50

# Output Neurons 2

# Sub-Network 64

Activation Function Radbas

# Pilots symbols I = 50, 100, 200

# Data symbols K = 400

# MCS realizations T = 103

with the interference i.e., when two users share the same subcarrier. Fig. 5 depicts the BER

for a cell with |U| = 5, . . . , 8 users, where eight users mean the maximum co-subchannel

interference in a system with 64 sub-carriers where for each user it has been allocated 16

sub-carriers, which results in a maximal number of user per sub-carrier equal to 2.

Cyclic Prefix Influence on the Estimation Quality. In OFDM systems, the cyclic prefix

(CP) is paramount to mitigate inter-symbol interference (ISI); however, it has a cost in terms

of power, spectrum, and time. As depicted in Fig. 6, the DNN-based detector holds certain

robustness against the absence of CP in low and medium SNR regions due to better BER

performance compared to the linear MMSE and LS detectors with no use of CP. This indicates

that the analyzed DNN architecture can learn the characteristics of channels and tends to better

estimate the channel w.r.t. channel inversion strategy implemented in the LS and MMSE. The

non-use of cyclic prefix is a great advantage offered by ML-based OFDM detectors, resulting

in a substantial increment in the overall energy and spectral efficiencies.
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Figure 8: DNN detector with CP = 25%: a) BER × SNR

curves parameterized on the size of Data Set and Epochs;

b) training time period; data-set size is 106.

The SNRtrain Effect on the BER Performance. the SNR was set for the training stage,

SNRtrain influences notably the BER performance, Fig. 7; e.g., at the low SNR data trans-

mission regime, γ̄ = 5 dB, the DNN-OFDM detector trained under SNRtrain = 5 dB attains

better performance; similarly, at high SNR regime (γ̄ = 25 dB), the better performance is

reached by the DNN topology trained under SNRtrain = 25 dB.

Pilot, Data Set and Modulation sizes. In the training phase, the DNN deals with the batch

size (Ψ), and epochs (Ω); such influence on the BER performance is shown in Fig. 8.a), while

the training time is depicted in Fig. 8.b). The better performance is obtained with Ψ = 10000

and Ω = 500, although this demands a high time for training. It is notable that under a low
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number of batch sizes and epochs the performance is suitable yet, e.g., for Ψ = 250 and

Ω = 1000, result in a reasonable performance with low training time.

Testing Time. In contrast with the training time of Fig. 8.b), the testing time, i.e., the

time necessary for each ML-based OFDM detector operate in real scenarios for realizing all

detection steps completion. The operation time for both detectors have resulted in TDNN = 4.7

ms and TELM = 4.2 ms. Such an operation time has been measured based on the transmission

of a single OFDM frame for DNN, while for ELM, we have considered I = 100 pilots and

K = 1 symbol, for all the 64 sub-carriers. As expected, the ELM-OFDM detector presents

a lower execution time to perform all steps, since its architecture comprises just one single

layer.

Computational Complexity for LS-OFDM, MMSE-OFDM, and ELM-OFDM detectors, in

terms of the number of operations parameterized on the number of subcarrier Nc, pilots I ,

and neurons L is given by O(I ·Nc), O(4 ·I ·N3
c ) and O(2 ·Nc ·L3) respectively. The number

of flops can be computed directly from the implemented code in Matlab using [10].

VI. CONCLUSIONS

Two ML-based topologies of OFDM detectors have been extensively analyzed and com-

pared with the conventional LS and MMSE detectors, evidencing that such topologies can

be more advantageous in terms of performance-complexity trade-off perspective. The DNN-

based OFDM detector presented a) a promising BER performance when compared to the

classical linear high-complexity inversion matrix-based OFDM detection techniques; b) ro-

bustness against the incomplete data training, implying in several pilots reduction; and c)

absence of cyclic prefix requirement, increasing the energy and spectral efficiencies of the

OFDM system. However, the DNN-based detector architecture results in relatively high com-

putational complexity. The ELM-based OFDM detector has been extensively characterized

to overcome this limitation, presenting a superior performance-complexity tradeoff.
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