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Abstract: The evolution of our physics-based computational methods for determining protein conformation without
the introduction of secondary-structure predictions, homology modeling, threading, or fragment coupling is described.
Initial use of a hard-sphere potential captured much of the structural properties of polypeptide chains, and subsequent
more refined force fields, together with efficient methods of global optimization provide indications that progress is being
made toward an understanding of the interresidue interactions that underlie protein folding.
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Introduction

Our motivation for developing methods for conformational energy
calculations on proteins followed from our experimental work1 to
determine the conformation of a protein, bovine pancreatic ribonu-
clease A (RNase A), in aqueous solution, before X-ray and NMR
methods had led to protein structures. Physical chemical meth-
ods were used to identify noncovalent interactions, i.e., distance
constraints,1 that would place restrictions as to how the polypeptide
chain could fold, thereby enabling the three-dimensional structure
to be determined. Such an approach led to the identification of three
specific tyrosyl-aspartate interactions,1 whose existence was con-
firmed by the subsequent determination of the X-ray structure of
RNase A.2, 3

Recognizing that more than three such distance constraints
would be required to fold a protein within any predetermined
degree of precision,4 we began to develop computational method-
ology5 that could ultimately make use of such distance constraints
for an efficient search of conformational space. Initially, the com-
putations were based only on a hard-sphere potential,5 similar to
the approach of Ramachandran and coworkers,6 who treated a
terminally blocked amino acid residue. Several interesting con-
clusions were derived about the role of such steric effects in
influencing the conformations of polypeptide chains.7 – 9 It is re-
markable that much of the structural character of proteins (e.g.,
the distribution of the dihedral angles φ, ψ , and χ1 for various
residues) results from simple steric repulsion.

Clearly, a hard-sphere potential is inadequate to determine sta-
ble conformations of a macromolecule,10 and, in fact, Liquori

and coworkers11 had already introduced a more detailed poten-
tial function to treat synthetic polymers. A series of attempts
by Levitt and Lifson,12 Hagler and coworkers,13 and Brant and
Flory14 followed to derive improved potential functions. Our ef-
forts in this regard led to our empirical conformational energy
program for peptides, ECEPP,15 which was subsequently upgraded
twice as ECEPP/216, 17 and ECEPP/3.18 Several other force fields,
for example, AMBER19 and CHARMM20 have since been intro-
duced. All of these force fields are augmented by either explicit or
continuum treatments of hydration. Efforts continue in many lab-
oratories to improve the current force fields. One of these efforts
involves the coupling between conformational changes and ioniza-
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tion equilibria.21 Simultaneously, the fundamental physical aspects
underlying such computations were elucidated.22 – 24

The other essential ingredient of conformational energy cal-
culations, besides a good force field, is an efficient procedure to
search the conformational space for the global minimum of the
conformational energy, according to the hypothesis that followed
from Anfinsen’s25 classical experiment. Such search methods in-
volve energy minimization, and Monte Carlo (MC) and molec-
ular dynamics (MD) procedures. Aside from some preliminary
exercises,26 – 29 we have not used MD procedures because the re-
quired femtosecond time step does not enable computations to be
carried out on the experimental time scale of folding, which is typ-
ically milliseconds or seconds. Our efforts at global optimization
involved an evolution of minimization and MC procedures,30 – 36

ultimately leading to our present hierarchical one described later in
this article.

This article briefly recounts the evolution of energy functions
and the conformational search procedures that have been developed
over the past 40 years in our laboratory. It is not designed as a
comprehensive review of the literature in the field.

Initial Applications

We initially applied the ECEPP force field to gain an understanding
of the interatomic interactions that lead to the basic structures from
which proteins are built. First, the interactions leading to the prefer-
ences for the right-handed twist of α-helices,37 – 39 β-sheets,40 – 43

and the β-α-β crossover,44 and the packing of these structures,
viz., α-α,45 – 51 α-β,52 β-β,53 and the β-barrel54 were identified.
Conformational fluctuations were treated in the context of an exact
loop-closure algorithm,55 – 58 with applications to the cyclic de-
capeptide gramicidin S59 and cyclo-hexaglycyl.60, 61

Some initial applications were made to globular and fibrous
proteins. For globular proteins, use was made of homology
modeling.62 – 66 Collagen-like polytripeptides were examined as
models of fibrous proteins.67 – 73 The energetics of conforma-
tional transitions, specifically the helix-coil transition, were also
examined.74 – 78 At the same time, early ideas about the mechanism
of protein folding79 – 83 and enzyme–substrate interactions84 – 91

were developed.

Statistical Mechanics of Folding Transitions

Following up on earlier considerations,22 – 24 and influenced by
work of Gõ,92 Shakhnovich,93 Thirumalai,94 and Wolynes,95 re-
cent efforts in our laboratory were devoted to identify the charac-
teristic features of short- and long-range interactions, and amino
acid sequences, that determine the first-order character of the fold-
ing transition and its cooperativity in globular proteins.96 – 102 This
effort was facilitated103 by use of Lee’s entropy sampling Monte
Carlo (ESMC) method,104 a general Monte Carlo technique char-
acterized by sampling all energy states with equal probability.
ESMC defines the probability density ρm in the Metropolis algo-
rithm as ρm = exp[−S(Em)/k], where S(Em) is evaluated by an
iterative procedure and converges to the microscopic entropy of
conformations at energy level Em. Such an algorithm samples the

low-entropy conformations in the same manner as the conventional
Monte Carlo samples the energetically important conformations.
The ESMC method avoids a local energy-minimum problem, and
is quite efficient and accurate in computing the microscopic entropy
function. An exact knowledge of the microcanonical entropy of a
protein model in both the native and nonnative states provides a
precise characterization of the folding process of the model.

Global Optimization

Our most recent work has been devoted to surmounting the
multiple-minima problem, i.e., to trying to identify the global
minimum in the multidimensional conformational energy space.
For this purpose, a menu of such procedures, previously summa-
rized,105 was developed. Some of the more recent ones, a few of
which played a role in the hierarchy discussed later, are discussed
briefly here.

Our earlier build-up procedure, based on combining low-energy
fragments, was augmented with a build-up based on probabil-
ities, the pattern-recognition importance-sampling minimization,
PRISM,106 – 108 procedure, which makes use of the properties of
the individual amino acid residues.109, 110 PRISM uses statistical
information collected from the PDB to focus the search on the
most probable regions of the conformational space. It was ap-
plied successfully to predict the overall fold of the 36-residue avian
peptide.108

Subsequent efforts involved various Monte Carlo procedures
combined with energy minimization. The simplest of these meth-
ods is Monte Carlo with minimization, MCM,111 – 113 which is
a Metropolis Monte Carlo algorithm in which every trial state is
first energy-minimized before the Boltzmann acceptance criterion
is applied. This modification of the accept/reject criterion does not
satisfy the condition of detailed balance and, hence, the MCM algo-
rithm does not produce a thermal Boltzmann distribution. However,
our experience indicates that this method is effective in finding
low-energy protein conformations,111, 112 and almost all of our
methods now employ an energy-minimization step. The effective-
ness of energy minimization may derive in part from its ability
to overcome the entropic barrier to finding low-energy conforma-
tions. Such barriers arise naturally in the conformational space of
proteins, because the high dimensionality makes it far more likely
that a random move near an energy minimum will increase the en-
ergy rather than decrease it. The MCM procedure has been applied
successfully to study the conformational preferences of the pen-
tapeptide Met-enkephalin,111, 112 but it has been implemented with
other methods in optimizing protein structures, as described below.

One such method is Electrostatically Driven Monte Carlo
(EDMC),114 – 116 which at present is our preferred method for refin-
ing all-atom structures of proteins. The EDMC method employs a
move set in which individual peptide groups are selected at random
and rotated “in place” (i.e., the conformational change is localized
to the peptide group as much as possible) so as to optimize the
alignment of its dipole moment with the local electric field. [Such
a move set was first used in the Self-Consistent Electrostatic Field
method.117] The resulting conformation is then energy minimized
before applying the Metropolis criterion, as in the MCM method.
The basic EDMC method has recently been augmented with new
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search techniques to improve its efficiency.116 The EDMC method
has proven effective in finding the global energy minimum of all-
atom models of polypeptides consisting of up to 20 amino acid
residues,114 – 120 most notably in studying the pH dependence of
the conformational properties of polypeptides.21, 121, 122

Our procedure to work in a space of high dimensionality and
then relax back to three dimensions123 evolved into a methodology
involving deformation of the potential energy surface to eliminate
unwanted minima. This deformation was based on a solution of
the diffusion equation in cartesian space with a diffusion equation
method, DEM.124 – 127 For application of the DEM in dihedral an-
gle space,127 a method was introduced to calculate exact end-to-end
distance distributions for finite freely rotating chains.128 The basic
idea of the DEM is to deform the multivariable function that repre-
sents the potential energy in such a manner as to make the shallow
wells disappear gradually, while other potential wells grow at their
expense. Under the assumption that the shallower wells will dis-
appear more easily than the deeper wells, it is possible to envision
an iterative procedure which, applied to the potential function, will
change its shape, making most of the minima become shallower
until they disappear, while leaving a single absorbing minimum re-
lated to the lowest minimum of the original function. At this point
of the deformation process, a simple local minimization algorithm
should be able to retrieve the position of the unique minimum from
any starting point.

Simultaneously, an alternative procedure, which scales a vari-
able instead of scaling a function, the distance scaling method,
DSM,129 and different reversing procedures, were introduced lead-
ing to the self-consistent basin-to-deformed-basin mapping (SCB-
DBM) as a more sophisticated example of a deformation-based
method.130 – 132 The positions of minima of the deformed function
are, in general, different from those of the original function, and a
proper reversing procedure is as important as the deformation itself.
The simplest approach, consisting of a series of local minimizations
carried out on gradually less deformed surfaces, is successful only
for simple systems. A multiple-trajectory perturbation approach,
which tracks more than one minimum back during deformation and
tries to detect branching of a trajectory by using a local search, was
applied successfully for more demanding systems. The underlying
principle of SCBDBM is the location of large regions of confor-
mational space containing low-energy minima by coupling them
to some of the greatly reduced number of minima on the highly
deformed surface. This is achieved by iterating cycles, each con-
sisting of reversing the deformation and deforming the newly found
low-energy structures. SCBDBM has been applied successfully to
predict lowest-energy structures of polyalanine chains of length up
to 100 amino acid residues, to locate global minima of Lennard–
Jones atomic clusters containing up to 100 atoms in a cluster, and
in the theoretical prediction of crystal structures (discussed in the
next section).

At present, our most effective procedures for the global opti-
mization of protein structures appear to be conformational space
annealing (CSA)133 – 135 and conformational-family Monte Carlo
(CFMC).136 The CSA method133 – 135 combines essential aspects
of the build-up procedure and a genetic algorithm. The CSA
method enforces a broad conformational search in its early stages
and gradually allows the search to become focused into smaller
regions with low energy. Specifically, the CSA method maintains

a minimum distance between conformations (usually defined by
their deviation in dihedral angles), which is gradually reduced
(“annealed”). The CSA method resembles a genetic algorithm in
that it starts with a bank of randomly generated and subsequently
energy-minimized conformations separated by the minimum dis-
tance. This bank is meant to represent a sparse sampling of the
conformational space that captures much of the low-energy short-
range structure of the protein. The CSA method then generates new
trial conformations by recombining conformations of the present
bank with segments of various sizes drawn from the current and
the original bank; these trial conformations are then energy min-
imized. The trial conformation may then replace a conformation
in the present bank, depending on its energy and the present mini-
mum distance cutoff. This method has been successful in obtaining
the global minimum of peptides containing up to 20 amino acid
residues133 – 135 using all-atom models of polypeptides and the
ECEPP/3 force field. The CSA method is also our principal method
for optimizing the united-residue (UNRES) energy in our hierarchi-
cal procedure for protein structure prediction discussed later.

Another efficient global optimization method, Conformation-
Family Monte Carlo (CFMC),136 was also introduced recently in
our laboratory. The CFMC method can be considered as an exten-
sion of the original MCM method, because at each iteration of the
method a conformation is perturbed, locally minimized, and then
subjected to an accept/reject criterion. However, the CFMC method
maintains a database of low-energy conformations that are clus-
tered into families, simulating an ensemble of states, rather than the
single state characteristic of Metropolis Monte Carlo simulations.
Clustering conformations into families helps to “coarse grain” the
conformational space, and allows the CFMC method to exploit in-
formation about the local structure of the energy landscape to guide
the global exploration. In this regard, the CFMC method resembles
other ensemble-oriented simulation methods such as CSA and the
SCBDBM methods. They all maintain a database of conformations,
which is initialized to a set of randomly generated conformations
and gradually “pruned” into shape by successive random moves, lo-
cal minimization, and accept/reject criteria. However, the families
of the CFMC method constitute an additional level of organization
in the database of conformations; in effect, CFMC moves are made
not between conformations, but between families of conformations.
The CFMC method relies heavily on perturbations of one or a few
adjacent dihedral angles, whereas the CSA method employs a re-
combination scheme in which pieces of candidate conformations
are combined and minimized.

The efficiency of Monte Carlo-type methods (such as simu-
lated annealing, MCM, and CFMC) is enhanced by a good set
of moves that produce a relatively high acceptance ratio while fa-
voring a broad search of the conformational space. One method
for producing such good moves was introduced by Noguti and
Gõ, who proposed taking steps in the space of the normal modes
of the protein.137 Thus, in the Noguti–Gõ method, the Hessian
of the energy function is evaluated at the present conformation
and analyzed into its normal modes; Monte Carlo steps are then
scaled by the relative dimensions along the eigenvectors. A simi-
lar method was proposed by Vanderbilt and Louie, who proposed
diagonalizing the covariance matrix of already accepted states.138

Two novel methods that have the advantages of the Noguti–Gõ
and Vanderbilt–Louie methods but avoid the need for eigenanaly-
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sis (which can be computationally expensive) have been developed
recently.139 These move sets may be combined with novel ac-
ceptance criteria (such as that of the ESMC method104) and with
energy minimization (as in MCM).

The interactions within proteins are typically short ranged;
hence, localized conformational changes are likely to result in an-
other conformation of low energy. However, local rearrangements
of the polypeptide backbone are difficult in rigid-geometry mod-
els, because the change in a single dihedral angle can move a
large number of atoms, thus altering a large number of interac-
tion energies. Therefore, we have developed several methods for
sampling all possible rigid-geometry loop conformations consis-
tent with a given set of constraints.55 – 58 The most recent of these
solves the loop closure problem by finding the real roots of a simple
polynomial,58 and may be applied to sampling the conformations
of even long loops (greater than seven residues).

The determination of side-chain dihedral angles has been facili-
tated in recent years by the development of rotamer libraries,140, 141

which couple backbone and side-chain dihedral angles. Several ef-
ficient methods have been developed in recent years for finding
the rotamers of lowest energy such as the dead-end elimination
algorithm.142 However, our experience suggests that the optimal
dihedral angles of buried side chains can usually be found by sim-
ple methods, for example, several sweeps of energy minimization
of the dihedral angles of each side chain in turn.

Most of these procedures benefited from parallelization,143 and
some of them foreshadowed the development of procedures to
compute crystal structures and the three-dimensional structures of
proteins, discussed in the next two sections.

Prediction of Crystal Structures

The prediction of crystal structures from the structure of its con-
stituent molecules and their interaction energies (without using
information about the space group) is a problem in global op-
timization.144, 145 Several of the optimization methods described
above (such as the DEM, DSM, and SCBDBM methods) have
been used for crystal structure prediction of small rigid molecules.
Specifically, the DEM and DSM predicted the crystal structures of
hexasulfur and benzene successfully,146, 147 while the SCBDBM
method has been used to predict the crystal structures of sev-
eral heteroatomic organic molecules.132 The more efficient CFMC
method is now being used to predict crystal structures of both
rigid and flexible molecules in a blind benchmarking test simi-
lar to the CASP (Critical Assessment of Techniques for Protein
Structure Prediction) experiment.148 As noted by several groups,
such crystal-structure prediction methods offer an important tool
for refining energy functions.132 However, this is not as simple as
it appears, because the experimentally observed structure may be
determined by its growth conditions as well as by thermodynamic
considerations.149 – 151

Hierarchical Approach to the Prediction of
Protein Structure

As with crystal packing studies, our efforts to predict the three-
dimensional structures of proteins are driven by the desire to gain

an understanding as to how such structures arise solely by global
optimization of a potential energy function, without the use of
ancillary aides such as secondary structure prediction, homology
modeling, threading, fragment coupling, etc. Recognizing the im-
possibility of searching conformational space with an all-atom
potential function, a hierarchical procedure was developed whose
two main features are the initial use of a united-residue, UNRES,
potential function100, 152 – 155 and an efficient procedure, conforma-
tional space annealing, CSA,133 to explore the UNRES space. The
protein is first optimized with the low-resolution UNRES model
and the CSA method.

In UNRES, the backbone is represented as a virtual-bond chain
of Cα atoms, and the side chains are depicted as ellipsoids that
interact through a Gay–Berne potential.156 The interaction sites
are the united-atom side chains, and the centers of the peptide
groups between Cα atoms, which interact through empirical terms
augmented by correlation terms (multiple-body interactions). The
multiple-body interactions among peptide groups in the UNRES
potential are represented in terms of a cumulant expansion of
the free energy,157 following Kubo,158 and includes multibody
cooperative terms whose relative weights are determined by a
Z-score-and-gap optimization.159, 160 The purpose of the last pro-
cedure is to maximize both the gap (between the average energy
of the native-structure family and that of the nonnative structures)
and the ratio of this gap to the standard deviation of the energy
distribution of nonnative structures for the chosen test proteins, to
obtain a folding potential. The CSA method, resembling elements
of build-up and genetic algorithms, searches the UNRES space to
narrow the region of the possible location of the global minimum.

The lowest-energy UNRES conformation, as well as a set of
distinct low-energy conformations, are then converted to all-atom
models. The united-residue chains are first converted to all-atom
poly(L)-alanine backbones using the dipole-path algorithm,161 i.e.,
the specific side chains are neglected. The side-chain conforma-
tions are then determined by several sweeps of a simple grid search
of successive side-chain dihedral angles. Finally, the all-atom mod-
els are refined with the EDMC method, with inclusion of the
SRFOPT162, 163 continuum hydration model.

Using only low-order terms of the cumulant expansion, the hi-
erarchical approach performed well in predicting α-helical protein
structures in the blind CASP3 exercise.164 – 168 A particularly good
result was obtained for target T0061, an 89-residue protein (PDB
entry 1bg8); the structure of the core, representing 80% of the ex-
perimentally observed structure, was predicted with an rmsd of
4.2 Å for the Cα atoms. However, the CASP3 force field was not
successful in predicting protein structures with β-type secondary
structures. This was remedied in the CASP4 force field, which in-
cluded higher order terms of the cumulant expansion,155, 157, 169

and which successfully predicted large fragments of α, β, and
α/β proteins, as demonstrated in the CASP4 exercise.170 Our
best α-helical prediction corresponds to target T0102, a 70-residue
cyclic polypeptide from Enterococcus faecalis (PDB code: 1e68).
The whole structure was predicted within an rmsd of 4.3 Å for
the Cα atoms. In addition, for the 163-residue target T0126, an α/β
protein, fragments involving 61 residues of model 3 match the ex-
perimental structure within 6.0 Å for the Cα atoms and correctly
predicted the contact between noncontiguous β-strands.170
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Concluding Remarks

With efficient methods to search conformational space, and contin-
ually improving potential functions, progress is being made in the
prediction of protein structure, based only on the physics of inter-
residue interactions. The current methodology is the present phase
of a series of evolving procedures that began with a simplified hard-
sphere potential, and led to more complete potential functions and
efficient procedures for global optimization.
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