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Abstract: The Poisson–Boltzmann equation is widely used to describe the electrostatic potential of molecules in an
ionic solution that is treated as a continuous dielectric medium. The linearized form of this equation, applicable to many
biologic macromolecules, may be solved using the boundary element method. A single-layer formulation of the
boundary element method, which yields simpler integral equations than the direct formulations previously discussed in
the literature, is given. It is shown that the electrostatic force and torque on a molecule may be calculated using its
boundary element representation and also the polarization charge for two rigid molecules may be rapidly calculated
using a noniterative scheme. An algorithm based on a fast adaptive multipole method is introduced to further increase
the speed of the calculation. This method is particularly suited for Brownian dynamics or molecular dynamics
simulations of large molecules, in which the electrostatic forces must be calculated for many different relative positions
and orientations of the molecules. It has been implemented as a set of programs in C��, which are used to study the
accuracy and speed of this method for two actin monomers.

© 2003 Wiley Periodicals, Inc. J Comput Chem 24: 353–367, 2003

Key words: Poisson–Boltzmann equation; boundary element method; cell multipole method; Brownian dynamics;
molecular dynamics

Introduction

Electrostatic interactions are important in determining the struc-
ture, thermodynamic properties, and reaction kinetics of macro-
molecules in solution.1 In particular, for noncovalent protein
association reactions Monte Carlo calculations of the thermody-
namic quantities and Brownian dynamics calculations of reaction
rates require evaluating the electrostatic interaction energy and
force, respectively, many times during the calculation. The water
may be represented in atomic detail, as in molecular dynamics
simulations; however, this is computationally intensive. Alterna-
tively, treating the water as a continuum medium with macroscopic
properties, such as a bulk dielectric constant, allows a faster
computation of the electrostatic and hydrodynamic effects.1–3

Methods for evaluating the electrostatic potential in continuum
solvation models include the generalized Born method,4,5 the
effective charge method of ref. 6, and various numerical methods
for direct solution of the Poisson–Boltzmann equation. In the latter
case the charge density of the molecules is usually approximately
represented by point charges located at the atomic centers. The

interior of the molecule, delimited by the solvent-excluded surface,
has a low dielectric constant (�2–4), whereas the exterior has a
high dielectric constant (�80). We will be primarily interested in
simulations of proteins under physiologic conditions in which ions
are present and are included in the electrostatic calculation by
assuming that the electric potential satisfies the Poisson–Boltz-
mann equation. When the electrostatic energy of the ions is much
less than their thermal energy, i.e. q�/kT � 1, the nonlinear
Poisson–Boltzmann equation may be linearized. This approxima-
tion is reasonably accurate for molecules with a relatively low
charge density in solutions at physiologic ion concentrations
(�0.1 M).7

The boundary element method (BEM) for solving the linear
Poisson–Boltzmann equation has several advantages over two
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other numerical methods: the finite difference and finite element
methods. One is that infinite domains may be simply treated
without introducing a large artificial boundary. Another advantage
is that the equations are defined over the two-dimensional molec-
ular surface rather than a three-dimensional domain so that a
smaller number of finite elements, resulting from discretizing these
equations on a mesh, are required. Also, there is no need to
distribute the partial atomic charges over nearby node points, as in
the other two methods. Finally, because the electrostatic potential
is represented by charge distributions on the molecular surfaces it
may be rapidly calculated for a large number of different relative
configurations by calculating the perturbation of the charge density
for an isolated molecule due to the electric field of the other
molecule. This is because, unlike the other two numerical methods,
the discretization mesh moves with the molecules and is not fixed
in space. This property will be the basis for our method.

The BEM was first applied to the case of zero ionic strength, in
which the potential is a solution of the Poisson equation.8–11

Studies that include ions in solution may be found in refs. 12–16.
Several recent articles have used multipole or adaptive grid meth-
ods to reduce the size of the matrix resulting from the BEM for the
Poisson equation and thus reducing storage requirements and
solution time. References 17–19 used methods based on the cell
multipole algorithm of refs. 20 and 21, whereas ref. 22 used a
multilevel grid on the surface to reduce the size of the system of
linear equations.

In this article we will first describe a BEM for solving the linear
Poisson–Boltzmann equation for two proteins in an ionic solution
based on a single-layer formulation of the equations. This gives a
simpler set of equations on the boundary and hence a more
efficient starting point for solving them than the direct formulation
of the boundary integral equations based on Green’s theorem used
in previous studies. More importantly, this will allow us to use a
method based on the cell multipole algorithm to rapidly evaluate
the force and torque on one molecule due to the electric potential
of the other. It should be noted that the single-layer formulation of
the Poisson equation yields matrix equations of half the size of
those presented in this article and, hence, are preferable in the case
of zero ionic strength.11,23

Our cell multipole method is applicable to rigid molecules
because the calculation of the fields of the isolated molecules
needs to be done only once before the simulation begins. The
relatively slow calculations, namely that of the surface charge
distribution on an isolated molecule’s surface using the BEM and
this distribution’s multipole moments, up to quadrupole order,
within a multilevel set of cubic cells are done at leisure before the
simulation begins. The calculation of the total force and torque on
a molecule are then done rapidly by using an adaptive cell multi-
pole algorithm. Basically, the potential at one molecule due to the
charges of the other are calculated using the cell multipole algo-
rithm and a local Taylor expansion about the center of a cell in the
first molecule. The contributions to the force and torque due to this
quadratic approximation to the electric field within the cells on the
first molecule are then summed. Actually, linear combinations of
the multipole and Taylor coefficients, that are coefficients in an
expansion in orthogonal polynomials within each cell, are used.

The next section describes the boundary element solution of the
Poisson–Boltzmann equation and some associated numerical

methods. Then we discuss the adaptive multipole algorithm for fast
calculation of the force and torque on a rigid molecule. The error
and computational speed are then tested on a system of two actin
monomers, and finally, the results and possible areas of further
investigation are discussed.

Boundary Element Solution of the
Poisson–Boltzmann Equation

Boundary Integral Equations

The first step in the BEM is to formulate the solution of a boundary
value problem for a partial differential equation in a region in
terms of integral equations on its boundary, called the boundary
integral equations (BIE). In the literature, previous applications of
the boundary element method to solve the linear Poisson–Boltz-
mann equation for the electric potential of macromolecules in an
ionic solution used the direct formulation of the BIE, in which the
BIE are derived using Green’s theorem. However the single-layer
formulation of a boundary integral equation, when it exists, always
yields simpler equations, and hence, a more efficient computa-
tional scheme.

We consider the case of two molecules in an ionic solution
which occupy regions �1 and �2, delimited by the solvent-ex-
cluded, or Connolly, surfaces of the respective molecules. The
solvent-excluded surface is formed by the boundary of the region
in which a probe sphere, typically the size of a water oxygen Van
der Waals radius of around 1.4 Å, is excluded from the Van der
Waals volume of the molecule.24 Outside of these regions, i.e., in
the solution, the potential � satisfies the linear Poisson–Boltzmann
equation without sources

��� 2��x�� � �2��x�� � 0 (1.1)

where the inverse Debye length � is

�2 �
8�n� e2

�outkT
(1.2)

for a neutral solution of monovalent ions of concentration n� . e is
the fundamental electronic charge, �out is the dielectric constant in
the solution, k is the Boltzmann constant and T is the absolute
temperature.

Inside each region the potential satisfies the Poisson equation

��� 2��x�� �
4�

�in
��x�� �

4�

�in
�
k�1

NC
� j�

qk
� j�	�x� 
 x�k

� j��, x� � �j, j � 1, 2

(1.3)

where the partial atomic charges qk
( j) are located at the atomic

centers x�k
( j) within �j and �in is the dielectric constant inside the

molecules. The fundamental solution or Green’s function EP( x�)
for the Poisson equation is
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EP� x�� �
1

4��x� � (1.4)

and satisfies

��� 2EP�x�� � 	�x��. (1.5)

Next define

uj �
4�

�in
�

�j

d x�	EP�x� 
 x�	���x�	�,

�
1

�in
�
k�1

NC
� j�

qk
� j�

�x� 
 x�k�
(1.6)

and

�̃j� x�� � �� x�� 
 uj� x��. (1.7)

�̃j( x�) then satisfies the Laplace equation

��� 2�̃j�x�� � 0 (1.8)

inside �j, because

��� 2uj�x�� �
4�

�in
��x��. (1.9)

�̃j( x�) inside �j may then be represented by a single-layer repre-
sentation in terms of a surface charge density fj( x�) as23

�̃j� x�� � �
��j

dx�	EP� x� 
 x�	� fj� x�	� (1.10)

so that the potential inside �j is

�� x�� �
1

�in
�
k�1

NC
� j�

qk
� j�

�x� 
 x�k
� j��

�
1

4� �
��j

dx�	
fj�x�	�

�x� 
 x�	� . (1.11)

Because there are no charges in the exterior region the potential
there satisfies the Poisson–Boltzmann equation without sources
[eq. (1.1)]. The fundamental solution EPB(�, x�) for this equation
is

EPB��, x�� �
e���x��

�x� � (1.12)

which satisfies

���� 2 � �2�EPB��, x�� � 	�x��. (1.13)

The potential in the exterior region x� � �1
c � �2

c may be
described by a single-layer representation in terms of charge
densities hj( x�) as

�� x�� � �
j�1,2

�
��j

dx�	EPB��, x� 
 x�	�hj� x�	�

�
1

4� �
j�1,2

�
��j

dx�	
e���x��x�	�

�x� 
 x�	� hj� x�	� (1.14)

The solutions of the Poisson–Boltzmann equation for the inside
regions [eq. (1.11)], and the outside region [eq. (1.14)], must
satisfy the following boundary conditions on ��j for y� � ��j

lim
x�3y�
x���j

��x�� � lim
x�3y�

x���j
c

��x��, (1.15)

lim
x�3y�
x���j

�in n̂ � �� ��x�� � lim
x�3y�

x���j
c

�out n̂ � �� ��x�� (1.16)

with n̂ the outward pointing unit length normal vector to ��j. The
integrals in the expressions for the potential in each region also
satisfy the following jump conditions at the boundaries ��j for
y� � ��j

23

lim
x�3y�
x���j

�
��j

dx�	EP�x� 
 x�	� f�x�	� ��
��j

dx�	EP�y� 
 x�	� f�x�	�, (1.17)

lim
x�3y�

x���j
c

�
��j

dx�	EPB�x� 
 x�	� f�x�	� ��
��j

dx�	EPB�y� 
 x�	� f�x�	�, (1.18)

lim
x�3y�
x���j

�
��j

dx�	n̂ � �� xEP�x� 
 x�	� f�x�	�

��
��j

dx�	n̂ � �� yEP�y� 
 x�	� f�x�	� �
1

2
f�y��, (1.19)

lim
x�3y�

x���j
c

�
��j

dx�	n̂ � �� xEPB�x� 
 x�	� f�x�	�

��
��j

dx�	n̂ � �� yEPB�y� 
 x�	� f�x�	� 

1

2
f �y��. (1.20)

Using these jump conditions eq. (1.15) becomes
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1
�in

�
k�1

NC
� j�

qk
� j�

�x� 
 x�k�
�

1
4� �

��j

dx�	
fj�x�	�

�x� 
 x�	�

�
1

4� �
k�1,2

�
��k

dx�	
e���x��x�	�

�x� 
 x�	� hk�x�	�, x� � ��j

(1.21)

and eq. (1.16) becomes

1

�in
�
k�1

NC
� j�

qk
� j�n̂�x�� � �� x

1

�x� 
 x�k�

�
1

4� �
��j

dx�	fj�x�	�n̂�x�� � �� x

1

�x� 
 x�	� �
1

2
fj�x��

�
�out

�in � 1

4� �
k�1,2

�
��k

dx�	hk�x�	�n̂�x�� � �� x

e���x��x�	�

�x� 
 x�	�



1

2
hj�x���, x� � ��j. (1.22)

Surface Discretization and Boundary Element Equations

The BIE of eqs. (1.21) and (1.22) are then solved for f1,2( x�) and
h1,2( x�) by first discretizing both the boundary surfaces and the
function space in terms of finite elements. We choose to use
quadratic surface elements and linear function elements. The sol-
vent-excluded surfaces of the molecules ��1,2 are approximated
by a closed mesh of triangles with quadratic curves as edges. Local
coordinates (�1, �2) for each triangle Tm

( j) on the mesh for surface
��j, such that they map the standard triangle, with vertices at (0,
0), (1, 0), and (0, 1) onto the triangular surface element defined by
the six vertices {v�1, . . . , v�6} are (see Fig. 1)

x�Tm��1, �2� � �
j�1

6

Nj��1, �2�v� j (1.23)

with the shape functions Nj(�1, �2) defined as

N1��1, �2� � �2�1 � 2�2 
 1���1 � �2 
 1�,

N2��1, �2� � �1�2�1 
 1�,

N3��1, �2� � �2�2�2 
 1�,

N4��1, �2� � 4�1�1 
 �1 
 �2�,

N5��1, �2� � 4�2�1 
 �1 
 �2�,

N6��1, �2� � 4�1�2. (1.24)

The function Nj(�1, �2) is 1 at vertex v�j and 0 at the other vertices.
A function defined on the surface hj(x�), x� � ��j is approximated by
linear function elements {Hk

( j)(x�), k � 1, . . . , NV} as

h̃� x�� � �
k�1

NV
� j�

�h� j�kHk
� j�� x�� (1.25)

where NV
( j) is the number of vertices in the triangulation of ��j. A

component of the vector h� j, (h� j)k, is the value of hj( x�) at vertex k.
Hk

( j)( x�) is linear in the local coordinates �1 and �2, 1 at vertex k and
0 at the other vertices so that only the vertices of triangles con-
taining x� contribute to the sum in eq. (1.25). On surface element
Tm Hk( x�Tm

(�1, �2)) is one of the functions Sj(�1, �2), j � 1, 2,
3 defined by

S1��1, �2� � 1 
 �1 
 �2,

S2��1, �2� � �1,

S3��1, �2� � �2 (1.26)

depending on whether vertex k is at (0, 0), (1, 0), or (0, 1),
respectively, in the local coordinates on Tm

( j). We denote the
appropriate function for Hk

( j)( x�) on Tm
( j) as Sk,m

( j) (�1, �2).
The four BIE of eqs. (1.21) and (1.22) are then solved using the

method of collocation in which the discrete approximation to the
solution is assumed to be exact at a finite number of node points,
which in this case are the corner vertices of the triangles. This then
yields a system of linear equations in terms of the coefficients in
the expansion of the surface charge densities f1,2( x�) and h1,2( x�) in
terms of the finite elements. Define the following integrals

I1l
� j�� x� , �� �

1

2� �
m��l

� j�
�

T m
� j�

d x�	
e���x��x�	�

�x� 
 x�	� Hl
� j�� x�	�,

�
1

2� �
m��l

� j�
�

0

1

d�1 �
0

1��1

d�2��x�Tm
� j�

���
�


e���x��x�T

m
� j���1,�2��

�x� 
 x�Tm
� j���1, �2�� Sl,m

� j���1, �2�,

I2l
� j�� x� , �� � �n̂�x�� � �� xI 1l

� j��x�, �� (1.27)

Figure 1. Mapping x�(�1, �2) from local coordinates to a triangular
quadratic surface element.
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where �l
( j) is the set of indices for surface elements that contain

vertex l on the mesh for ��j. The Jacobian factor in the integral

�� x�T m
� j�

���
� � �� �1 x�Tm

� j���1, �2�  �� �2 x�T m
� j���1, �2�. (1.28)

may be calculated from eq. (1.23). The integrals in eqs. (1.27) are
calculated using two-dimensional Gaussian quadrature as de-
scribed in Appendix A.

Next we define the following matrix elements in terms of the
integrals in eq. (1.27)

�Aj�mn � I 1n
� j��v�m

� j�, 0�, j � 1, 2

�Bjk�mn � I 1n
�k��v�m

� j�, ��, j, k � 1, 2

�Cj�mn � I 2n
� j��v�m

� j�, 0� 
 	mn, j � 1, 2

�Djj�mn �
�out

�in
�I 2n

� j��v�m
� j�, �� � 	mn�, j � 1, 2

�Djk�mn �
�out

�in
I 2n

�k��v�m
� j�, ��, j � k � 1, 2 (1.29)

and the vector elements

sk
� j� �

2

�in
�

m�1

NC
� j�

qm
� j�

�v�k
� j� 
 x�m

� j��

tk
� j� �

2

�in
�

m�1

NC
� j�

qm
� j�n̂�v�k

� j�� � �v�k
� j� 
 x�m

� j��

�v�k
� j� 
 x�m

� j��3
(1.30)

where v�m
( j) is the coordinate of vertex m on surface �j and x�m

( j) is
the coordinate of atomic charge qm

( j). Furthermore, we define
vectors of coefficients f�1 and f�2 in the expansion of the surface
charge densities f1( x�) and f2( x�), respectively, in terms of the finite
function elements according to eq. (1.25). Likewise, vectors h�1 and
h�2 are defined for the surface charge densities h1( x�) and h2( x�),
respectively. Equations (1.21) and (1.22) then become

v� 1 � A1 � f�1 � B11 � h�1 � B12 � h�2,

v� 2 � A2 � f�2 � B21 � h�1 � B22 � h�2,

w� 1 � C1 � f�1 � D11 � h�1 � D12 � h�2,

w� 2 � C2 � f�2 � D21 � h�1 � D22 � h�2. (1.31)

These linear equations may then be solved for the charge
density vectors f�1,2 and h�1,2 using a suitable iterative method with
preconditioner.

Iterative Solution of Boundary Element Equations

Another approach to solving eq. (1.31) is a perturbative method in
which the surface charge densities for two molecules in isolation
are first calculated and then the relatively small change in these
densities due to the charges of the other molecule are determined.
This is a fast method to calculate the charge densities for a large
number of different relative configurations of the two rigid mole-
cules. Although we will use a faster, but approximate, noniterative
method that is described later to solve for the polarization charge
in the fast multipole version of the BEM, we first review an
iterative method of this type, developed by Zhou in ref. 14, that
may be adapted to solve eq. (1.31). The results of this method will
be used for comparison with our one-step algorithm. In the itera-
tive scheme the surface charge densities for an isolated molecule in
solution are first given by solving the equations

f� j
0 � Aj

�1�Bjj � h� j 
 s�j�,

h� j
0 � Uj

�1 � 
t�j 
 Cj � Aj
�1 � s�j� (1.32)

where

Uj � Djj 
 Cj � Aj
�1 � Bjj. (1.33)

Then substituting f�j � f� j
0 � �f�j and h� j � h� j

0 � �h� j in eq.
(1.31) gives the following equations for the changes in the surface
charge densities due to the electric field of the other molecule, �h� j

and �f�j, as

�h� 1 � U1
�1 � 
�D12 � C1 � A1

�1 � B12� � �h�2 � �h�2�,

�f�1 � A1
�1 � �B11 � �h�1 � B12 � �h�2 � �h�2�� (1.34)

and likewise for �f�2 and �h�2. These equations may be solved to
the desired accuracy by starting with �f�j � �h� j � 0� and itera-
tively substituting the previous values for �f�j and �h� j into eq.
(1.34) to obtain the value for the next iteration.

One-Step Solution of Boundary Element Equations

Next, we will derive a one-step calculation to approximate �h� j and
�f�j as a faster alternative to the iterative solution of eq. (1.34). The
method is to approximate the change in the charge density of
molecule 1, after introducing molecule 2, by solving the Poisson–
Boltzmann boundary value problem for molecule 1 without any
internal point charges, i.e. simply a dielectric cavity, and in the
presence of an externally applied potential due only to molecule 2.
Of course, the resulting change in charge density on one molecule,
in turn, induces a correction to the charge density on the other one
and these corrections must be evaluated iteratively to obtain an
exact result. However, for values of the dielectric constants rele-
vant to protein molecules in water, each succeeding correction to
the charge density is much smaller than the previous one, and
hence, the first term is a reasonably accurate approximation.

The boundary value problem for the dielectric cavity of mol-
ecule 1 in the presence of an external field is again solved using the
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boundary element method. There is a surface charge density on the
surface ��1 due to an externally applied electric field with poten-
tial �ext( x�), no free charges inside ��1, and a constant dielectric
coefficient �in inside of ��1 and �out outside of ��1, as in the
previous derivation. Also, as before, ions are present outside of
��1 but excluded from the inside. The boundary integral equations
for each region are then

�� x�� � �ext�x�� ��
��1

dx�	EP�x� 
 x�	��f1�x�	�, x� � �1,

�� x�� � �ext�x�� ��
��1

dx�	EPB�x� 
 x�	��h1�x�	�, x� � �1
c (1.35)

with EP( x� � x�	) and EPB( x� � x�	) defined in eq. (1.4) and eq.
(1.12), respectively. Matching the solutions in the two regions at
the boundary using eq. (1.15) and (1.16) and using the jump
conditions of eq. (1.17)–(1.20) gives the boundary integral equa-
tions

�
��1

dx�	�f1�x�	�
1

�x� 
 x�	� ��
��1

dx�	�h1�x�	�
e��x��x�	�

�x� 
 x�	� , x� � ��

(1.36)

1

4� �
��1

d x�	�f1� x�	�n̂� x�� � �� x

1

�x� 
 x�	� �
1

2
�f1� x��

�
�out

�in � 1

4� �
��1

dx�	�h1�x��n̂�x�� � �� x

e��x��x�	�

�x� 
 x�	� 

1

2
�h1�x���

� ��out

�in

 1	n̂�x�� � �� �ext�x��, x� � ��1. (1.37)

After discretizing the BIE, as before, and defining the compo-
nents of vector u� as

uk � 2��out

�in

 1	n̂�x�k� � �� �ext�x�k� (1.38)

where the x�k are the nodal coordinates for the mesh of ��1 and
using the matrices A1, B11, C1, and D11, defined in eq. (1.29),
gives the linear equations

A1 � �f�1 � B11 � �h�1, (1.39)

C1 � �f�1 � D11 � �h�1 
 u�. (1.40)

Only �h�1 is needed, with its value given by solving the
preceding equations to yield

�h� 1 � U1
�1u�, (1.41)

where U1 is defined in eq. (1.33). Substituting the potential due to
an isolated molecule 2 for the external potential gives the charge
on molecule 1 due to presence of molecule 2 as

��h� 1�j �
1

2� ��out

�in

 1	 �

k
�U1

�1�jk

 �n̂�x�� � �� x �
��2

dx�	
e���x��x�	�

�x� 
 x�	� h2�x�	��
x��x�k

(1.42)

which, upon substituting the discretized form of the integral, gives

�h� 1 � � �in

�out

 1	U1

�1D12h�2. (1.43)

The corresponding equation for �h�2 may be obtained by ex-
changing indices 1 7 2.

Force and Torque Calculation

We next describe a simple method to calculate the force and torque
on one molecule due to the electric field of the other using the
surface charge densities of the boundary element representation.
Consider the force, F� 12, on molecule 1 due to the field of molecule
2. This may be calculated by integrating the normal component of
the electromagnetic stress tensor

Tjk� x�� �
�out

4� �Ej�x��Ek�x�� 

1

8
�E� �x���2	jk	 
 kT��

i

ni�x��		jk

�
�out

4� �Ej�x��Ek�x�� 

1

8
�E� �x���2	jk	 
 2n�q��x�� (1.44)

over a surface S surrounding molecule 1. The second equation is
obtained by substituting the value of the ionic concentrations of the
two species of oppositely charged ions implicit in the linear
Poisson–Boltzmann equation n� �( x�) � n� �( x�) � 2n� q�( x�)/kT.
Because the last term for the contribution of the ionic pressure is
negligible for the range of ionic concentrations considered under
physiologic conditions we use only the electric field contribution25

Tjk
E� x�� �

�out

4� �Ej�x��Ek�x�� 

1

8
�E� �x���2	jk	 (1.45)

and the force on molecule 1 is then

F� 12 � �
S

d x�TE�x�� � n̂�x�� (1.46)

where n̂( x�) is the unit normal to the surface at x� . For our purposes,
the important fact about this expression is that the force depends
only on the value of the electric field on the surface S. Thus, any
other charge distributions that generates the same values of E� ( x�)
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on S will experience the same force. Because the boundary integral
representation of the potential in the region exterior to the molec-
ular surfaces, eq. (1.14) is the same as that for surface charge
densities

�j� x�� �
�out

4�
hj�x��, x� � ��j (1.47)

on the respective molecular surfaces in a surrounding medium with
dielectric constant �out and Debye parameter � the force is simply

F� 12 � �
��1

d x��1� x��E� 2� x��. (1.48)

Note that �j( x�) from the boundary integral representation is not
the same as the physical charge density that exists at the dielectric
interface. Substituting

E� 2� x�� � ��� �2�x�� � �
1

4� �
��2

dx�	h2�x�	��� x

e���x��x�	�

�x� 
 x�	� (1.49)

gives the expression for the total force

F� 12 � �
�out

16�2 �
��1

dx� �
��2

dx�	h1�x��h2�x�	��� x

e���x��x�	�

�x� 
 x�	� . (1.50)

Using a similar argument, the torque on molecule 1 due to the
charges on molecule 2 is

T�12 � �
�out

16�2 �
��1

dx� �
��2

dx�	h1�x��h2�x�	��x� 
 x�0�  �� x

e���x��x�	�

�x� 
 x�	� .

(1.51)

Fast Force Evaluation Using an Adaptive
Multipole Algorithm

Next we describe a method that uses a variation of the cell
multipole method along with the BEM for solving the linear
Poisson–Boltzmann equation shown earlier to rapidly calculate the
force and torque on the molecules due to electrostatic interactions.
As will be shown in the next section, the polarization corrections
to the charge densities of each molecule due to the electric field of
the other only adds a small correction to the calculated force and
torque. Because it would be computationally expensive, relative to
their magnitude, to calculate these corrections only the charge
densities h� j

0 from the BEM solution of the isolated molecules are
used in the multipole method. Also, because this method is de-
signed to be part of a Brownian dynamics or molecular dynamics
simulation, as many quantities as possible are precomputed before
the simulation begins. The speed of these computations are there-
fore considered unimportant.

The cell multipole method is a fast, efficient algorithm to
calculate the electric potential due to a set of particles that interact

according to a pairwise potential.20,21 In this method, a cubic cell
is defined such that it contains all of the particles of interest. This
cell is then equally subdivided into eight smaller cubic cells, and
this procedure iterated until no cell at the finest level contains too
many particles. The grouping of the cells is represented by an
octatree data structure in which any given cell is linked to its eight
daughter cells. Contributions to the potential are then calculated
using a multipole expansion about the center of a cell containing
the source charges and a Taylor expansion about the center of a
cell containing the field point. The cells are chosen such that the
source cells and field cells each form a set that covers the largest
cubic cell and the sizes of the cells are such that the approximation
error is less than a specified value.

It is useful to define a set of unique indices for each cubic cell
in the octatree structure with NL levels. The cells will be denoted
by Cj,k�, where j � 0, . . . , NL � 1 is the level number, and the
cells within a level are indexed by a vector k� with integer com-
ponents and 0 � (k�)l  2j. The cell Cj,k� is then defined by the
region

x� � R3, �a2�j � �x� 
 c�j,k��m � a2�j, m � 1, 2, 3 (2.52)

with the center

c� j,k� � a�2�j k� �
1

2
�2�j 
 1��1, 1, 1�	 . (2.53)

This is a convenient notation because whether a cubic region at
the next higher level is contained in a given cubic region may be
determined simply from the index as

Cj�1,l� � Cj, k� N � �l��m

2 � � �k��m, m � 1, 2, 3 (2.54)

where [ x] denotes the integer part of x. Each cell at level j 
NL � 2 has exactly eight daughter cells at level j � 1 contained
within it. The unique level 0 cell is centered at the origin, i.e.,
c�0,0� � 0� , and has sides of length a.

The set of polynomials �j,k�
m ( x�) for the multipole expansions

within each cell are chosen to be mutually orthonormal over the
cell Cj,k� so that

�
Cj,�k

d x��j, k�
m � x���j, k�

n � x�� � 	m,n (2.55)

A set of polynomials up to quadratic order that are orthonormal
in the cubic region centered at the origin with sides of length 1,
C0,1

1 , are given in Table 1. The polynomials for cell Cj,k� are then
defined in terms of these by

�j, k�
m � x�� � 8j/ 2�m�2j� x� 
 c� j, k��� (2.56)

with

�m� x�� � a��3/ 2�Pm�a�1x�� (2.57)
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where c� j,k� is the center of the cell Cj,k� and Pm( x�) is one of the
polynomials in Table 1. It will sometimes be convenient to refer to
the indices m, j, and k� for the function �j,k�

m ( x�) collectively by a
single index, denoted by a capital letter, i.e., �I( x�) or by the
corresponding cell Cj,k� and the index m.

Precomputation

All of the calculations in this section are repeated for each mole-
cule in isolation before the simulation begins. The molecules are
also assumed to be rigid so that these solutions remain valid
throughout the simulation. The molecule and its associated highest
level cell C0,0� should be centered at the origin. First a smooth
representation of the solvent-excluded surface ��j of molecule j
( j � 1, 2) is triangulated and the surface charge densities at each
node, h� j

0, are calculated with the BEM using eq. (1.32). Next, a
cubic region that contains the molecule is found and is recursively
divided into eight daughter cells until the cells at the finest level
have a size that is at least about five times the average length of the
triangles’ sides. These cubes are contained within an octatree data
structure described in the previous section. Next, the multipole
coefficients of the surface charge density at the highest (finest)
level in the octatree structure are calculated using

bNL�1,k�
m

� �
��

d x� h̃0� x���NL�1,k�
m � x�� (2.58)

where h̃0( x�) is the boundary element solution of an isolated
molecule calculated using h� j

0 in eq. (1.32) and the approximation
by linear function element in eq. (1.25), i.e.,

h̃0� x�� � �
�l�x�l�CNL�1,k��

�h� j
0�l Hl� x��. (2.59)

where the sum is over the indices for vertices of the ��j mesh that
are in cell CNL�1,k�. The multipole coefficients of the surface charge
density h̃0( x�) for the lower levels are then calculated by recur-
sively applying

bj,k�
m � �

n�1

10 �
��1

8

A�
m,nbj�1,d��k�,��

n (2.60)

with

A�
m,n � �

C0,�0

d x��m� x���1,d��0�,��
n � x��

� �
C0,�0

d x��m� x���n�2x� 
 ��4 

1

2
, �2 


1

2
, �1 


1

2		
(2.61)

where d� (k� , �) is the vector index of the �th daughter cell

d� �k� , �� � 2k� � ��4, �2, �1� (2.62)

and �k � [�/k], k � 1, 2, 4 is the value of the appropriate bit in the
binary representation of �. The sum in eq. (2.60) is over the multipole
coefficients for the eight cells contained within cell Cj,k�. As an aside
we note that the orthogonal polynomials may be interpreted as scaling
functions in a multiresolution analysis and that except for the fact that
only the scaling function coefficients, not the wavelet coefficients are
computed, this calculation of the lower level scaling coefficients is the
same as the fast wavelet transform algorithm.26

Force and Torque Evaluation during the Simulation

During the simulation, the multipole coefficients calculated before-
hand will be used for fast evaluation of the electrostatic force and
torque on a molecule. For simplicity, it is assumed here that only
molecule 2 moves and molecule 1 remains at the origin, i.e., only
relative motion is considered. Let b� be the displacement of mol-
ecule 2 relative to the origin and A be the 3 � 3 matrix that effects
a rotation of the molecule relative to its initial orientation. A point
x� on the molecule when it is initially situated at the origin is then
transformed as x� 3 Ax� � b� . The expansion of h̃0( x�) for molecule
2 at the origin

h̃0� x�� � �
I

bI
�2��I� x�� (2.63)

with bI the coefficients calculated using eqs. (2.58) and (2.60)
becomes

h̃0� x�� � �
I

bI
�2��I�A�1�x� 
 b��� (2.64)

for molecule 2 in the new position and orientation. The coefficients
bI

(2) in the latter expansion are the same as those in the former.
To calculate the force on molecule 1 at the origin due to

molecule 2 at the position and orientation specified by b� and A
using the multipole representation of the charge densities the
integral kernel in eq. (1.14) must be calculated by

Table 1. Polynomials That Are Orthonormal on the Unit Cube
Centered at the Origin.

P01 1
P11 2�3x
P12 2�3y
P13 2�3z

P21 6
5x2 


5

2

P22 6
5y2 


5

2

P23 6
5z2 


5

2
P24 12xy
P25 12yz
P26 12xz
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K� I,J � �� dx� � dx�	�I�x���� x

e���x��x�	�

�x� 
 x�	� �J�A�1�x�	 
 b���

� �� dx� � dx�	�I�x���� x

e���x��Ax�	�b� �

�x� 
 Ax�	 
 b��
�J�x�	�. (2.65)

Using the definition of eq. (2.56) for the polynomials this
becomes

K� I,J � �s� j��3 �
Cj,�k1

dx� �
Cj,�k2

dx�	Pm1�s� j��1�x� 
 c�j,k���

 Pm2�s� j��1�x�	 
 c�j,k����� x

e���x��Ax�	�b� �

�x� 
 Ax�	 
 b��
(2.66)

where the polynomial indices are I � (m1, j, k�1) and J � (m2, j,
k�2) and s( j) � 2�ja is the length of a side of a cell at level j.
Because only matrix elements between cells at the same level are
needed, the level indices are the same. Defining y� � s�1( x� �
c� j,k�1

) and y�	 � s�1( x�	 � c� j,k�2
) the previous equation becomes

K� I,J

� �s� j� �
C0,�0

dx� �
C0,�0

dx�	
e�s� j���s� j��1R� 	�y��Ay�	�

�s� j��1R� 	 � y� 
 Ay�	�
Pm1�y��Pm2�y�	�

(2.67)

with R� 	 � c� j,k�1
� Ac� j,k�2

� b� . Defining

K� 	��, R� , x� , x�	� � ��� x

e���R� �x��Ax�	�

�R� � x� 
 Ax�	�
(2.68)

and its associated matrix elements at level 0

K� 	m1,m2��, R� � ��
C0,�0

dx� �
C0,�0

dx�	K� 	��, R� , x�, x�	�Pm1�x��Pm2�x�	�

(2.69)

gives the relation between matrix elements of K� 	 and K�

K� I,J � s� j�K� 	m1,m2�s� j��, s� j��1R� 	�. (2.70)

This implies that the matrix elements of the integral kernel
K� ( x� , x�	) defined in eq. (2.65) for any choice of indices are related
to the level 0 coefficients of K� 	m1,m2, m1, m2 � 1, . . . , 10.
Analytical approximations for these latter coefficients are given in
Appendix B.

According to eq. (1.50) the force on molecule 1 due to the
electric field of molecule 2 may be calculated using the multipole
coefficients as

F� 12 �
�out

16�2 �
�C,C	��S

�
m,m	�1

10

b�C,m�
�1� b�C	,m	�

�2� K� �C,m�,�C	,m	� (2.71)

where the sum is over pairs of cells belonging to the set S. We next
describe a method to find the pairs of cells in S such that the
approximation error resulting from the sparse representation of the
matrix K� is less than a specified value. Throughout this article we
make the assumption that the cells and corresponding octatree
structures for each molecule are the same. This simplifies the
discussion; however, it is straightforward to use different sets of
cells for each molecule. A choice of indices consistent with the
desired error bound 	 is to include matrix elements K� (C,m),(C	,m	)

between cells that are as large as possible, subject to the condition
that d(C, C	)  	 for a specified 	  1. d(C, C	) is the upper
bound on the approximation error described in appendix B. If this
condition is not satisfied for nearby cells, even at the finest level,
then the matrix element is calculated directly using the original
boundary element representation. We denote the octatree struc-
tures for molecule 1 and molecule 2 as list 1 and list 2, respec-
tively. A recursive algorithm for choosing such pairs of cells for
which their corresponding indices are summed over in eq. (2.71) is

1. Let j be the lowest level (largest cells) for which cells exist in
both list 1 and list 2

2. For each pair of nonempty cells (C(1), C(2)) at level j, one from
each of list 1 and list 2

3. If d(C(1), C(2))  	 for these cells
calculate and store the matrix elements
{K� (C(1),m1),(C(2),m2), m1, m2 � 1, . . . , 10}

4. Else
If j � 0

Mark for direct calculation and stop
Else

For pairs of nonempty daughter cells, one from each of
C(1) and C(2)

Repeat step 3

The resulting matrix K� will be sparse with nonzero elements
appearing in the sum in eq. (2.71). Because the charge distribution
is two-dimensional, many cells at the finer levels are empty. The
condition that both cells corresponding to the matrix element are
nonempty is checked before calculating the approximation error.
The large number of empty cells also contributes to the sparsity of
K� . The terms for the pairs of cells that are marked for direct
calculation are calculated using the boundary element representa-
tion of the charge density on mesh triangles within the correspond-
ing cells. Because the matrix is sparse the calculation of the force
using eq. (2.71) will be fast, particularly if the molecules are
widely separated. In fact, if the molecules are sufficiently sepa-
rated only the matrix elements corresponding to the unique lowest
level cell for each molecule will be used. This choice of cells is the
same as would be used in the cell multipole method if the approx-
imation error controlling the choice of cells were d(C(1), C(2)) for
both the multipole expansion and local Taylor expansion about the
field evaluation point.
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The same method used to calculate F� 12 may also be used to
calculate the torque T� 12. A new integral kernel L� ( x� , x�	) with
multipole coefficients

L� I,J � �� dx� � dx�	�I�x���x  �� x

e���x��x�	�

�x� 
 x�	���J�A�1�x�	 
 b���

� �� dx� � dx�	�I�x���x  �� x

e���x��Ax�	�b� �

�x� 
 Ax�	 
 b����J�x�	�.

(2.72)

is required. As before, these coefficients may be calculated using
only the level 0 coefficients

L� 	m1,m2��, R� � ��
C0,0�

dx� �
C0,0�

dx�	L�	��, R� , x�, x�	�Pm1�x��Pm2�x�	� (2.73)

of the kernel

L� 	��, R� , x� , x�	� � �x  �� x

e���R� �x��Ax�	�

�R� � x� 
 Ax�	�
(2.74)

by using

L� I,J � s� j�L� 	m1,m2�s� j��, s� j��1R� 	�. (2.75)

Analytical approximations of the coefficients L� 	m1,m2��, R� � are
given in Appendix B. The torque about x�0 may then be calculated
from

T� 12 �
�out

16�2 �
�C,C	��S

�
m,m	�1

10

b�C,m�
�1� b�C	,m	�

�2� �L� �C,m�,�C	,m	� � �c� 
 x�0�

 K� �C,m�,�C	,m	��

�
�out

16�2 �
�C,C	��S

�
m,m	�1

10

b�C,m�
�1� b�C	,m	�

�2� �L� �C,m�,�C	,m	� � c�

 K� �C,m�,�C	,m	�� 
 x�0  F� 12. (2.76)

The indices to sum over are chosen using the same algorithm
described above with the same value of the parameter 	.

Sample Calculations

The method described in this article for fast calculation of the
electrostatic forces on large molecules in solution has been
implemented as a program package in C��. In this section we
give the results of some calculations of the electrostatic force
between two proteins, both actin monomers (G-actin), as a

demonstration of the method. G-actin was chosen because it is
sufficiently large, containing 5837 atoms with a maximum
separation of 76 Å between their centers, and because of our
interest in studying actin polymerization using Brownian dy-
namics simulations. The atomic coordinates were those used in
ref. 27 with the bound Ca ion and ADP removed. AMBER
force-field values were used for the partial atomic charges and
Van der Waals radii.28 A triangulation of the solvent-excluded
surface with probe radius 1.5 Å was generated using the pro-
gram MSMS.29 Because this triangulation contained many tri-
angles with a large vertex angle (near 180 degrees), which lead
to large interpolation errors in the boundary element calcula-
tion, it was repeatedly refined until 4634 corner vertices and
9272 faces remained.23 All calculations were done on a 500-
MHz Pentium workstation.

Dielectric constants �in � 4.0 and �out � 80.0 were used as
typical values for a protein molecule in water. All calculations
were repeated for Debye parameter � � 0.0 and � � 0.1027
Å�1 corresponding to pure water and 0.1 M monovalent ions at
300 K, the approximate physiologic concentration of Na� ions
in solution, respectively. The center of mass separations of the
two molecules was set to 50, 75, 100, and 200 Å. A 50-Å center
of mass separation corresponds to a separation of only 8.0 Å for
the nearest vertices on each molecular surface.

First, the accuracy and speed of the fast noniterative calcu-
lation of the polarization correction to the total force, F12

1�step, is
compared with the value, F12

iter, calculated from an iterative
solution of �h�j, j � 1, 2 using eq. (1.34). Equation (1.34) was
iterated until �(�h�1, �h�2)�  1.0 � 10�10. The average compu-
tation time for the noniterative method was 1390 s, which is
about 36% of the time required for the iterative method. The
relative errors in the total force F�12 for different separations are
given in Table 2. The relative error in the polarization force
increases for larger separation distances for � � 0.0 but de-
creases for � � 0.1027. However, the relative error in the force
remains small (0.3%).

Next, iterative solutions of the boundary element equations
were used to compare the fraction of the force resulting from the
perturbation of the charge density on one molecule due to the
electric field of the other, F� 12

polariz. The results are also shown in
Table 2. As expected, polarization effects are largest when the
molecules are near one another but the error remains below 10%,
thus justifying the neglect of these corrections in the multipole
version of the force calculation.

The force was then calculated using the fast multipole algo-
rithm with 43 cells at the finest level for each molecule. Twenty-
four of the cells were empty and the remaining ones contained
an average of 116 vertices per cell. The results for � � 0.0 and
� � 0.1027 Å�1 are shown in Tables 3 and 4, respectively.
Although a single value for the error bound 	 for different
relative configurations would be used in practice, smaller values
of 	 were chosen at larger separation distances to demonstrate
results for a range of different numbers of nonzero matrix
elements for a given separation distance. Also, smaller values
of 	 were chosen for � � 0.1027 Å�1 compared to � � 0.0 to
achieve a similar sparsity of matrix K� because the electric field
decreases much faster in the former case. For the same reason,
the relative error for the same distance and matrix sparsity is
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larger for � � 0.1027 Å�1 than for � � 0.0; however, for
simulations, one is usually interested in the absolute error,
which remains small.

Conclusion

We have given a detailed description of a calculational scheme,
which is a combination of the BEM and the cell multipole method,
which allows a fast calculation of the electrostatic force and torque
on a macromolecule for use in Brownian dynamics or molecular
dynamics simulations. Because the molecules are assumed to be
rigid, the relatively slow calculation of the surface charge density

on an isolated molecule is done before the simulation and the force
evaluation during the simulation is done quickly using the multi-
pole representation of this charge density.

When the separation of the molecular surfaces is much closer
than the 8 Å tested in the previous section it is expected that the
continuum approximation of the ionic solution implicit in the
Poisson–Boltzmann equation breaks down and that the method
should be modified. This is true for any method that uses a
continuum representation of the solvent. Numerical errors also
become important when the separation of the molecular surfaces is
on the order of the size of the surface elements. One solution to
these problems is to merge the molecular surfaces near their
interface. Another possibility is to replace the solvent layer sepa-
rating the molecules by explicit molecules whose conformations

Table 2. Fraction of Force from Polarization in the Electric Field of the Other Molecule and Error in the
Force Calculated Using the Fast Noniterative Method of Eq. (1.43) Relative to That Calculated
Using an Iterative Method of Eq. (1.34).

r (Å)

� � 0.0 � � 0.1027

�F� 12
polariz�

�F� 12
iter�

�F� 12
1�step 
 F� 12

iter�
�F� 12

iter�
�F� 12

polariz�
�F� 12

iter�
�F� 12

1�step 
 F� 12
iter�

�F� 12
iter�

50 9.35 � 10�2 5.64 � 10�4 6.90 � 10�2 2.95 � 10�3

75 4.01 � 10�2 2.87 � 10�3 4.69 � 10�3 1.01 � 10�4

100 1.92 � 10�2 2.66 � 10�3 3.91 � 10�4 8.19 � 10�6

200 1.78 � 10�3 1.37 � 10�3 1.0 � 10�6 1.0 � 10�6

r is the center of mass separation distance.

Table 3. Errors and Execution Times for Calculating the Force on Two Actin Monomers in Pure Water
(� � 0) Whose Centers of Mass Are Separated by r Å.

r (Å) 	 Error bound
# Matrix
elements

# Direct
elements

�F� 12
mult � F� 12

1�step�
(10�6 dynes)

�F� 12
mult 
 F� 12

1�step�
�F� 12

1�step�
t�F� 12

mult�

t�F� 12
1�step�

50 1.0 � 10�3 1372 444 1.44 0.145 0.31
1.0 � 10�2 1297 190 1.58 0.159 0.12
1.0 � 10�1 1071 94 2.53 0.256 5.0 � 10�2

75 1.0 � 10�3 1071 89 0.656 0.149 3.6 � 10�2

1.0 � 10�2 367 10 0.991 0.225 3.8 � 10�3

1.0 � 10�1 367 0 0.988 0.225 3.1 � 10�5

100 1.0 � 10�4 1297 121 0.110 4.17 � 10�2 5.0 � 10�2

1.0 � 10�3 367 0 0.414 0.156 3.1 � 10�5

1.0 � 10�2 139 0 0.550 0.208 1.3 � 10�5

200 1.0 � 10�6 1600 147 5.64 � 10�3 7.67 � 10�3 6.2 � 10�2

1.0 � 10�5 367 0 5.18 � 10�2 7.04 � 10�2 3.1 � 10�5

1.0 � 10�4 1 0 3.94 � 10�2 5.36 � 10�2 1.0 � 10�6

Each molecular surface of the monomer has 9272 triangular surface elements. 	 is the error bound used in the multipole
algorithm described in the text. The number of nonzero elements in the matrix K� and the number of elements calculated
directly using the boundary elements are given. F� 12

mult and F� 12
1�step are the forces calculated using the multipole algorithm

and the direct one-step BEM with the charge density of eq. (1.43), respectively. Execution times for the multipole
method, t(F� 12

mult), are given as a fraction of the time for the same calculation using the boundary element method without
multipoles, t(F� 12

1�step). t(F� 12
1�step) is approximately 1390 s on a 500-MHz Pentium workstation.
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are sampled from an equilibrium ensemble using either a Monte
Carlo or a molecular dynamics simulation.

Although quadratic orthogonal polynomials were used for
the multipole expansion, it would be more efficient to use
spherical harmonics up to a given order if polynomials of
greater than quadratic order are used. This is because the error
bound estimate, at least for the Coulomb case, may be formu-
lated in terms of spherical harmonics, and there are fewer of
these than independent polynomials of the same order.20 This
was not done here because the number of spherical harmonics
up to quadratic order (9) is not sufficiently smaller than the
number of independent quadratic polynomials (10) to justify the
added complication.

There are several ways in which the method may be made
faster. First, a higher order multipole approximation would be
expected to improve performance because the computation time is
currently dominated by direct boundary element contributions.
This would require using spherical harmonics, as described above.
Two approximations that would improve the speed of the bound-
ary element calculation are using a lower order Gaussian quadra-
ture formula for the off-diagonal elements and using larger surface
elements such as described in ref. 30. Although these two approx-
imations would lower the accuracy of the direct boundary element
contribution to the force, this is acceptable if the multipole error
bound is comparable.

It is also possible to apply the methods described here for
solving the linear Poisson–Boltzmann equation to more highly
charged systems. Reference 7 describes a method for scaling the
solution of the linear Poisson–Boltzmann equation so that it
agrees fairly well with the nonlinear Poisson–Boltzmann equa-
tion solution. The authors of this reference also found that the
correction was unnecessary for systems with low charge density
at physiologic ionic strengths, where the solutions are virtually
identical.

Finally, it would be useful to apply some of the methods used
in this article to solve for the surface charge density of an isolated
molecule as well. Although this would not speed up the calcula-
tions during the simulation, it would reduce time and memory
constraints on the initial step and allow the use of larger surface
meshes.
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Numerical Integration Over Boundary Elements

The integrals over the standard triangles, with vertices (0, 0),
(1, 0), and (0, 1) in eq. (1.27) are calculated using Gaussian
quadrature. The two-dimensional integrals are evaluated using a
nonproduct form of the Gaussian quadrature scheme, i.e., not
simply using a one-dimensional form in each dimension. Although
it is more difficult to calculate the coefficients, the nonproduct
form requires less function evaluations, in general. The integral of
a function w( x, y) f( x, y) over a region T in this approximation is
evaluated using

�
T

w� x, y� f� x, y� dx d y � �
j�1

N�P�

wj f � xj, yj�. (1.77)

The wj, xj, and yj depend on both the region T and the weight
function w( x, y). These coefficients are chosen such that this
equation is exact for f( x, y) � xmyn, m � n � P. Because the
integrands for the diagonal matrix elements in eq. (1.29) have a 1/r
singularity, the weight function is chosen to be w( x, y) �
1/�x2 � y2. The weight function w( x, y) � 1 for the integrals
in the off-diagonal elements. A third-order formula due to Radon
is used, with the coefficients for w( x, y) � 1 taken from ref. 31
for the off-diagonal matrix elements and a fifth-order Radon for-
mula, with the coefficients for w( x, y) � 1/�x2 � y2 calculated
using Macsyma, is used for the diagonal elements.32 The coeffi-
cients for the latter are given in Table 5.

Approximate Integral Kernel Matrix Elements
and Error Bounds

All of the matrix elements of the integral kernels K� and L� may be
calculated from the level 0 matrix elements of the kernel K� 	 using

Table 4. Errors and Execution Times for Calculating the Force on Two Actin Monomers in 0.1 M Solution
of Monovalent Ions (� � 0.1027 Å�1).

r (Å) 	 Error bound
# Matrix
elements

# Direct
elements

�F� 12
mult � F� 12

1�step�
(10�6 dynes)

�F� 12
mult 
 F� 12

1�step�
�F� 12

1�step�
t�F� 12

mult�

t�F� 12
1�step�

50 1.0 � 10�3 1297 369 4.56 � 10�2 5.21 � 10�2 0.25
1.0 � 10�2 1297 190 8.23 � 10�2 9.41 � 10�2 0.12
1.0 � 10�1 1071 94 0.152 0.174 5.0 � 10�2

75 5.0 � 10�5 1297 430 3.33 � 10�3 0.126 0.28
1.0 � 10�4 1297 291 4.52 � 10�3 0.171 0.19
1.0 � 10�3 611 69 1.08 � 10�2 0.406 3.0 � 10�2

The notation is the same as in Table 3.
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eq. (2.70) and the matrix elements of the kernel L� 	 using eq. (2.75),
respectively. A closed form expression for these matrix elements
may be obtained by using the Taylor series expansion of the kernel
to �( xj

mx	k
n), m � n � 2 and using the orthonormality of the

polynomials P( x�) in eqs. (2.69) and (2.73).
Defining

F1 �
��R � 1�

R3 ,

F2 �
��2R2 � 3�R � 3�

R5 ,

F3 �
��3R3 � 6�2R2 � 15�R � 15�

R7 , (2.78)

the matrix elements for the integral kernel K� 	(�, R� , x� , x�	) are

�K� 	0,0�l � e��RF1�1 �
1

12
�2	R� l,

�K� 	1j,0�l �
e��R

2
3
�F1	jl 
 F2R� jR� l�,

�K� 	0,1j�l �
e��R

2
3
�F2�RA�jR� l 
 F1A�l, j��,

�K� 	1j,1k�l �
e��R

24
�F2�	jl�RA�k � 	kl�RA�j

�AjkR� l � AkjR� l � AljR� k

�AlkR� j) 
 F3�R� j�RA�kR� l � �RA�jR� kR� l�),

�K� 	2j,0�l �
e��R

12
5
�F3R� j

2R� l 
 F2�2	jlR� j � R� l��, j � 1, 2, 3

�K� 	0,2j�l �
e��R

12
5
�F3�RA�j

2R� j 
 F2�A�2A�l, j��RA�j

�R� l)), j � 1, 2, 3

�K� 	24,0�l �
e��R

12
�F3R� 1R� 2R� l 
 F2�	l1R� 2 � 	l2R� 1��,

�K� 	25,0�l �
e��R

12
�F3R� 2R� 3R� l 
 F2�	l2R� 3 � 	l3R� 2��,

�K� 	26,0�l �
e��R

12
�F3R� 1R� 3R� l 
 F2�	l1R� 3 � 	l3R� 1��,

�K� 	0,24�l �
e��R

12
�F3�RA�1�RA�2R� l 
 F2�A�l, 1��RA�2

��RA�1A�l, 2�)),

�K� 	0,25�l �
e��R

12
�F3�RA�2�RA�3R� l 
 F2�A�l, 2��RA�3

��RA�2A�l, 3�)),

�K� 	0,26�l �
e��R

12
�F3�RA�1�RA�3R� l 
 F2�A�l, 1��RA�3

��RA�1A�l, 3�)),

�K� 	1j,2k�l � �K� 	2k,1j�l � 0, j � 1, 2, 3; k � 1, . . . , 6

�K� 	2j,2k�l � 0, j, k � 1, . . . , 6. (2.79)

The matrix elements for the integral kernel L� 	(�, R� , x� , x�	) are

�L� 	1j,0� �
e��R

2
3
F1 �

k�1

3

�ljkR� k,

�L� 1j,1k�l �
e��R

12 �
m�1

3

�ljm�F2�RA�kR� m 
 F1A�m, k��,

�L� 	2j,0� � �
e��R

6
5
F2R� j �

m�1

3

�ljmR� m, j � 1, 2, 3

Table 5. Weights wj and Evaluation Points ( xj, yj) for Fifth-Order Gaussian Quadrature Over a Triangular
Region with Vertices (0, 0), (1, 0), and (0, 1) and with Weight Function w( x, y) � 1/�x2 � y2.

w x y

9.087600805043129 � 10�2 4.519108816401833 � 10�1 4.519108816401833 � 10�1

2.622451129254795 � 10�2 5.502601270767638 � 10�2 5.502601270767638 � 10�2

9.915323050713348 � 10�2 2.767054424221354 � 10�1 2.767054424221354 � 10�1

7.682740556667928 � 10�2 7.720289712733758 � 10�1 1.054562060711828 � 10�1

7.682740556667928 � 10�2 1.054562060711828 � 10�1 7.720289712733758 � 10�1

6.409495859505721 � 10�2 4.010643051428878 � 10�1 5.478385084588691 � 10�2

6.409495859505721 � 10�2 5.478385084588691 � 10�2 4.010643051428878 � 10�1
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�L� 	24,0� �
e��R

12
F2��R� 1R� 3, R� 2R� 3, R� 1

2 
 R� 2
2�,

�L� 	25,0� �
e��R

12
F2�R� 2

2 
 R� 3
2, �R� 1R� 2, R� 1R� 3�,

�L� 	26,0� �
e��R

12
F2�R� 1R� 2, R� 3

2 
 R� 1
2, �R� 2R� 3�,

�L� 	0,0�l � 0,

�L� 	0,1j�l � 0,

�L� 	0,2j�l � 0, j � 1, . . . , 6

�L� 	1j,2k�l � �L� 	2k,1j�l � 0, j � 1, 2, 3; k � 1, . . . , 6

�L� 	2j,2k�l � 0, j, k � 1, . . . , 6. (2.80)

Because many matrix elements of K� 	 and L� 	 are zero, sparse
matrix multiplication is used in the program implementing the
method.

We next derive a bound on the approximation error of each
term in the sum of eq. (2.71) for F� 12 resulting from truncating the
Taylor series expansion of the kernel K� 	 to obtain the matrix
elements given above. This bound is used to determine which
matrix elements in the compressed form of the orthonormal poly-
nomial basis of K� (R� , x� � x�	) are nonzero. Because truncating the
Taylor series expansion for K� 	 to �( x� j

mx�	k
n), m � n � 2 corre-

sponds to the same approximation for K� we examine the error in
the latter. We also know that the maximum approximation error for
each term in eq. (1.50) occurs when the charge distribution in the
cells corresponding to each index is a delta function, i.e., point

charge, at the closest pair of points. The error bound for the terms
¥m,m	�1

10 b(C,m)
(1) b(C	,m	)

(2) K� (C,m),(C	,m	) is denoted by d(C, C	) and
is

d�C, C	� � max
x��C, x�	�C	

�K� �R� , x� 
 x�	� 
 K� 2�R� , x� 
 x�	�� (2.81)

where K� 2(R� , x� � x�	) is the Taylor series expansion up to
quadratic order in x� � x�	

K� 2�R� , x� 
 x�	� � d�0�R� � � �
k�1

3

d� 1
k�x� 
 x�	�k (2.82)

� �
k,l�1

3

d� 2
kl�x� 
 x�	�k�x� 
 x�	�l.

Defining y� � x�	 � x� the kernel function is

K� �R� , y�� � e���R� �y� �� 1

�R� 
 y��3
�

�

�R� 
 y��2	�R� 
 y��. (2.83)

Next, we assume that the maximum in eq. (2.81) occurs when
R� � y� � �R� � y� �. Defining R � �R� �, r � �y� �, and R̂ � R� /�R� � yields

K� �R, r� � e���R�r�� 1

�R 
 r�2 �
�

R 
 r	R̂ (2.84)

and the scalar function K(R, r) may be defined by

K� �R, r� � K�R, r�R̂ (2.85)

and likewise for K2(R, r) to give

K2�R, r� �
e��R

R2 �1 � �R �
��2R2 � 2�R � 2�

R
r

�
1

2

��3R3 � 3�2R2 � 6�R � 6�

R2 r 2�. (2.86)

The error bound of eq. (2.81) then becomes

d�C, C	� � max
0�r�
3s� j�

K�R, r� 
 K2�R, r� (2.87)

with s( j) the length of one side of the cells C and C	 and the �3
factor coming from the relative configuration of the cells with the
largest error in which the line connecting their centers also passes
through a corner of each cell. This expression is the remainder
term for the Taylor series, whose value may be found from the
Lagrange form

R3�r, c� �
1

3!

�3K�R, c�

�r3 r3, 0 � c � r. (2.88)

Figure 2. The recursive algorithm for choosing pairs of cells is
illustrated by showing one step. The error bound d(C, C	) for two
cells in (a) is larger than the desired value 	 so the error bounds for
each pair of daughter cells are compared with 	. If the bound for these
cells is found to be less than 	, as in (b), the recursion terminates. The
algorithm then continues checking other pairs of cells at the coarser
level.

366 Bordner and Huber • Vol. 24, No. 3 • Journal of Computational Chemistry



Because

�3K�R, r�

�r3 � e���R�r�� 24

�R 
 r�5 �
24�

�R 
 r�4 �
12�2

�R 
 r�3

�
4�3

�R 
 r�2 �
�4

R 
 r	 (2.89)

is monotonically decreasing for r  R an upper bound d(C, C	)
on the approximation error may be found from the corresponding
upper bound on the remainder term of eq. (2.88) to give

d�C, C	� � 33/ 2e��a� 4

a3 �
4�

a2 �
2�2

a
�

2

3
�3 �

1

6
�4a	 �s� j��3.

(2.90)

with a � R � �3s( j). However, rather than using this upper
bound on the remainder term we simply evaluate it directly from
eq. (2.87) with r � �3s( j). This is because the smaller error
bound that results implies that there are fewer matrix elements of
K� (R� , x� � x�	) in the truncated matrix, which more than compen-
sates for the additional computational time needed to evaluate
d(C, C	) directly.
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