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Abstract: Many systems of great importance in material science, chemistry, solid-state physics, and biophysics
require forces generated from an electronic structure calculation, as opposed to an empirically derived force law to
describe their properties adequately. The use of such forces as input to Newton’s equations of motion forms the basis
of the ab initio molecular dynamics method, which is able to treat the dynamics of chemical bond-breaking and -forming
events. However, a very large number of electronic structure calculations must be performed to compute an ab initio
molecular dynamics trajectory, making the efficiency as well as the accuracy of the electronic structure representation
critical issues. One efficient and accurate electronic structure method is the generalized gradient approximation to the
Kohn–Sham density functional theory implemented using a plane-wave basis set and atomic pseudopotentials. The
marriage of the gradient-corrected density functional approach with molecular dynamics, as pioneered by Car and
Parrinello (R. Car and M. Parrinello, Phys Rev Lett 1985, 55, 2471), has been demonstrated to be capable of elucidating
the atomic scale structure and dynamics underlying many complex systems at finite temperature. However, despite the
relative efficiency of this approach, it has not been possible to obtain parallel scaling of the technique beyond several
hundred processors on moderately sized systems using standard approaches. Consequently, the time scales that can be
accessed and the degree of phase space sampling are severely limited. To take advantage of next generation computer
platforms with thousands of processors such as IBM’s BlueGene, a novel scalable parallelization strategy for
Car–Parrinello molecular dynamics is developed using the concept of processor virtualization as embodied by the
Charm�� parallel programming system. Charm�� allows the diverse elements of a Car–Parrinello molecular
dynamics calculation to be interleaved with low latency such that unprecedented scaling is achieved. As a benchmark,
a system of 32 water molecules, a common system size employed in the study of the aqueous solvation and chemistry
of small molecules, is shown to scale on more than 1500 processors, which is impossible to achieve using standard
approaches. This degree of parallel scaling is expected to open new opportunities for scientific inquiry.

© 2004 Wiley Periodicals, Inc. J Comput Chem 25: 2006–2022, 2004
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Introduction

Modern theoretical methodology, aided by high-speed computing
platforms, has advanced to the point that the microscopic details of
chemical processes in condensed phases can now be treated on a
relatively routine basis. One of the most commonly used theoret-
ical approaches for these studies is the molecular dynamics (MD)
method, in which the classical Newtonian equations of motion for
a system are solved numerically starting from a prespecified initial
state and subject to a set of boundary conditions appropriate for the
problem.1–3 MD methodology allows both equilibrium thermody-
namic and dynamical properties of a system at finite temperature to
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be computed, while simultaneously providing a “window” through
which the microscopic motion of individual atoms in the system
can be viewed.4 One of the most challenging aspects of an MD
calculation is the specification of the forces. In many applications,
these are computed from an empirical model or force field, in
which simple mathematical forms are posited to describe bond,
bend, and dihedral angle motion as well as van der Waals and
electrostatic interactions between atoms, and the model parame-
terized to experimental data at a few state points and/or high-level
ab initio calculations on small clusters or fragments.5–7 This ap-
proach has enjoyed tremendous success in the treatment of systems
ranging from simple liquids and solids to polymers and biological
systems such as proteins and nucleic acids.

Despite their success, standard force fields have a number of
serious limitations. First, atomic charges are taken to be static
parameters, and therefore, electronic polarization effects are ne-
glected. This limitation has long been recognized,8 and attempts to
rectify the problem have been proposed in the form of empirical
polarizable models, in which charges and/or induced dipoles are
allowed to fluctuate in response to a changing environment.9–13

Although these models have also enjoyed considerable success,
they also have a number of serious limitations, including a lack of
transferability and standardization. Second, empirical force fields
generally suffer from an inability to describe chemical bond break-
ing and forming events. The latter problem can be treated in an
approximate manner using techniques such as the empirical va-
lence bond method14 or other semiempirical approaches. However,
these methods are, also, not transferable and, therefore, need to be
reparameterized for each type of reaction and may, indeed, bias the
reaction path in both undesirable and not intuitively obvious ways.

To overcome the limitations of force field-based approaches,
one of the most important recent developments in MD, the ab
initio molecular dynamics (AIMD) method,15–24 which combines
finite temperature dynamics with forces obtained from electronic
structure calculations performed “on the fly” as the MD simulation
proceeds was, first, conceived.15 The electronic structure is treated
explicitly in AIMD calculations; hence, many-body forces, elec-
tronic polarization, and bond-breaking and -forming events are
described to within the accuracy of the electronic structure repre-
sentation employed.

The AIMD method has been used to study a wide variety of
chemically interesting and important problems in areas such as
liquid structure,25–27 acid-base chemistry,28–30 industrial,31–34 and
biological catalysis,35 geophysical systems,36,37 and the design and
analysis of materials with novel properties. In many of these
applications, new physical phenomena have been revealed, which
could not have been uncovered using empirical models, often
leading to new interpretations of experimental data and even
suggesting new experiments to perform.

Not unexpectedly, the power and flexibility of the AIMD
methodology comes at the price of a significant increase in com-
putational overhead compared to force field-based approaches.
Whereas the latter can currently be employed to routinely simulate
systems consisting of 104–106 atoms and to access time scales on
the order of hundreds of nanoseconds or longer, AIMD calcula-
tions can currently be employed to routinely simulate systems of
just a few tens or hundreds of atoms and to access time scales on
the order of tens of picoseconds. The bottleneck in AIMD calcu-

lations is clearly the time required to perform the electronic struc-
ture calculations. Currently, the most commonly used electronic
structure theory in AIMD is the Kohn–Sham formulation of the
density functional theory (DFT),38–40 implemented using a plane-
wave basis set expansion of the electronic orbitals. This protocol
provides a reasonably accurate description of the electronic struc-
ture for many types of chemical environments while maintaining
an acceptable computational overhead and constitutes the basis for
the original Car–Parrinello formulation of the method
(CPAIMD).15 Finally, AIMD can be combined with force field-
based approaches to yield the so-called quantum mechanical/
molecular mechanical (or QM/MM) technique,41–44 which is par-
ticularly useful for treating large systems, such as enzymes, where
chemical reactivity is localized in a relatively small region of the
system.

Given the power of the CPAIMD methodology, it is critical to
develop techniques aimed at overcoming the computational bot-
tlenecks that limit its applicability. A complete solution must
involve both algorithmic developments and emerging computer
architectures. In the present article, the latter issue is addressed by
developing scalable fine-grained parallel algorithms for the large-
scale computational platforms available today and the, yet larger,
architectures of tomorrow such as IBM’s BlueGene.45 Achieving
efficient parallel scaling on these machines is a challenging prob-
lem. First, the CPAIMD method involves multiple three-dimen-
sional Fast Fourier Transforms (3D FFT). Parallel 3D FFTs are
communication intensive due to the all-to-all communication pat-
terns they exhibit. Furthermore, efficient concurrent execution of
hundreds or thousands of 3D FFTs is nontrivial. Second, multipli-
cation of large nonsquare matrices is required, an operation that
involves movement of large amounts of data among the proces-
sors. Parallelization of these tasks necessitates intricate tradeoffs
between memory access, load balance, and communication costs.

All previous parallel implementations of CPAIMD employ the
following simple protocol46: the steps of the calculation are carried
out in sequence as in a scalar code and the computational work
required by each step partitioned among the physical processors
according to a predetermined static scheme. While this type of
parallelization can be made effective for small numbers of proces-
sors, the scalability of this type of protocol is inherently deter-
mined by how fine-grained each step can be made. Eventually, a
limit is reached in which the communication overhead exceeds the
useful computational work, at which point additional processors
can no longer be used effectively. In this article, we introduce a
new parallelization strategy for CPAIMD based on the concept of
virtualization, as embodied in the Charm�� runtime system.47,48

Virtualization simply means that computational work to be done is
divided into individual concurrent entities or “threads,” also called
virtual processors (VPs), that are then mapped onto the physical
processors by the runtime system (rather than by the programmer).
As the work assigned to a VP is completed, the physical processors
on which the VP performed its work is given a new VP, thus
preventing the physical processors from becoming idle. Hence, by
lifting the restrictions to which a standard approach is inherently
subject, virtualization allows the mapping of computational work
to processors to be assigned in a flexible manner that achieves an
optimal interleaving of computation and communication. In this
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way, efficient scaling can be obtained even when very fine-grained
parallelism is required.

The article is organized as follows. In Section 2 and 3, the new
parallelization strategy for CPAIMD calculations using Charm��
is outlined, and the new software that has been developed de-
scribed. The data structures used by the serial approach and the
parallelization of these structures using Charm�� will also be
presented. Section 4 discusses the various optimization schemes
that have been employed in the course of scaling the new imple-
mentation to over 1000 processors. In Section 5, concluding re-
marks and directions for future development are given.

The CPAIMD Method

In this section, the basic physics underlying the Car–Parrinello ab
initio Molecular Dynamics method (CPAIMD) is given. First,
Density Functional Theory (DFT) with pseudopotentials, a simple
but accurate electronic structure theory, is presented followed by a
discussion of the implementation of DFT using a plane wave basis
set. Given these basic formulae, the Car–Parrinello ab initio Mo-
lecular Dynamics (CPAIMD) approach is described that allows the
nuclei to evolve on the ground-state Born–Oppenheimer surface
provided by DFT. Finally, the computer science aspects of the
serial CPAIMD algorithm are presented.

Density Functional Theory with Pseudopotentials

Consider a system with nN nuclei having positions R1, . . . , RnN

and ns electronic states or equivalently electronic orbitals,
�1(r), . . . , �ns

(r), with occupation numbers f1, . . . , fns
. If the

electronic structure is represented within the Kohn–Sham formu-
lation of density functional theory,38–40 then the total energy (in
atomic units) is given by

E����, �R�� � �
1

2 �
i�1

ns

��i�	2��i
 �
1

2 � drdr�
��r
��r�


�r � r��

� Exc��� � Eext��, �R�� � Vnucl��R�
 (1)

where the electron density, �(r), is defined in terms of the states

��r
 � �
i

��i�r
�2. (2)

The states, in turn, are required to satisfy an orthogonality condi-
tion of the form

��i��j
 � fi�ij. (3)

In eq. (1), the first term is the total kinetic energy of the nonin-
teracting reference system, and the second term is the Hartree
energy. The third term, the exchange-correlation functional,
Exc[�], since the precise form is not known for Exc[�] reasonable
approximations are used,49–51 is followed by the external poten-

tial, Eext[�, {R}], which contains the interaction energy between
the electrons and the nuclei. Minimization of the energy functional
in eq. (1) with respect to the states subject to the orthonormality
condition yields both the ground-state energy and electron density
of the system.

It is computationally more efficient to treat only the valence
electrons explicitly and to replace the core electrons by norm-
conserving nonlocal pseudopotentials.52 In this case, the external
energy becomes state dependent and is expressed in the form

Eext � Eext,loc��, �R�� � Eext,non-loc����, �R��

Eext,non-loc����, �R�� � �
i

��i�VNL��R�
��i
 (4)

where Eloc is the local contribution to the external energy already
described above. The operator VNL is “nonlocal” because removal
of the core electrons requires electrons in different angular mo-
mentum channels to interact differently with the nuclei.52 [Note,
eq. (4) is generally reformulated to allow for a faster evaluation as
described in the next subsection.] When pseudopotentials are em-
ployed, the nuclei together with their core electrons are often
referred to as “ions” to indicate the core electrons are included in
an effective manner, and the charge on an ion is, hence, Zion �
Znucleus � encore, where e is the charge on the electron and ncore

is the number of core electrons. For example, a carbon nucleus has
charge Znucleus � 6e, while a carbon ion has charge Zion � 4e as
the two (1s) core electrons of carbon have been replaced by
pseudopotentials.

DFT Using a Plane-Wave Basis Set

In CPAIMD calculations, the states are, typically, expanded in a
plane-wave basis set at the �-point according to

�i�r
 � �
g

�i�g
eig�r (5)

where {�i(g)} is a set of expansion coefficients, g � 2�h�1n is
a reciprocal space or reciprocal lattice vector, n is a vector of
integers, and h is the matrix of the simulation cell, that is, the
matrix whose columns are the cell vectors. In an orthorhombic box
with side lengths, Lx, Ly, and Lz, h � diag(Lx, Ly, Lz), and g �
( gx, gy, gz) � (2�nx/Lx, 2�ny/Ly, 2�nz/Lz). The expansion in
eq. (5) is truncated according to the criterion that 1

2
�g�2 � Ecut,

where Ecut is a suitably chosen energy cutoff. At the �-point, the
coefficients satisfy the symmetry condition �*i(g) � �i(�g)
because the states are real, �i(r) � �*i(r).

A similar plane wave expansion exists for the density,

��r
 � �
g

��g
eig�r, (6)

where �*(g) � �(�g) (even away from the �-point). However, by
virtue of eq. (2), the cutoff for the expansion of eq. (6) must be
4Ecut rather than Ecut, which means that a larger set of reciprocal
space vectors is needed (the set of g-vectors describing the states
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is a subset of g-vectors describing the density). It is useful to
define, G/2 the largest reciprocal lattice vector in each direction in
the expansion of the density. Of course, G/4 is then the largest
reciprocal lattice vector in the expansion of states.

The expansion coefficients of the density, �(g) can be obtained
from the expansion coefficients of the states, �i(g), exactly by the
following procedure: perform a complex-to-real 3D FFT of size G
(e.g., {N � N � N } in cubic box) on each �i(g) to produce
�i(r) on the discrete mesh, square the function, ��i(r)�2, and sum
the results over all states to produce �(r) on the discrete mesh (e.g.,
{N � N � N } in a cubic box). The result can then be inverse
transformed by a real-to-complex 3D FFT to generate the desired
result.

Next, each term in the energy, eq. (1), will be expressed in
terms of the plane-wave basis. The Hartree energy is given by

EHartree �
1

2V �
g��0,0,0


4�

�g�2 ���g
�2 (7)

where V is the volume of the system assuming three-dimensional
periodic boundary conditions.53,54

The local part of the external energy is

Eext,loc �
1

V �
g

�*�g
 �
I

�̃loc,I�g
SI�g


SI�g
 � exp��ig � RI
 (8)

where �̃loc,I(g) is the Fourier transform of the local interaction,
�loc,I(r), between an electron and the Ith ion and SI(g) is the ionic
structure factor (again assuming three dimensional periodic bound-
ary conditions).

The exchange-correlation energy Exc[�] is not known exactly,
and must, therefore, be approximated. In the local density approx-
imation, it is assumed that the density does not vary rapidly in
space so that the functional takes the form

Exc��� �� dr��r
�xc���r

 (9)

while in the generalized gradient approximation, which extends eq.
(9), the functional is taken to be of the form

Exc��� �� dr��r
�xc���r
, 	��r

. (10)

In practice, these integrals are evaluated on a set of equally spaced
grid points defined by the size of the 3D FFT,55 using trapezoidal
rule

Exc��� � �3 �
ijk

��rijk
 � �xc���rijk

 (11)

where � is the grid spacing and �(rijk) is the electron density at a
grid point. Hereafter, the indices, ijk, will be suppressed/under-
stood. If generalized gradient functionals are employed, the ex-
change correlation function depends on both the density, �(r) and
the gradient of the density, 	�(r), on the discrete grid. Because

	��r
 � �
g

ig��g
eig�r, (12)

the desired gradient can be computed by performing an inverse
Fourier transform for each of the components, ig�(g), and
�xc(�(r), 	�(r)) determined.55

In a plane wave basis set, the nonlocal energy in the Kleinman–
Bylander form56 is given by

ENL � �
i�1

ns �
I�1

nN �
l�0

l��1 �
m��l

l

�Ilm�Zi,I,l,m�2 (13)

where l� is the highest angular momentum channel treated as a
nonlocal component, �Ilm is a normalization factor, and

Zi,I,l,m � �
g

�i�g
eig�RIhIl��g�
Ylm��g, 	g
. (14)

In eq. (14), hIl(�g�) is the lth spherical Bessel function transform of
the angular-momentum dependent potential function, hIl(r), de-
scribing the interaction the electron in angular momentum channel,
l, interacting with ion, I, and Ylm(�g, 	g) is a spherical harmonic.

The kinetic energy of non-interacting electrons, also, depends
on the individual states. It can be expressed as

Ekin �
1

2 �
i

��i�g
�2�g�2 (15)

in the plane wave basis. Finally, in the plane wave basis, the
orthogonality condition is

��i��j
 � �
g

�i�g
�*j�g
 � fi�ij. (16)

To obtain physical results, the energy functional must be min-
imized at fixed nuclear position. This is generally accomplished
using a conjugate gradient procedure. Because a plane wave basis
is employed, the negative derivative of each term given above with
respect to the coefficients of the plane wave expansion must be
taken, which is denoted as F�i

(g), the “force” on the coefficients.
The derivative of the kinetic energy of noninteracting electrons
and the nonlocal potential is simple because �i(g) appears explic-
itly. The procedure employed to compute the forces due to the
local potential, the Hartree, and the exchange correlation energy is
slightly more complex because these terms involve the density
rather than the states, directly. The forces are evaluated by first,
computing the Kohn–Sham (KS) potential on the real space grid,
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vKS(r). The Hartree and and local contribution to the KS potential
are calculated in g-space,

vKS
�HL
�g
 �

1

V �
I

�̃loc,I�g
SI�g
 �
1

V
��g


4�

�g�2 , (17)

and the result vKS
(HL)(g) transformed to real space via a 3D FFT and

added to the contribution from exchange correlation, which is
determined directly in real space,

vKS�r
 � vKS
�HL
�r
 �





��r

���r
�xc���r


, (18)

at each grid point. The product of the KS potential and with the
real space representation of each state, vKS(r)�i(r), is constructed
by a point by point multiplication. A 3D FFT of the resulting
products yields, exactly, the contribution to the force on the
coefficients of each state from Hartree, local pseudopotential en-
ergy, and exchange-correlation. If gradient corrections are present,
the procedure is more complex, involving several 3D FFTs55 to
generate correctly the contribution to vKS(r) from exchange cor-
relation.

Finally, forces on the ions, FI, which have physical meaning
only when the functional is minimized, F�i

(g) � 0, arise from
three terms, the local energy external energy, the nonlocal energy,
and the ion–ion interaction, Vnucl(R). The ion–ion interaction is
general taken to be simply Coloumbs law,

Vnucl�R
 � �
S

�
IJ

�
ZIZJ

�RI � RJ � Sh� , (19)

where S are the periodic replicas and the prime indicates I � J
when S � 0. This term is typically evaluated using Ewald sum-
mation.57,58 The computation of the ion forces takes negligible
computer time, and will not be discussed further.

Car–Parrinello Molecular Dynamics

In the Car–Parrinello approach, a fictitious dynamics is invented
for the plane-wave coefficients {�i(g)} of the states that allows an
initially minimized electronic configuration (e.g., via conjugate
gradient procedure at fixed nuclear position) to follow the nuclear
motion so as to produce nuclear dynamics on the ground state
Born–Oppenheimer surface. This dynamics is generated by posit-
ing a set of Newton-like equations of motion for the expansion
coefficients and creating an adiabatic separation between this fic-
titious state dynamics and the real dynamics of the nuclei. In the
CP scheme, therefore, the electrons and nuclei can be treated on an
equivalent mathematical and, hence, algorithmic footing. If the
electrons are kept at a temperature Te that is much less than the
nuclear temperature T, and the electrons are allowed to move on a
much faster time scale than the nuclei, then the electrons will
remain approximately minimized as the nuclei are propagated
along a numerical trajectory.59 The equations of motion take the
form

��g
�̈i�g
 � �

E


�*i�g

� �

j

�ij�j�g
 � F�i�g
 � �
j

�ij�j�g


MIR̈I � �

E


RI
� FI (20)

where �(g) is a mass-like parameter (having units of energy �
time2) for the electronic motion, and �ij is a set of Lagrange
multipliers for enforcing the orthogonality condition in eq. (3) (see
later). In practice, the equations of motion can be integrated using
a velocity Verlet scheme combined with Shake and Rattle proce-
dures to enforce the orthonormality conditions expressed in terms
of holonomic constraints as described in refs. 60–62.

Serial Description of the Algorithm: Flowchart

The algorithm is summarized in its essential parts in the flowchart
of Figure 1. The calculation takes as input the Fourier coefficients
of a set of states, the �i(g) of eq. (5), which satisfy the orthogo-
nality condition given in eq. (16). The calculation splits immedi-
ately into two independent branches. In the right branch of the
figure, the states are transformed into real space by 3D FFT,
squared, and summed to form the density in real space following
eq. (2). The calculation then bifurcates into two more independent
branches. The density in real space is employed to compute the
exchange correlation energy and its contribution to KS potential as
described in eq. (11) (more 3D FFTs are required if gradient
corrected exchange correlation functions are employed). In the
other branch, the density in real space is transformed to g-space by
3D FFT and the Hartree and local pseudopotential energy com-
puted using eq. (17). The KS contribution of these terms is com-
puted in g-space, transformed into real space by 3D FFT, and
added into the contribution from the exchange correlation function
to realize eq. (17). Each state is then multiplied by the KS potential
in real space and a 3D FFT is performed to complete the compu-
tation of the contribution to the force, F�i

(g), from the Hartree,
Exchange-Correlation, and External Pseudopotential energies as
described in text below eq. (17). In the left branch of the figure, the
kinetic energy of the noninteracting electrons, eq. (15), and the
nonlocal pseudopotential energy, eq. (14), are computed along
with their contribution to the F�i

(g). At this point the two main
branches rejoin, the two force contributions are summed and the
states evolved using the total F�i

(g) as part of the numerical
integration of the CPMD equations of motion, eqs. (20), or simply
in a standard constrained conjugate gradient step at fixed nuclear
positions. Once the states are evolved, they will violate orthogonality,
slightly due to finite step size errors in the solver. CPMD requires a
Shake/Rattle step60 to “reorthogonalize” the states while a conjugate
gradient minimization step will employ either the Gram–Schmidt or
the Löwdin orthogonalization procedure. The implementation of the
Löwdin method is described in detail later. After the states are
“reorthogonalized,” the CPAIMD step is complete.

Serial Description of the Algorithm: Data Dependencies

Next, the discussion of the algorithm will be recapitulated but with
more attention paid to the data dependencies, a clear understanding
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of which is required before a scalable parallel algorithm can be
developed. The basic objects are the ns, occupied, real valued
electronic states, {�i(r)}, and their corresponding complex valued
plane-wave expansion coefficients, {�i(g)}, which possess the
symmetry {�*i(g)} � {�i(�g)}. Each state in real space, �i(r),
is represented by a 3D array (N � N � N) of real numbers
assuming a cubic simulation cell for simplicity (Lx � Ly � Lz).
Although the g-space representation should, in principle, be a
dense N � N � N array, a spherical cutoff is employed, 1

2
�g�2 �

Ecut, which confines the nonzero elements to lie within a sphere of
radius proportional to N/4. In general, the electron density in real
space, �(r), is similarly represented by a single 3D array of
dimension N � N � N, with Fourier coefficients, �(g). Like
�i(g), the nonzero elements of �(g) are also contained within a

sphere but this time with radius proportional to N/ 2 (i.e., because
the density is equal to ¥i ��i(r)�2). In general, the real space
representations can be said to be “dense” while the reciprocal
space representations are comparatively sparse. Note, while em-
ploying sparse matrices reduces computation and communication,
it also poses tricky load balance issues in parallel (i.e., some
portions of reciprocal space have more nonzero data values than
others).

Having described the data dependencies, the states and the
electron density are shown, pictorially in Figure 2, evolving along
the steps of the algorithm described in the previous section, which
is now divided into IX Phases. The algorithm begins with the
reciprocal-space expansion coefficients of the states, {�i(g)},
which satisfy the orthogonality condition of eq. (16). In Phase I,

Figure 1. Schematic flowchart of the implementation of the CP algorithm.

Figure 2. A serial view of the CPAIMD algorithm, showing data dependences.

Plane-Wave–Based Ab Initio Molecular Dynamics 2011



each state is transformed into its Cartesian or “real”-space” repre-
sentation via 3D FFTs (Phase I), to yield the functions {�i(r)} on
the real-space grid. The real-space representations of all states are
then squared and summed to obtain the electron density, �(r) in the
“Reduction” operations of Phase II. With �(r) in hand, the Fourier
coefficients of the electron density, �(g), can be obtained via an
inverse 3D FFT.

Two independent computations are now performed using the
electron density and its Fourier coefficients, respectively. First, the
exchange-correlation energy, and its contribution to the KS poten-
tial are determined from the density in real space (Phase III).
Second, the Hartree and local external energies are computed using
the Fourier coefficients of the density (Phase IV) along with the
contribution of these two terms to KS potential, which is expressed
on the same size reciprocal space as that describing the density,
�(g). The Hartree and local external contributions to the KS
potential are then transformed back into real space via 3D FFTs
(Phase V) and added to the real space KS contribution determined
in Phase III.

The two independent computational threads rejoin in Phase VI.
In Phase VI, each state in real space (dense array of N � N � N)
is multiplied by the KS potential (dense array of N � N � N) and
Fourier Transformed back into reciprocal space to generate the
force due to Hartree, local external, and exchange correlation
energies in reciprocal space. In reciprocal or g-space, the forces on
the coefficients of the states, F�i

(g), are sparse arrays with non-
zero values that lie within a sphere of radius proportional to N/4,
(i.e., the forces in g-space possess the same data structure as the
states in g-space).

Independent of Phases I–VI, the kinetic energy of noninteract-
ing electrons, the nonlocal energy, and the forces arising from
these two terms are computed in reciprocal space during Phase IX
using the sparse reciprocal space representation of the states,
{�i(g)}. The forces due to the kinetic energy of noninteracting
electrons and the nonlocal energy are added to the forces from
Phase VI in Phase VII where the states in reciprocal space form,
{�i(g)}, are evolved to the next step. Orthogonality is enforced
using the reciprocal space representation in Phase VIII via
nonsquare matric multiplications of the form A(ns � ns) times
B(ns � N3) after which Phase I can, again, be instantiated.

Parallelization of the CPAIMD Method

Roadmap

In this section, the fine grained parallelization of the CPAIMD
method across thousands of processors is described in detail. First,
the basic strategy based on virtualization is discussed. Although
powerful, the utility of virtualization has not been widely appre-
ciated in the physical sciences and, indeed, without sophisticated
software tools, the application of this approach would be difficult.
Hence, the widely used Charm�� parallel middleware47,48 is
employed to implement the new parallel design. Second, the data
decomposition used in the new fined grained algorithm is moti-
vated. Third and fourth, the specific techniques required to achieve
parallel scaling of two crucial steps of the CPAIMD method,
orthonormalization, and the multiple, concurrent 3D Fast Fourier

Transforms are given. Although the orthonormalization dominates
the computation in large systems, in moderate size systems, the
prefactors are such that the FFT work is dominant on a single
processor. However, efficient parallelization of the 3D FFTs leads
to a shift of the bottleneck to the orthonormalization step, requiring
a finely honed parallel algorithm for the latter to be developed.
Last, a discussion of the mapping of virtual processors to true
processors is provided followed by a description of communica-
tion patterns employed to optimize the parallel implementation and
achieve scaling of small systems on thousands of processors.

Overall Strategy: Virtualization Using the Charm��
Middleware

The design of parallel algorithms can be viewed as a two-stage
process. In the first stage, the computational work and data are
decomposed into portions that require the minimal amount of
communication between them to function and, in the second stage,
these discretizations are assigned to processors. Note, there are two
operative words, “discretization” and “processor.” Physical scien-
tists are generally trained to parallelize their methods without
recourse to the separate nature of these two concepts.46 That is, the
number of processors is given absolute control over the number
and type of discretizations, inhibiting the development of more
flexible parallelization schemes.

To “liberate” the concepts of processor and discretization,
computer scientists have created a third concept called virtual
processors (VPs) or virtualization.47 In this framework, the work
is divided into a number of objects or virtual processors that are
independent of the number of true processors available, and typi-
cally should substantially exceed the number of true processors for
effective computation/communication interleaving. Communica-
tion patterns among the virtual processors are developed without
regard to the precise mapping of these entities to true processors.
Multiple virtual processors can be mapped dynamically and simul-
taneously to the physical processors as the calculation proceeds.
When a physical processor exhausts the work corresponding to a
VP or if an active VP is blocked, another VP residing on the same
processor can immediately be launched. Although conceptually
simple and intuitively appealing, the problem of developing soft-
ware tools and data structures that can instantiate the VPs and then
map them in an optimal way to physical processors is a nontrivial
one. The challenge is to realize a mapping that minimizes com-
munication and maximizes performance by interleaving commu-
nication and computation in the most effective manner. However,
assuming the existence of the sophisticated “parallel middleware”
required by the VP paradigm, it is clear that the routine use of this
model would result in more effective parallelization. Indeed, as the
number of physical processors increases to thousands, it is difficult
to envision parallelization schemes that would perform well with-
out employing virtualization.

The parallel middleware of choice to enable the VP model is
Charm��.47,48 In Charm��, the VPs are objects (called chares,
which is the Old English word for chore), that communicate with
each other via asynchronous method invocations or “messages.”
The Charm�� run-time system controls the placement of the
chares on the physical processors, is capable of remapping the
chares, on the fly, to improve load balance, and employs sophis-
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ticated communication optimization strategies or recognized pat-
terns to speed up the message throughput and minimize latencies
on the communication network connecting the processors. The
applications programmer is left with the task of mapping his
problem onto VPs and writing code using Charm�� extensions to
realize the VPs as individual chares or sometimes, more conve-
niently, as arrays of chares.63,64

To apply the VP programming model to CPAIMD, the authors,
among whom are both physical and computer scientists, worked in
close collaboration. In the process of designing the novel parallel
algorithm described below, both the CPAIMD software and the
parallel middleware were improved individually. Details of the
new parallel CPAIMD scheme are described in the following
subsections. In the next major section, it is demonstrated that the
new parallel algorithm, which is a synergistic union of the parallel
middleware and the application software, is able to achieve good
scaling on thousands of processors with minimal effort on the part
of the applications programmer.

Decomposition of Data: The First Step in Parallel
Algorithm Design

In the implementation of this article, the orbitals in g-space and
real-space, which are sparse and dense cubes of data, respectively,
are each decomposed into planes. The work related to each plane
is performed by a Charm�� virtual processor (or chare). In
accordance with the philosophy of processor virtualization, the
number of virtual processors depends only on issues such as the
work to communication ratio but is independent of the total num-
ber of physical processors. A collection G holds objects G(i, p)
corresponding to plane, p, of state, i, in g-space. The plane index,
p, is identical to the x coordinate in g-space, gx, and the object
G(i, gx) houses the coefficients �i( gx, gy, gz) for all values of gy

and gz. Similarly, another collection R holds real-space planes R(i,
p) corresponding to plane p of state i. However, the axis of
decomposition is different for G and R, due to the way the FFTs
are implemented (to be described in due course). In addition, there
are one-dimensional chare arrays corresponding to the electron
density in real-space, �(r) and in g-space, �(g).

The real-space planes are dense, and each state has precisely
the same number of planes as the electron density, that is, N. The
g-space planes are sparse, and only g-space planes with nonzero
elements are included in the calculation. There are roughly twice
as many nonzero g-space plane in the reciprocal space represen-
tation of the electron density as in the corresponding reciprocal
space representation of a state.

It is worth noting that in a benchmark computation on a system
of 32 water molecules, which has ns � 128 states and N � 100,
this scheme decomposes the computation into 12,800 virtual pro-
cessors corresponding to states in real-space, and about half as
many virtual processors corresponding to the planes in g-space.
The reason for this reduction is due to the use of a spherical cutoff
in g-space. In addition, there are 100 virtual processors each
corresponding to density in real-space and reciprocal space.

The resultant decomposition of the problem is shown in Figure
3. Next, the parallel implementation of the each phase of the
calculation, using the aforementioned decomposition scheme, is
described, starting with the orthonormalization phase. This is

followed by a discussion of the mapping of virtually processors to
physical processor. Finally, optimizations of the communication
patterns that arise from the mapping are given.

Maintaining the Orthogonality of the States:
Phases VII and VIII

After the evolution of plane wave coefficients by their forces either
during a conjugate gradient minimization procedure or during a
full Car–Parrinello ab initio molecule dynamics calculation (see
earlier), rigorous orthogonality of the states that must be main-
tained is violated, slightly, due to finite step size errors in the
solver(s). Thus, an orthonormalization step is performed in Phases
VII and VIII of the algorithm as given in Figures 2 and 3. The
basic operations required to enforce orthonormality are the com-
putation of one or more overlap matrices, processing of the overlap
matrices to produce a “transformation matrix,” followed by the
application of the matrix on the nonorthogonal states to generate a
rigorously orthonormal set.

The parallelization of the most conceptually simple orthogo-
nalization algorithm, the Löwdin method, will be discussed for
clarity. (Note that the Löwdin method can only be used in con-
junction with conjugate gradient minimization of the electronic
energy.) In the Löwdin method, the matrix, Sij � ��i��j
 is
computed, the transformation matrix, Tij � (S�1/ 2)ij, is formed,
and the transformation ��i

new
 � ¥j Tij��j
 to the orthonormal set
performed. Only the first and third steps of the method are carried
out in parallel. The computational cost required to form T for a
system of 128 doubly occupied states is very small. In general, the
cost of this step is order ns

3, and could be parallelized. Note,
Gram–Schmidt orthogonalization and the Shake/Rattle algorithms
[which are appropriate for use with eqs. (20)]60 can be imple-
mented using the basic tools required for the Löwdin and, there-
fore, will not be described here.

In more detail, the overlap matrix Sij is real and symmetric
because the states are taken to be real valued, �i( x, y, z) � �*i( x,
y, z), which leads to �i( gx, gy, gz) � �*i(�gx, �gy, �gz).
Again, i is the state label and ( gx, gy, gz) is the g-vector label. The
overlap is computed in g-space as

Sij � �
gx

�
gy

�
gz

�i�gx, gy, gz
�*j�gx, gy, gz


� 2Re��
g�0

�i�g
�*j�g
� � �i�0
�*j�0
, (21)

where the latter formula takes advantage of the fact that the states
are real valued. The restriction, g � 0, indicates that only the upper
half sphere of nonzero elements of the {�(g)} are employed, and
Re indicates the real part is to be taken. Once S is calculated, its
inverse square root, T, can be computed, and the orthonormal
orbitals formed in reciprocal space by the transformation

�i
�new
�gx, gy, gz
 � �

j

Tij�j�gx, gy, gz
 (22)

as discussed above.
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Now, consider the parallel implementation of eq. (21). The
overlap matrix, S, is computed in two steps, taking advantage of
the fact that each state in g-space has already been decomposed
into multiple g-space planes (see Fig. 3). The plane chare array,
G(i, gx), holds all Fourier coefficients { gy, gz} of state, i, at fixed
gx. Thus, it is natural to compute an intermediate overlap matrix,

Sij
�int
�gx
 � �

gy

�
gz

�i�gx, gy, gz
�*j�gx, gy, gz
 (23)

which can then be employed to compute the desired result,

Sij � �
gx

Sij
�int
�gx
 (24)

by a reduction operation. Clearly, to evaluate eq. (23), all pairs of
coefficients labeled, i, j in the same plane indexed by gx, contained
in the chare arrays, G(i, gx) and G( j, gx), need to “meet” on a
processor.

One natural way to ensure that all pairs of planes meet on a
processor is to employ a ring-based approach which requires ns

steps. In the first step, each G(i, gx) sends all its g-space data to
G((i � 1)%ns, gx), upon receipt of which, G((i � 1)%ns, gx)
computes Si,(i�1)%ns

(int) ( gx), where the “%” sign indicates the peri-
odicity of the ring, that is, state ns must send to state 1. In each
subsequent step, G(i, gx) forwards the data that it received in the

preceding step. This can be visualized as N rings of size ns formed
from the N planes. After ns steps, all entries of S(int)( gx) will have
been computed, albeit by different chare arrays, G(i, gx). The
different parts of S(int)( gx) are then collected and used to compute
the matrix S, as per eq. (24). The matrix, T, is then computed, and
relevant portions are communicated to all chare arrays, G(i, p).
The method is then driven in reverse to calculate the new states via
eq. (22). That is, at each hop, another portion of �i

(new)( gx) can be
generated, �i

(new)( gx) 4 ¥j Tij�j( gx). Although a ring is a
better strategy than naively implementing an all-to-all communi-
cation operation between the G(i, p), the data contained in each
G(i, p) is still sent through the network ns times. Because the
amount of g-space data is more than 100 MB in, for example a
system of 32 water molecules (the benchmark system we consider
in the Performance and Optimization section), the ring approach
requires tremendous communication bandwidth. Also, the size of
the rings is equal to the number of state, ns, which implies a long
delay before the computation of the S matrix is completed.

To reduce the communication overhead required to compute
the overlap matrix, an alternative approach has been devised that
shall be referred to as the block-pairs algorithm. In this method,
the matrix S(int) is subdivided into � � � regions or blocks. A chare
array of virtual processors, S(arr) of size equal to the number of
blocks, is created. Each element is assigned a block and given the
task of computing all overlaps within its block. Thus, the data of
G(i, gx) and G( j, gx) “meet” on the virtual processor whose block

Figure 3. Parallel structure of our implementation. Roman numbers indicate phases.
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contains the i, j element of S(int) as shown in Figure 4. The block
size, �, is adjusted to obtain the highest parallel efficiency for a
given problem size and physical processor number.

The block-pairs algorithm can be described as follows: The
chare array element Si/�, j/�

(arr) ( gx) receives g-space data from G(i,
gx). . .G(i � � � 1, gx) and G( j, gx). . .G( j � � � 1, gx), that
is, 2� messages. Using this data, a � � � part of the S(int) matrix
is computed as per eq. (23). Note, S is a real symmetric matrix and
Si/�, j/�

(arr) ( gx) can do the work of Sj/�,i/�
(arr) ( gx). Thus, Sij

(arr)( gx) are
created only for i 
 j. This is illustrated in Figure 4. Once the S(arr)

have completed their assigned tasks, the overlap matrix, S, can be
calculated by performing a reduction operation over the S(arr)

virtual processor array.
Because the original states are already present in the S(arr) chare

array, the new g-space states can be computed by the same set of
chares. To compute the new states via eq. (22), each Si/�,j/�

(arr) (gx) needs
a � � � portion of the T matrix. The T matrix was made available by
sending the entire matrix to all processors via a machine level broad-
cast, as this approach was more efficient than making many multicasts
of small � � � portions of the matrix. Once the new g-space planes
of the states, �i(gx). . .�i���1(gx), are computed in the S(arr) object, they
are sent back to the appropriate original chare arrays, G(i, gx).

To compute the communication cost of the block-pairs algorithm,
consider the operations defined by the G(i, gx) chare arrays. Each G(i,
gx) has to multicast its data to the ns/� elements of S(arr). Hence, the
total g-space data is communicated ns/� times, instead of ns times, as
in the case of the ring method. The larger �, the smaller the commu-
nication cost is for the G(i, gx) chare array. However, if � is chosen to
be too large, the number of messages increases, creating latency
problems, although the total bandwidth decreases. In addition, the
work load of each Saux chare array increases, and the degree of
parallelism afforded by the algorithm suffers.

Parallelization of Three-Dimensional FFTs:
General Considerations

The parallelization of the 3D FFT has been considered in detail by
a variety of researchers (cf. refs. 65 and 66). The most commonly

employed algorithm, which is adopted here, is based on transpos-
es.65 Briefly, a 3D FFT consists of a series of three 1D FFT, that
is, one FFT to transform each index, �i( gx, gy, gz) 3 �i( x, gy,
gz) for all gx, gz, �i( x, gy, gz) 3 �i( x, y, gz) for all x, gz and,
finally, �i( x, y, gz) 3 �i( x, y, z) for all x, y. In transpose
parallelization, each 1D FFT is performed on a single (virtual)
processor that requires a transpose operation to collect the required
data. Although it is possible to distribute all three indices across
VPs, here, only planes of data are distributed. This requires only
one transpose operation as opposed to two and was found to be
sufficient. That is, �i( gx, gy, gz) 3 �i( x, gy, gz) is parallelized
using the gz index so that complete { gx, gy} planes are distributed
across the virtual processors (e.g., all points { gx, gy} and, hence,
{ x, gy} are together). Upon completion of the first set of 1D FFTs,
a transpose is performed to parallelize the x index, collecting
complete { gy, gz} planes. At this point, the remaining two sets of
1D FFTs can be performed on the same processor without com-
munication. The 1D FFTs were computed using FFTW.67

It is important to note that in performing the FFTs, the sparse
nature of the states in reciprocal space is used to reduce both the
computation and the communication. The nonzero values of
�i( gx, gy, gz) form a sphere of radius, N/4 inside a cube of side
N. Upon performing the first set of 1D FFTs, the nonzero values
form a cylinder of height N but radius N/4. Upon performing the
second set of 1D FFTs a slab of nonzero data of size N � N � N/4
is created. The third set of 1D FFT creates a full data set of size
N � N � N. Thus, there are many 1D FFT that yield identically
zero and need not be computed; there are many data points that are
identically zero and need not be transposed. Indeed, the single
transpose required by the plane decomposed parallel algorithm is
performed on the cylinder of data where communication load is
lowest. This is illustrated in Figure 5.

Finally, for calculations at the � point, the states are real and,
hence, �i(�gx, �gy, �gz) � �*i( gx, gy, gz). Thus, the first set
of 1D FFTs is performed on the top half of the sphere. The second
set of 1D FFTs is performed on the top half of the cylinder. The
third set is, in fact, real to complex 1D FFT, because �( x, y,
�gz) � �*( x, y, gz). Again, both communication and computa-
tion are reduced. It is more efficient using Charm�� to create
many parallel light-weight objects and, hence, this nonstandard
�-point optimization is preferred. The standard optimization, also,
relies on the fact that the states are real (�(r) � �*(r)). Pairs of
real valued states are stored together as a complex number; one
state as the real part of a complex number, and the other as the
imaginary part, and a complex to complex 3D FFTs performed.
This reduces the number of FFT/parallel objects by a factor 2, but
increases the communication volume of each 3D FFT by a factor
2 (because the 3D FFT are complex to complex instead of real to
complex).

Performing the Multiple Parallel 3D FFTs:
Phases I, IV, and VI

The algorithm described above requires multiple 3D FFTs to be
performed, one for each state. For each of the ns 3D FFTs, there
is a computational component (the FFT) and a communication step
(the transpose). On each processor, planes belonging to different
states can reside together without competition because each is

Figure 4. Computing the entries of the S matrix: each array element
Saux(s, s�), s � s� computes at least �2 entries of the S matrix.
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involved in an independent 3D FFT. Therefore, the computation of
one 3D FFT can easily overlap with the communication of a
second 3D FFT, as illustrated in Figure 6. This optimization is
particularly important on machines like IBM’s BlueGene, where
the nodes have a communication coprocessor that allows the main
processor to continue computation while it transfers data via
remote direct memory access without processor intervention (as
seen in ref. 68). The facile overlap between computation and
communication is made possible by the Charm�� embodiment of
virtualization, and represents significant advantages over the se-
quential model that physical scientists have heretofore adopted.46

The Construction of Electron Density in Real Space:
Phase II

Upon completion of the 3D FFTs, the states are available in
real-space and the electron density can be computed, exactly, at
each point on the equally spaced real-space grid r � { x, y, z} �
{i, j, k}, as

�� x, y, z
 � �
i

��i�x, y, z
�2. (25)

Figure 5. CPAIMD-specific 3D FFT implementation. 1D FFTs in the “j” direction are performed first
in the planes. Pencils of data are communicated and two sets of 1D FFTs are done in the “i-k” planes.

Figure 6. Overlapped transposes in concurrent FFTs in Phase I, as seen in a timeline view.
The x-axis shows the time, and the y-axis shows messages being processed on a subset of
the processors. Some messages (shown with tails) create new messages, the communication
of which is overlapped with processing of other messages. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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Because the states are already decomposed into planes, the density
is naturally parallelized over each plane index, z, in real-space
(e.g., all points { x, y} forming a plane with fixed z are together on
a VP). However, to form the density, multiple reductions must
progress simultaneously; one reduction per plane of points in
real-space is required to perform the sum over the states for the
plane in question. These simultaneous reductions involve large
data sets because the states are dense in real-space. In a system of
32 water molecules, for example (see below), the data sets contain
on the order of 104 double precision numbers. However, the choice
of mapping of VPs to physical processors can be used to reduce the
communication in this phase. If all the virtual processors mapped
to the same physical processor tend to have the same plane
number, p, this will permit the Charm�� run-time system to add
many of the contributions together, locally, before sending the
local sum(s) to a processor-level reduction over any remaining
states with the same plane number assigned to other physical
processors (see below). Because Charm�� provides built-in sup-
port for reductions among subsets of virtual processors belonging
to a single collection (here, states with the same plane number),
optimization of the desired reduction can be achieved, seamlessly.

Processing the Electron Density: Phases IV and VI

Once the density, �( x, y, z), is constructed, the exchange-corre-
lation energy can be computed. If generalized gradient functionals
are employed, then additional terms depending on the three spatial
components of the gradient of the density, 	�( x, y, z), are present.
Three additional 3D FFTs are required to compute the gradient,
and two more 3D FFTs are required to fully specify its contribu-
tion to the KS potential.55 Concurrent with the calculation of the
exchange-correlation energy, the Fourier coefficients of the density
are used to determine the Hartree Energy and local external energy
and their contribution to the KS potential in reciprocal space. For
this operation, a copy of the density is subjected to an inverse 3D
FFT (phase IV). Finally, the Hartree Energy and local external
energy contributions to the KS potential are transformed back into
real-space by another inverse 3D FFT and added to the contribu-
tion from exchange correlation. Note, each 3D FFT requires a
transpose communication operation.

The Hartree, exchange correlation, and local external energies,
thus computed, are summed (in parallel) and multicasts of degree
ns performed to position each of the N planes of KS potential in
real-space with the corresponding plane of each of the ns elec-
tronic states. Each (real-space) state objects performs a point by
point multiplication by the KS potential on its state and launches
an inverse 3D FFT (phase VI), a procedure that is essentially the
reverse of a 3D FFT, to generate the forces on states in g-space.
The forces are then used to update the states after adding in the
forces from the nonlocal energy and the kinetic energy of nonin-
teraction electrons as shown in Figure 2.

Parallelization of the Nonlocal Energy and Kinetic Energy
of Noninteracting Electrons: Phase IX

The computation of the nonlocal interaction between the electrons
and the nuclei and the kinetic energy of the noninteracting elec-
trons, Phase IX of Figure 2, has been explicitly parallelized be-

cause these terms and the forces derived from them can be deter-
mined independently from the other phases. The kinetic energy of
the noninteracting electrons, eq. (15), is simple. Equation (13)
describes the more complex evaluation of the nonlocal energy that
is based on an ns � nN matrix, Z, given by eq. (14) where ns is
the number of states and nN the number of nuclei. The computation
of Z requires a sum reduction over the reciprocal space of the
states [cf. eq. (14)].

The nonlocal computation is performed by “particle plane
objects.” For each g-space plane object, G(i, gx), where i labels a
state and gx a plane of reciprocal space, a particle plane object,
PP(i, gx), is created that resides on the same physical processor as
the g-space plane object. Each particle plane object computes the
Z matrix element for its state and reciprocal space plane. The
g-space plane objects’ contributions to the Z matrix are summed
across all the planes through a reduction and the final value stored
in the first particle plane object of each state, PP(i, 0). The first
particle plane object computes the contribution to the nonlocal
energy from its state, contributes to the reduction required to
determine the total nonlocal energy via eq. (13), and then multi-
casts the Z matrix element to all the other planes (e.g., associated
with the same state i). Upon receiving the required Z matrix
element, each object computes the nonlocal contribution to the
force on its g-space plane and state, F�(i, gx).

Mapping the Virtual Processors to Physical Processors

An intelligent mapping of VPs to physical processors affords
numerous opportunities to optimize load balance and communica-
tion overhead simultaneously. The Charm�� run-time system has
a default mapping function of virtual processors to real processors
that the user can tune/override. In addition, the Charm�� run-
time system is capable of dynamically changing the mapping to
achieve an optimal load balance, due to unexpected changes in the
computation or simply due to a less than optimal default mapping
function. In a CPAIMD computation, the load on each virtual
processor is predictable and static (i.e., it does not change during
the run). Consequently, it proves advantageous to define an opti-
mal mapping function manually (at the implementation level) for
this algorithm.

The mapping of the real-space quantities is influenced by the
multicast (Fig. 3, phase V) from the KS potential, vKS(r), on the
real-space grid to each of the states on the real-space grid, which
is required to generate the forces on states from the exchange
correlation and Hartree energies. It is desirable to have as many
multicast target objects on the same physical processor as possible.
The targets in this case are the planes in real-space, coming from
different states but belonging to the same spatial region, that is
having the same plane index but different state index (e.g., both the
states the KS potential are parallelized by plane and they possess
the same total number of planes, N). This leads to a mapping
function

pe�R�i, p

 � � � �p � ns � i

N � ns
� (26)

where pe is the physical processor number, � is the total number
of physical processors, and p is the plane index. Note that the
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mapping function could have been chosen to minimize the com-
munication that occurs during the multiple concurrent transposes
associated with the 3D FFTs (phases I and VI) by assigning
multiple real-space planes with same state index but different
plane index together. This option is not preferable to eq. (26)
because the amount of communication bandwidth involved in the
transpose phase is small due to the sparse data set in g-space
provided by the use of a spherical cutoff.

The mapping of the g-space objects is slightly more compli-
cated. Earlier, it was observed that Si/�, j/�

(aux) ( p) requires communi-
cation with G(i. . .(i � � � 1), p) and G( j. . .( j � � � 1), p).
Hence, this part of the computation would benefit if all the G(i, p)
chares were distributed in a manner similar to R(i, p). Unfortu-
nately, using a mapping similar to that in eq. (26) causes a problem
of load imbalance: the distribution of computational work among
planes in g-space should be allocated based on the number of
g-space points in discrete planar sections of a sphere. That is, the
spherical truncation of the reciprocal space described, in detail, in
the CPAIMD Method section, yields an unequal distribution of
nonzero elements in the planes. Some g-space planes are very
densely populated and some g-space planes are very sparsely
populated. To treat this load imbalance, a different mapping is
required. Details of a mapping designed to distribute the g-space
planes more optimally is presented in the Performance and Opti-
mization Section, where the performance tools provided by
Charm�� are employed to diagnose poor mappings and to sug-
gest improvements.

Optimizing Multicasts Operations in the Parallel Scheme

The multicast operations (Fig. 3, phase V) are each-to-many type
of communication operations of degree ns. They can be per-
formed69 in several ways.

1. Direct: Each of the N planes of � sends ns messages to the
corresponding real-space planes. This approach floods the net-
work card with messages, which causes inordinate delays in
message delivery.

2. K-send: Each of the N planes sends k messages, waits for a
prespecified amount of time, and then sends again. This eases
the network congestion and, hence, improves on the direct
approach. This method is problematic, as the waiting period is
difficult to gauge correctly and the problem of network conten-
tion is not addressed.

3. Ring: Each of the N planes sends data to one of the ns states,
which is then forwarded to another state. The advantage of this
approach is that at any stage the number of messages in flight
is equal to the number of processors, P, and network contention
is reduced.

4. Multiring: The diameter of the ring determines the completion
time of the multicast. To reduce the completion time, multiple
rings of smaller diameters are created that perform the multicast
in parallel. This approach works well with the mapping scheme
described for real-space planes, where several “next-hops” in
the ring reside on the same processor.

All of the above methods were tested. The ring method was
found to function most effectively. Note that the all-pairs commu-

nication pattern involved in orthonormalization (for which the ring
was not a good algorithm) is different from the communication
pattern of the multicast. In all the multicast strategies described
above, the total volume of communication entering a processor is
identical. In contrast, the block-pairs approach reduces total vol-
ume of communication compared to the all-pairs pattern.

Performance and Optimization of Fine-Grained
Parallel CPAIMD

Description of the Physical System

To test the novel fine-grained parallel CPAIMD algorithm de-
scribed in the previous section, a 32-water molecule system was
selected for study. This size system is ubiquitous in the literature
because it is just large enough to study the properties of water and
small solutes in water without finite size effects. Indeed, pioneer-
ing work on proton transfer in water and the autodissociation of
water was performed in a periodic box containing 32 water mol-
ecules.28–30 The standard cutoff, Ecut � 70 Ry was employed in
conjunction with a standard set of pseudopotentials (Troullier–
Martins). The cutoff gives rise to 32,000 g-space orbital coeffi-
cients per state, 260,000 g-space density coefficients, and a real-
space grid of 1003 points. Exchange and correlation was treated
using the generalized gradient exchange functional of Becke50 and
the generalized gradient correlation functional Lee, Yang, and
Parr.51

Description of the Computer

The new software was tested on PSC-Lemieux, a 750 node, 3000
processor cluster. Each node in Lemieux is a Quad 1 Ghz Alpha
server connected by Quadrics Elan, a high-speed interconnect with
4.5-�s latency.

Load Balance

It is clear from the discussion of the previous section that
Charm��’s mapping of the VPs to physical processors is a key
point in algorithm optimization. Here, different mapping schemes
are explored and the optimal mapping to achieve good load bal-
ance determined.

The effect of different mapping schemes is shown in Figure 7,
with “overviews” created by the Projections performance tool, for
a set of 1024-processor runs. Each horizontal line corresponds to
one processor, with the x-axis showing progress in time (white
indicates a busy processor). Using a map similar to eq. (26) causes
a load imbalance. The problem is seen clearly in Figure 7a, where
the middle processors are significantly underloaded compared with
processors 0 and 1023 due to the sparse data distribution in the
g-space planes.

The load imbalance was partially alleviated by using a modified
version of eq. (26):

pe�R�i, p

 � �4� � �p � ns � i

N � ns
�%�� (27)
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This scheme assumes four virtual processors will be spawned per
physical processors, P, where p is the plane number. The virtual
processor number is “wrapped” over the available number of
physical processors using periodic boundary conditions, thus di-
versifying the sizes of planes present on each processor (e.g.,
sparse planes and dense planes are intermingled). The result of this
mapping is seen in Figure 7b. Although better than before, it is
clear (by looking at a few long lines in the overview figure) that it
does not achieve good load balance, leaving a few overloaded
processors.

Next, the number of nonzero lines on each plane (alluded to in
section 3.10) is explicitly considered. A “load-vector” � and a
“cumulative” load-vector � of size N was defined and a mapping
developed in terms of these new variables.

�� p� � number of nonzeros in plane p over all states

�� p� � �
q��p

��q�

pe�G�i, p

 �

��p � 1� �
i

ns
� ��p�

l
(28)

where

l �

�
p

�� p�

�

is the desired average load per processor. The best performance, as
might be expected, was obtained through this explicit consider-
ation of the load through eq. (28) as demonstrated in Figure 7.

It is clear that transforming the knowledge of the number of
nonzero lines in each plane into a balanced map is, in general,
difficult. In the future, Charm��’s automatic load balancers will
be modified to allow the user to specify partial mappings (as

Figure 7. Solving the problem of load imbalance on 1024 processors.
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required for R, explained earlier). The preliminary results in this
directions have shown some promise.

Scaling Performance

Table 1 shows the scalability of the code using all the optimiza-
tions described in the text. A peak floating point operations rate of
121 GFlops on 1536 processors was obtained. Although this is a
small fraction of the machine’s capability, it is acceptable due to
the communication intensive nature of this application. The per-
formance of the code degrades only slightly as the number of
processors per node is increased from two to three. Upon full
utilization of all four processors per node, performance is seriously
degraded due to intermittent system calls (not shown), a known
problem with the Lemieux software, that is overcome by leaving
one processor free (e.g., using at most only three processors per
node) to handle these operations.

Communication Analysis of Optimized Implementation

Figure 8 shows the communication behavior of the code on 1024 pro-
cessors. There is a total of 6.6 GB of nonlocal or interprocessor commu-

nication per iteration of the computation. During the same iteration the
maximum data received per processor is as high as 11.5 MB.

Notice that there are two prominent modes message sizes in the
plot: the messages related to the 3D FFTs have sizes about 1 KB,
and the messages related to the matrix computations of the or-
thonormalization phase have sizes around 20 KB. These constitute
the largest fraction of the nonlocal communication.

Also observe that there are relatively fewer messages that have
sizes greater than 100 KB. The multicast in phase V and orthonor-
malization are responsible for these large messages. However,
their number is smaller compared with the other phases mentioned
above. This can be accredited to the mapping scheme used for
real-space planes, eq. (26), along with the multicast strategy (ring),
which causes most of the hops in the ring to be on the same
physical processor.

To arrive at these results, several optimizations, both algorith-
mic and platform-specific, were performed. The load-balance re-
lated optimizations are explained in detail above. The optimiza-
tions were motivated and enabled by Charm��’s internal
performance tools that are designed to pinpoint bottlenecks in
calculations run on large-scale parallel architectures.

Table 1. Execution Times on PSC Lemieux, for 128 States.

N P P/N t (s) GFLOPS Speedup N P P/N t (s) GFLOPS Speedup

8 16 2 13.26 4 16.0 43 129 3 2.20 22 96.4
16 32 2 6.17 8 34.3 83 258 3 1.30 37 163.2
32 64 2 3.11 15 68.2 171 513 3 0.68 71 312.0
64 128 2 2.07 23 102.5 256 768 3 0.60 80 353.6
128 256 2 1.18 41 179.8 512 1536 3 0.40 121 533.1
256 512 2 0.65 74 326.4
512 1024 2 0.48 100 442.0

Using more processors, P, per node, N, effects performance adversely, as the bandwidth is a limited resource.

Figure 8. Total number of nonlocal messages in one iteration for different message
sizes. Data is obtained on 1024 processors, using mapping scheme described in eq.
(26) and a ring multicast strategy. There is a total of 6.6-GB nonlocal communi-
cation per iteration.
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Conclusion

The large-scale, fine-grained, parallelization of the Car–Parrinello
molecular dynamics method15 has been described. Using the
Charm�� parallel middleware and its powerful embodiment of
the concept of virtualization and, hence, its natural ability to
dynamically load balance and interleave computation and commu-
nication, parallel speed up on up to 1500 processors has been
demonstrated for a 32-water molecule system. This is a remarkable
achievement, given that the system only contains 128 electronic
states and standard approaches do not scale well beyond 64 pro-
cessors.46 It is important to note that this system size is typically
employed to study aqueous solvation and chemistry of relevant
small molecules, and has been employed in the ground-breaking
work that elucidated the mechanism of proton transport in wa-
ter.29,30,70 The improvement in scaling presented, herein, will
therefore be employed to explore atomic level processes of this
general class of systems at long time scales. In addition, given the
advent of large scale computer systems containing 10,000 to
64,000 processors such as IBM’s BlueGene,45 the new parallel-
ization scheme will prove invaluable in the study of larger systems
at the long time scales required to observe key dynamical and
structural properties that have been, heretofore, unapproachable.
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