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A Monte Carlo method is given to compute the binding affinity of a ligand to a protein. The method involves
extending configuration space by a discrete variable indicating whether the ligand is bound to the protein and
a special Monte Carlo move which allows transitions betweenthe unbound and bound states. Provided that an
accurate protein structure is given, that the protein-ligand binding site is known, and that an accurate chemical
force field together with a continuum solvation model is used, this method provides a quantitative estimate of
the free energy of binding.
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Introduction

Many drugs work by binding to a target protein in an or-
ganism and affecting the action of this protein. The binding
of the drug molecule, the ligandL, to the proteinP under
physiological conditions is usually reversible (characterized
by weak chemical interactions rather than covalent bonds),

L + P ⇋ LP,

and, in equilibrium and in the dilute limit, the concentration of
the ligand-protein complex[LP] is given by the dissociation
constant

Kd =
[L][P]

[LP]
.

It is convenient to define the binding affinity as

pKd = − log10

(

Kd/NA

1 kmolm−3

)

,

whereNA is the Avogadro constant. A high value forpKd is
crucial to obtaining a good drug molecule and, consequently,
the ability to computepKd accurately would greatly acceler-
ate drug discovery by allowing many molecules to be screened
in silico before any time-consuming syntheses and assays are
done. The dissociation constant can also be expressed in terms
of the binding free energy∆F ,

Kd = exp(β∆F )/V0, (1)

whereV0 is the system volume,β = 1/(kT ), T is the tem-
perature, andk is the Boltzmann constant. SimilarlypKd is
given by

pKd = −β∆F
ln 10

+ log10(V0NA × 1 kmolm−3).

The quantity∆F is the free energy difference of the ligand
and the protein forming a bound complexLP, the “bound sys-
tem,” compared to the ligand and the protein isolated from one
anotherL + P, the “unbound system.”

In order to computepKd, we require (1) a sufficiently accu-
rate model of the protein and the ligand and their interaction
and (2) a good way to compute the resulting value ofpKd.
In this paper, we assume the first requirement is fulfilled and
instead focus on meeting the second.

The standard methods of computing free energies [1, 2] are
not capable of computing∆F directly because the unbound
and bound systems are too dissimilar, which hinders transi-
tions between these systems. Instead, typically, two closelig-
andsLa andLb, are compared separately unbound and bound
to the protein, thereby obtaining the difference in the freeen-
ergies∆Fa −∆Fb.

We present here a practical method for directly comput-
ing ∆F and hencepKd. The method consists of: (1) for-
mulating the problem in an extended phase space which al-
lows the unbound and bound systems to be treated as a single
system andKd to be expressed as the ratio of two canoni-
cal averages; (2) introducing a new Monte Carlo move, the
“wormhole move,” to make transitions between the unbound
and bound states in this extended system; and (3) a method to
determine the “portals” needed for the wormhole move.

Formulation

Consider a system of volumeV0 consisting of a ligand mol-
eculeL and a protein moleculeP dissolved inNS molecules
S. The overall state of the system is given by[Γ,ΓS] where
Γ represents the phase space configuration ofL andP andΓS

represents the configurations of all the solvent moleculesS.
The energy of the system is given byE(Γ,ΓS) and, in equi-
librium, the system obeys the Boltzmann distribution [3]

f(Γ,ΓS) =
exp[−βE(Γ,ΓS)]

∫

exp[−βE(Γ,ΓS)] dΓ dΓS
.

It is frequently useful to average over the configurations ofthe
solvent molecules by integrating the Boltzmann distribution
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overΓS to give a reduced Boltzmann distribution

f(Γ) =

∫

f(Γ,ΓS) dΓS

=
exp[−βE(Γ)]

∫

exp[−βE(Γ)] dΓ
,

where

E(Γ) = − 1

β
ln

(
∫

exp[−βE(Γ,ΓS)] dΓS

)

is the energy of the system with ligand and protein configu-
rations specified byΓ and with the equilibrium effects of the
solvent implicitly included as a solvation free energy. In this
paper, we will assume thatE(Γ) is given.

Typical molecular interactions have a short range. In view
of this, let us defineΣ0 to represent all accessibleΓ space
(i.e., L andP somewhere in the system volumeV0), andΣ1

to represent that portion ofΣ0 where there is an appreciable
interaction betweenL andP which therefore form the com-
plexLP. In the phase-space volumeΣ1 we write the energy
asE1(Γ) which is just an alternate notation for the full energy
E(Γ), while in the volumeΣ0 − Σ1 we may write the energy
asE0(Γ) which we define as the “unbound” energy, i.e.,E(Γ)
excluding the interaction betweenL andP. The dissociation
constant can then be written as

Kd =
1

V0

(

∫

Σ0−Σ1

e−βE(Γ) dΓ
)2

∫

Σ0

e−βE(Γ) dΓ
∫

Σ1

e−βE(Γ) dΓ

=
1

V0

(

∫

Σ0−Σ1

e−βE0(Γ) dΓ
)2

∫

Σ1

e−βE1(Γ) dΓ
×

1
∫

Σ0−Σ1

e−βE0(Γ) dΓ +
∫

Σ1

e−βE1(Γ) dΓ
.

In the dilute limitV0 → ∞, this can be simplified by ignor-
ing the second term in the denominator of the last factor and
by extending the limits of the integrals overΣ0 − Σ1 to in-
cludeΣ1. In extending the definition ofE0(Γ) to Γ ∈ Σ1, we
include the intramolecular energy and the solvation free en-
ergy but continue to omit the intermolecular (ligand-protein)
energy. This yields [1, 4, 5]

Kd =
1

V0

∫

Σ0

exp[−βE0(Γ)] dΓ
∫

Σ1

exp[−βE1(Γ)] dΓ
. (2)

The Helmholtz free energy of the unbound and bound systems
is [3]

Fλ = − 1

β
ln

(
∫

Σλ

exp[−βEλ(Γ)] dΓ

)

,

for λ = 0 and1, and Eq. (1) is obtained from Eq. (2) with
∆F = F1 − F0. The definition ofKd, Eq. (2), is strictly in-
dependent ofV0 because of translational symmetry (ignoring

boundary effects). It is also independent of the precise defini-
tion ofΣ1, provided thatΣ1 includes the protein-ligand bind-
ing site and does not include a “macroscopic” volume beyond
this.

In this formulation, we have assumed that the system vol-
umeV0 is fixed. However, in most physiological systems, the
pressure is held constant and the binding affinity is then re-
lated to the differences in the Gibbs free energy which intro-
duces a correction term which is the product of the pressure
and the change in the volume caused by the formation of the
LP complex [6]. We expect this correction to be small for
typical ligand-protein interactions in solution.

We would like to cast Eq. (2) as the ratio of canonical av-
erages which can be computed using the canonical-ensemble
Monte Carlo method [7]. To achieve this, we combine the
unbound and bound systems by extending phase space to in-
clude a discrete indexλ ∈ {0, 1} and consider a system in
this extended space with energyE∗

λ(Γ) for which the canoni-
cal average is defined by

〈X〉 =
∑

λ

∫

dΓ exp[−βE∗
λ(Γ)]Xλ(Γ)

∑

λ

∫

dΓ exp[−βE∗
λ(Γ)]

.

We takeE∗
λ(Γ) to be infinite forΓ /∈ Σλ and finite otherwise.

Now Eq. (2) can be rewritten as

Kd =
1

V0

〈

δλ0 exp
(

−β[E0(Γ)− E∗
0 (Γ)]

)〉

〈

δλ1 exp
(

−β[E1(Γ)− E∗
1 (Γ)]

)〉 , (3)

whereδλµ is the Kronecker delta. IfE∗
λ(Γ) ≈ Eλ(Γ), the

terms being averaged areO(1). Because the definition ofKd

is independent ofV0, we can pickV0 ∼ 1/Kd so that approx-
imately the same number of samples contribute to each of the
canonical averages. We show later, Eq. 7, that this choice
minimizes the error in the estimate ofKd.

We can evaluateE∗
λ(Γ) with short energy cutoffs allowing

it to be computed more quickly thanEλ(Γ) and the terms con-
tributing to the averages in Eq. (3) can be accumulated every
hundred steps, for example. Since there is typically a high
correlation between successive steps in a Monte Carlo sim-
ulation, this method allows the averages to be computed to
a given degree of accuracy in less time than if we had used
E∗

λ(Γ) = Eλ(Γ).
The extension of phase space has been used in other free en-

ergy calculations, to combine, for example, systems at several
different temperatures [8] or to treat the “reaction coordinate”
controlling the transition between two chemical species asa
dynamic variable [9, 10]. In our case, the use of the worm-
hole Monte Carlo (described in the next section) allows us to
include just the two systems of interest without the need to
compute the properties of (possibly unphysical) intermediate
systems.

Wormhole Monte Carlo

We can compute the canonical averages in Eq. (3) using the
Monte Carlo method [7] to make steps from[Γ, λ] to [Γ′, λ′]
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FIG. 1: (a) Schematic representation ofE∗
0 (Γ) (shallow and wide)

andE∗
1 (Γ) (deep and narrow). Conventional Monte Carlo moves

betweenλ = 0 and 1 (shown as dashed lines) are nearly always
rejected because they lead to large increases in energy. (b)Schematic
representation of typical portals for the wormhole moves for the case
illustrated in (a), The large ratio of the volume of the unbound (λ =
0) portal compared to the bound (λ = 1) portals compensates for the
higher energy of the unbound configurations. This results inaccepted
wormhole moves (dashed lines) between all the portals.

with probability

min
[

1, exp
(

−β[E∗
λ′(Γ′)− E∗

λ(Γ)]
)]

.

However, the estimate of the ratio in Eq. (3) will be very poor,
because transitions betweenλ = 0 and1 will be extremely
rare—typically,E∗

0 is shallow and wide, whileE∗
1 is deep and

narrow; see Fig. 1(a). One possible way of remedying this is
to treatλ as a continuous variable [9, 10], providing a suitably
interpolated definition ofEλ(Γ), and allowing Monte Carlo
steps with small changes inλ. In practice, this approach only
“works” if the two endpoints are sufficiently similar, thus lim-
iting this method to the comparison of chemically close mol-
ecules.

Here we propose an alternative way of carrying out a Monte
Carlo simulation of theE∗

λ(Γ) system. We restrict the stan-
dard moves to changes inΓ only, and allow changes inλ
via “wormhole moves” [11] which connect otherwise discon-
nected regions of configuration space. This obviates the need
to treat (possibly unphysical) intermediate values ofλ, per-
mitting us to compute the free energy differences needed to
determine the absolute binding affinity.

Assume we have some system defined on a phase spaceΥ

whose equilibrium distribution is proportional tog(Υ). The
canonical average of a quantityX(Υ) is defined by

〈X〉 =
∫

dΥ g(Υ)X(Υ)
∫

dΥ g(Υ)
.

In our application, we make the identificationΥ = [Γ, λ],
∫

dΥ =
∑

λ

∫

dΓ, andg(Υ) = exp[−βEλ(Γ)].
Let us define a set of “portal functions,”w, w′, w′′, . . . , on

Υ, with properties

0 ≤ w(Υ) ≤ 1/v <∞,

∫

dΥw(Υ) = 1,

wherev is a representative phase-space volume of the portal
function. A wormhole move consists of the following steps:
select a pair of portals(w,w′) with probabilitypww′ ; reject
the move with probability1 − vw(Υ), whereΥ is the current
state; otherwise, with probabilityvw(Υ), pick a configuration
Υ′ with probabilityw′(Υ′); and accept the move toΥ′ with
probabilityPww′(Υ,Υ′). If the move is rejected,Υ is retained
as the new state. We determinePww′(Υ,Υ′) by demanding
that the rate of making transitions fromΥ to Υ′ via portals
(w,w′) is balanced by the reverse rate fromΥ′ toΥ via portals
(w′, w), i.e.,

Rww′(Υ,Υ′) = Rw′w(Υ
′,Υ)

(the condition of detailed balance), where the rates are given
by

Rww′(Υ,Υ′) = pww′

g(Υ)
∫

dΥ g(Υ)
×

vw(Υ)w′(Υ′)Pww′(Υ,Υ′).

A possible solution for the acceptance probability is

Pww′(Υ,Υ′) = min

(

1,
pw′w

pww′

g(Υ′)

g(Υ)

v′

v

)

,

where we have made use of the identityαmin(1, α−1) =
min(1, α), which is valid forα > 0.

In order to apply this move, let us use a specific rather sim-
ple form for the portal functions,w(Υ), namely

w(Υ) =

{

1/v, for Υ ∈ w,
0, otherwise,

where we now denote a portal byw which defines an arbi-
trary subset ofΥ space of volumev. In principle, there is
no restriction on the choice of the portals; however, practical
considerations, discussed below, dictate how they are chosen.
Furthermore, for simplicity, we will assume that the wormhole
probabilities are all equal,pww′ = const.

Let us now describe the wormhole move in[Γ, λ] space.
Starting with a configuration[Γ, λ], first pick a random portal
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w. If [Γ, λ] /∈ w, then reject the move. Otherwise, pick a
random configuration[Γ′, λ′] uniformly in a randomly chosen
portalw′, and accept the move to[Γ′, λ′] with probability

min

(

1,
exp[−βE∗

λ′(Γ′)]

exp[−βE∗
λ(Γ)]

v′

v

)

. (4)

This differs from the standard Boltzmann acceptance proba-
bilty by the ratio of volumes,v′/v, which can be large enough
to compensate for the difference in the mean energies in the
portals. Indeed, if the mean energy of configurations inw
scales asβ−1 ln v+const., the acceptance probability, Eq. (4),
isO(1), thereby allowing moves between shallow wide wells
and deep narrow ones; see Fig. 1(b). In practice, each por-
tal will occupy one of the energy wells of eitherE∗

0 (Γ) or
E∗

1 (Γ). This implies that theλ = 0 portals will permit unre-
stricted translation and rotation of the ligand and the protein
subject to theV0 constraint, and theλ = 1 portals will allow
unrestricted motion of one of the molecules.

The wormhole move embodies two concepts which have
been used separately in other works: stretching or shrink-
ing Γ space when making the move compensates for possibly
large energy differences between wells [12, 13]; and jump-
ing between disconnected regions of phase space enables the
Markov chain to explore regions of phase space separated by
large energy barriers [14, 15]. In the following sections, we
will show how these elements may be combined to permit the
computation of protein binding affinities with realistic force
fields.

Finding the portals

In order for the wormhole method to be practical, we need a
reliable way of choosing the portals. We describe this process
first in the general case. Let us writeΓ = [ΓL,ΓP], where
ΓM = [XM,ΞM] represents the state of moleculeM,XM rep-
resents its position and orientation, andΞM represents its con-
formation.

We assume thatΞM is expressed in such a way that any con-
straints on the positions of the atoms inM (e.g., bond lengths
and bond angles) is implicitly accounted for, so that the di-
mensionality ofΞM reflects the number of degrees of confor-
mational freedom,nM, for this molecule.

Because of the translational and rotational symmetry of the
system, certain components ofΓ are ignorable. We can there-
fore writeE∗

λ(Γ) = E∗
λ(Ξλ), with

Ξ0 = [ΞL,ΞP],

Ξ1 = [Y,ΞL,ΞP],

whereY = XL −XP denotes the position and orientation of
the ligand relative to the protein. The dimensionality ofΞλ is
nλ with n0 = nL + nP andn1 = n0 + 6.

The strategy for determining the portals is to carry out con-
ventional canonical Monte Carlo simulations withE∗

λ(Ξλ)

separately forλ = 0 and1. For eachλ, we obtain a canon-
ical set of configurations{Ξ} (suppressing theλ subscripts
for brevity), to which we fitn-dimensional ellipsoids, as fol-
lows. First we try to fit a single ellipsoid to{Ξ}. The center
of the ellipsoid is given by the mean configuration〈Ξ〉. For
each configuration in{Ξ}, we determine the deviation from
the mean,δΞ = Ξ − 〈Ξ〉, and compute a covariance matrix
for the configurations which can be diagonalized as

〈δΞ δΞ〉 = PΛPT,

whereP is the matrix of (column) eigenvectors andΛ is the
diagonal matrix of eigenvalues. Because of the properties of
the covariance,P is real and orthogonal,P−1 = P

T, and the
eigenvalues are real and non-negative. If there are no hidden
constraints on the motion, we additionally can assume that
the eigenvalues are strictly positive. We find it convenientto
define

B = PΛ1/2, B
−1 = Λ−1/2

P
T,

so that we can write

〈δΞ δΞ〉 = BB
T.

We take the semi-axes of the ellipsoid to be the columns
of

√
nB. The multiplier here,

√
n, is chosen to ensure

thatO(1) of the configurations in{Ξ} lie within the ellip-
soid. This choice is motivated by considering a symmetric
n-dimensional Gaussian

f(r) =
exp(− 1

2r
2)

(2π)n/2
,

for which we have

〈r2〉 =
∫

r2f(r) dnr = n.

Ellipsoids are a natural choice to use to fit the set of configu-
rations for the following reasons: (1) The iso-density contours
of the distribution in a harmonic well are ellipsoids. (2) Itis
easy to sample points randomly from an ellipsoid. (3) Con-
versely, it is easy to test that a point lies inside an ellipsoid.
(4) The volume of ann-dimensional ellipsoid is given by

vn =
πn/2

(n/2)!

n
∏

i=1

ai,

whereai is the length ofith semi-axis. Note well the degener-
ate case of this result,v0 = 1, which is used if the protein and
ligand are both rigid (n0 = 0). The sampling and testing of
points, (2) and (3), can either be accomplished by transform-
ing with the matrixB. Alternatively, we can use the simpler
Cholesky decomposition of the covariance matrix

〈δΞ δΞ〉 = CC
T,

whereC is a lower triangular matrix. BothC andC−1 may be
computed by direct (non-iterative) methods [16].
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Having defined an ellipsoid in this way, we test its suitabil-
ity as a portal by demanding thatO(1) of the configurations
sampled uniformly from it have energies close to its mean en-
ergy 〈E∗(Ξ)〉. If this test fails, we split{Ξ} into two sets
according to the sign ofδΞ projected along the largest semi-
axis of the ellipsoid and construct new trial portals from each
of these sets.

The ellipsoids that result from this process constitute our
portals. When computing the volumes of the portals for use
in Eq. (4), we need to account for the freedom to place2 − λ
molecules at arbitrary positions and orientations in the volume
V0. In practice, this means we multiply the volume of the
λ = 0 portals byσV0 whereV0 is the translational volume
andσ is the orientational volume (given below).

In order to complete the specification of the portals, we
need to describe how〈Ξ〉 and δΞ are formed, since, as a
consequence of working in the subspace where the molecu-
lar constraints are implicitly satisfied,Ξ is not simply a point
in R

n. We wish to represent each ellipsoid on a locally Carte-
sian spaceRn which lets us use familiar formulas for defining
the ellipsoid. We also demand that the mapping toR

n have
constant Jacobian in order to maintain detailed balance when
sampling from the ellipsoids.

We illustrate this by considering the case of the protein and
the ligand being made up ofnM + 1 rigid fragments simply
connected bynM bonds each of which allow rotation only
(i.e., the bond lengths and bond angles are fixed). The relative
position and orientation ofL with respect toP, Y , can be de-
fined in terms of one of the rigid fragments of each molecule.
Finally, we use unit quaternions [17] to represent orientation.
Since the quaternionsq and−q represent the same rotation,
orientations are given by anaxis [18] of the sphereS3.

The coordinates making upΞ are then: (a) the position
component ofY , a point inR3; (b) the orientation component
of Y , an axis of the sphereS3; and (c) the dihedral angles
of the rotatable bonds of the ligand and protein, points on the
circleS1. The definition of〈Ξ〉 andδΞ is straightforward for
(a), since we use the normal arithmetic definitions. For (c),
we define the mean for each angle [18] by the direction of the
mean of the points onS1 embedded inR2. We form the devi-
ation in this case by subtraction modulo2π so that the result
lies in [−π, π].

To find the mean of the orientations (b), we similarly em-
bedS3 in R

4. We define the mean orientation [18] as the
axis inR

4 about which the moment of inertia of the sample
axes is minimum. To find the deviation of the orientation,
we compute the differential rotationδq = q〈q〉∗ which takes
the mean orientation to the sample orientation and we project
this into a “turn” vectoru in the unit ball inR3 so as to pre-
serve the metric. This is achieved by a generalization of the
Lambert azimuthal equal-area projection as described in the
Appendix. In this representation, the volume of orientational
space (which contributes to the multiplier for the unbound vol-
umes) isσ = 4

3π.
Occasionally, the point sampled fromw′ corresponds to one

of the coordinates “wrapping around,” i.e., the change in the

dihedral lies outside[−π, π] or the turnu lies outside the unit
ball. In order to preserve detailed balance, we reject the re-
sulting move.

There are four ways in which we can improve the qual-
ity of the portals obtained by this method so as to make suc-
cessful wormhole moves more likely. (1) The Monte Carlo
runs used to obtain the samples from which the portals are
defined should begin with an “annealing” phase where the
temperature is started at some high value and slowly reduced
to T at which point we start gathering samples. This al-
lows the Monte Carlo sampling to explore phase space more
thoroughly. (2) Other methods of finding conformational en-
ergy minima [19] can be applied to provide additional starting
points for the Monte Carlo runs. (3) The samples can be sup-
plemented with those obtained by applying those symmetry
operations which leave the molecules invariant. In the case
of non-chiral ligands, we would also apply a reflection of the
ligand in the unbound case since this will leave the energy un-
changed. In this way, the portal moves allow all the symmetric
variants of the molecules to be explored so that symmetry is
included in a systematic way in the computation of the bind-
ing affinity. (4) When forming〈δΞ0 δΞ0〉, we should set the
intermolecular cross terms to zero because the conformations
of the two molecules are independent whenλ = 0.

This method of finding portals depends on the samples
“spanning” a volume of phase space. This requires that the
dimensionality of phase space be sufficiently small and this,
in turn, implies the use of an implicit solvation model. In ad-
dition the portals can be more reliably found if the “hard” de-
grees of freedom in the molecules are replaced by constraints
(e.g., by fixing the bond lengths and bond angles as described
above).

The method of successively subdividing the samples may
lead to suboptimal portals in some cases, for example, by di-
viding a contiguous set of samples. We have recently exper-
imented with fitting a mixture of Gaussians to the samples
using the expectation-maximization (EM) algorithm [20, 21].
Since this optimizes the fit to all the samples, it usually results
in fewer, better, portals. In this case, we are naturally lead to
use Gaussians for the portal functions rather than the more re-
strictive ellipsoids. By enforcing the symmetries of the ligand
when making the fits, ligand symmetry can also be included
in a rigorous way. These improvements will be described in a
subsequent publication.

The free energy calculation

Prior to the calculation of the free energy, we estimate a
suitable value ofV0, which enters into the definition of the
volumes of theλ = 0 portals, by assigning an estimated sta-
tistical weight ofv exp(−β〈E∗〉) to each portal and estimat-
ing

V0 ∼
∑

λ=1 v exp(−β〈E∗〉)
∑

λ=0(v/V0) exp(−β〈E∗〉) ,
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FIG. 2: The structure ofp-amino-benzamidine.

where the sums in numerator (denominator) are over the
bound (unbound) portals andv/V0 for the unbound portals
is the volume of the ellipsoid (multiplied byσ) and thus does
not depend onV0. If this estimate forV0 results in the sam-
pling being too heavily weighted towardλ = 0 or 1, V0 may
be changed and the current values of the sample sums forKd

can be adjusted to account for this change.
The choice of the starting configuration for the free energy

calculation may introduce some bias in the results. We can
remove much of this bias by using the portals to select the
starting configuration: select a portalw with probability pro-
portional to its estimated statistical weight; select a configura-
tion, [Γ, λ], uniformly from this portal; and accept the config-
uration with probability

min
[

1, exp
(

−β[E∗
λ(Γ)− 〈E∗〉]

)]

,

where〈E∗〉 is the canonical average energy over the portal.
This procedure is repeated until a configuration is accepted.
The bias can be further reduced by running the Monte Carlo
calculation for several correlation times, defined by Eq. (6),
prior to gathering the data for Eq. (3).

During the course of the free energy calculation, normal
and wormhole Monte Carlo moves are mixed. With the nor-
mal moves, we only attempt to changeΓ and, for this reason,
it is possible to have the Monte Carlo step size depend on
λ (with, usually, the step size being larger withλ = 0). In
practice, most (∼ 90%) of the attempted moves are worm-
hole moves because frequently we have[Γ, λ] /∈ w and the
attempted wormhole move is inexpensively rejected.

The method is robust in the sense that it does not depend
on the particular form of the energy function. In addition, a
failure to make transitions betweenλ = 0 and1 can be de-
tected. This may be because the test[Γ, λ] ∈ w never suc-
ceeds (i.e., the configuration has been trapped in a new well),
or because the acceptance criterion is never met, which indi-
cates that there is a deep well within the well of one of the
portals. In both cases, the problem can be corrected by adding
a new portal based on recent configurations.

Example

The efficacy of the wormhole method depends on how fre-
quently a configuration lies within one of the portals and how
often the jump to the new portal is accepted. In order to assess
these questions, we have computed the binding affinity ofp-
amino-benzamidine, whose structure is shown in Fig. 2, to the
digestive enzyme trypsin, atT = 290K. We emphasize that

the primary goal of this exercise is to assess how well worm-
hole moves allow the free energy calculation to converge. For
this purpose, we are not so interested in comparing the result-
ing computed binding affinity to the experimental data since
this will depend in large measure on the accuracy of the force
field and of the protein structure. Nevertheless, since the con-
vergence will depend on the complexity of the energy “land-
scape,” we use this example to epitomize the binding of a
small ligand to a protein.

The coordinates of the atoms in trypsin are taken from a
trypsin-benzamidine complex, 1BTY [22]. At physiologi-
cal pH, the amidine group is protonated (net charge of+1)
and, in the complex, it is attracted to a negatively charged
aspartate residue in trypsin inhibiting its enzymatic action.
We employ the Amber 7 force field [23, 24, 25] and the
GB/SA solvation model [26, 27, 28]. The protein is taken
to be rigid, nP = 0, and two bonds of the ligand are al-
lowed to rotate, namely, those connecting the amidine and
the amino groups to the benzene ring,nL = 2. The pub-
lished force field [23] does not provide a satisfactory tor-
sion for the bond between the benzene ring and the amidine
group and this term was determined using Gaussian 98 [29] as
[−14.2 cos(2φ) + 3.3 cos(4φ) + 0.5 cos(6φ)] kJ/mol, where
φ is the dihedral angle.

Five unbound and five bound canonical simulations of 1000
steps each were carried out to find the portals. The resulting
configurations were supplemented by those obtained by ap-
plying the symmetry operations which leave the ligand invari-
ant. This gave 16 unbound and 8 bound portals. The config-
urations of the bound portals are all the same “pose” of the
ligand on the protein and correspond to the symmetries ofp-
amino-benzamidine given by rotating the amino, benzene, and
amidine groups by180◦. The unbound ligand also exhibits 8
symmetries given by rotating the amino and amidine groups
by 180◦ relative to the central benzene ring and by including
the mirror images. However since the bond parameters allow
partially free rotation of the amidine group, each symmetric
set of configurations is represented by two portals.

We estimated a suitable value forV0 of 0.39 × 10−18m3

based on the volumes and the mean energies of the com-
puted portals. During the binding affinity calculation, worm-
hole moves were attempted on 90% of the steps (the other
10% were standard Monte Carlo moves). Of these attempted
wormhole moves, 97% failed (inexpensively) because the
configuration was not in the chosenw. Of the remaining 3%,
about 60% lead to a successful move, of which about 40% in-
volved switching fromλ = 0 to 1 andvice versa. The major
computational cost in the free energy calculation is the eval-
uation of the bound energies. In this example, the wormhole
moves required less than 3 bound energy evaluations, on av-
erage, to effect the transition from a bound configuration to
an unbound one and back. This enables an accurate estimate
to be made of the ratio of the averages in Eq. (3) which after
5×106 steps yieldspKd = 7.99±0.01. The error estimate is
derived in the next section and represents a 2% relative error
in Kd.
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FIG. 3: Cumulative estimatespKd(s) obtained by sampling every
100th step from the firsts steps of 5 independent Monte Carlo runs.
The dashed lines shows convergence as1/

√
s to the mean value of

7.99.

This example illustrates that the method is effective at al-
lowing sufficient transitions between the bound and unbound
states to enable the binding affinity of protein-ligand systems
to be accurately computed. We note that our computed bind-
ing affinity differs from the experimental results of5.1 to 5.2
[30, 31]. This discrepancy may be accounted for by modest,
∼ 20%, errors in the force field.

Error analysis

In order to assess the errors in the computation ofpKd in
more detail, we carried out 10 independent runs similar to the
one described in previous section. Each of these used the same
portals and the same value ofV0. We computed cumulative
estimates forpKd based on the firsts steps of the Markov
chains. When forming the averages in Eq. (3) we sample every
100th step. (As we shall see, there is a high degree of correla-
tion within 100 steps; thus there would be little improvement
in the estimate ofpKd by sampling more frequently.) The re-
sults for 5 of these runs are shown in Fig. 3. The convergence
toward the mean is as1/

√
s; after5 × 106 steps, the error in

pKd has been reduced to about±0.01.
For the purposes of further analysis, let us assume that the

computation is carried out withE∗
λ(Γ) = Eλ(Γ) so that all

samples have the same statistical weight. The probability that
the system is in the bound (resp. unbound) state isp = 〈δλ1〉
(resp.q = 1− p = 〈δλ0〉) and Eq. (3) becomes

Kd =
1

V0

q

p
. (5)

The determination ofKd is then equivalent to estimatingq/p
by taking the ratio of the number of unbound and bound steps
in the Monte Carlo simulation. How well this estimate con-
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FIG. 4: Theλ-correlation functionCt. The curves showCt for
V0/(0.39 × 10−18 m3) = (a) 1

10
, (b) 1

3
, (c) 1, (d) 3, and (e)10. The

ratioq/p varies correspondingly (from approximately1

8
to 100

8
). The

correlation times are (a)329, (b) 346, (c) 352, (d) 382, and (e)415.
In determining the correlation times, we limit the sum in Eq.(6) to
0 < t ≤ 2500 in order to avoid including the small but noisy terms
for larget.

verges depends, naturally, on the “correlation time” of thesys-
tem. If wormhole moves rarely cause the system to switch be-
tween bound and unbound states, the correlation time is large
and the convergence will be slow.

In order to make these ideas quantitative, we define theλ-
correlation function,

Ct = 〈(λs − p)(λs+t − p)〉s,

whereλs is the value ofλ at simulation steps and〈. . .〉s de-
notes an average over steps. Figure 4 showsCt for several
different values ofV0. (From Eq. (5), we haveq/p ∝ V0.)
In a Markov chain of lengths, the expected number of bound
states isps, while, for s → ∞, the variance in the number of
bound states is2Ds, where

D =
1

2
C0 +

∑

t>0

Ct =
1

2
C0τ. (6)

This provides us with the definition of the correlation time,τ .
From Fig. 4, we see thatCt decays approximately exponen-
tially so that the sum converges.

We can compare the Monte Carlo simulation to a simpler
Markov process of independent trials, e.g., tossing a coin
where the probability of heads isp. In this case, we have
Ct>0 = 0 andD = 1

2C0 = 1
2pq. In the limit s → ∞,

the relative errors in estimatingp for the Monte Carlo simu-
lation will be the same as that fors/τ tosses of the coin. We
can illustrate this by making 5 independent simulations of a
coin tossing experiment to match the data in Fig. 3, for which
p = 0.443 andτ = 352. The results are given in Fig. 5, where
we plothn/tn againstn wherehn (resp.tn) is the number of
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FIG. 5: Estimation of the bias of a coin withp = 0.443. Five
independent runs are shown. In each run, the coin was tossed5 ×
106/τ = 14200 times, whereτ is the correlation time for Fig. 4(c),
and the cumulative value ofhn/tn is recorded. The expected value,
p/q, is shown as a dashed line. The axes have been adjusted to allow
the figure to be directly compared with Fig. 3.

heads (resp. tails) aftern throws. As expected, Figs. 3 and 5
both exhibit the same convergence behavior.

Since the distribution of outcomeshn in the coin tossing
experiment is the binomial distribution, the mean and variance
for ln = ln(hn/tn) can be calculated, yielding

〈ln〉 = ln

(

p

q

)

+
1

2n

(

p

q
− q

p

)

+O(n−2),

〈(ln − 〈ln〉)2〉 =
1

npq
+O(n−2).

The standard error in the estimate ofpKd from a Monte Carlo
run with s steps is found by substitutingn = s/τ and scal-
ing by ln 10 (sincepKd is defined in terms of the common
logarithm) to give

∆pKd ≈ 1

ln 10

√

τ

spq
. (7)

In the case of the simulations shown in Fig. 3, we find
∆pKd ≈ 0.01 consistent with the data in the figure. From
Fig. 4, we see thatτ is weakly dependent onp. Thus for a
givens, we minimize the error by choosingp = q = 1

2 . Al-
ternatively, we may wish to minimize the error for a given
amount of computational effort. If bound steps aref times
more expensive to carry out than unbound steps, the error is
minimized by takingq/p =

√
f , i.e.,p = 1/(1 +

√
f).

Discussion

The important aspects of this method that enable us to com-
pute the binding affinity of a ligand to a protein are: (1) formu-
lation in the extended[Γ, λ] space, which allows the unbound

and bound systems to be treated as a single canonical system
andKd to be expressed as the ratio of canonical averages,
Eq. (3); (2) the wormhole move which allows transitions be-
tween the bound and unbound systems; and (3) the use of an
implicit solvation model which reduces the number of degrees
of freedom and so allows portals to be identified.

A method similar to ours is “simulated mutational equili-
bration,” [32] which employs an extended phase space, uses
an implicit solvation model, and allows jumps between differ-
ent systems. However, in place of the wormhole move, this
work employed a more restrictive “jumping between wells”
move, which limited its applicability to computing the differ-
ence in the binding affinities for two enantiomers. In contrast,
our wormhole method can be used to compute directly the
binding affinity of a ligand with several rotatable bonds to a
protein target. This allows us to study a wide range of inter-
esting drug-like ligands.

In the special case of binding rigid molecules (for which
we haveE∗

0 (Γ) = 0), wormhole Monte Carlo is isomorphic
to a grand canonical Monte Carlo simulation [33]. Consider a
grand canonical system with a single protein molecule and
with ligand molecules at a fixed chemical potentialµ; we
make the additional restriction that the ligand-ligand interac-
tion energy is infinite, so that the system can only accommo-
date 0 or 1 ligand molecule. For the wormhole simulation,
we specify the bound portal to include the full simulation vol-
ume with arbitrary orientation; the unbound port is degenerate
and corresponds merely to specifyingλ = 0. The wormhole
moves fromλ = 0 to 1 andvice versa correspond to particle
insertion and deletion in the grand canonical simulation; and
we can verify the acceptance probabilities are the same.

The application described here can be extended by allow-
ing a greater degree of flexibility for the protein and the lig-
and. This permits the treatment of side-chain rotation and
ligand-induced loop movement on the part of the protein and
the treatment of flexible rings for the ligand. Many stan-
dard Monte Carlo techniques can be used with this method,
if appropriate—preferential sampling, early rejection, force
bias, etc. Wormhole moves could also be used to treat other
discrete, or nearly discrete, transitions. Examples are: the
treatment of molecules, such as cyclohexane, which can as-
sume distinct conformations; discrete sets of side chain rota-
tions in the protein; protonation and tautomerization states for
either molecule. In each of these cases, the acceptance prob-
ability for the transitions should account for the free energy
difference between the discrete states.
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Appendix: Generalized Lambert projection

The Lambert azimuthal equal-area projection projects a
point onS2 to a point on a disk inR2. Here, we will gen-
eralize this to arbitrary dimensions, i.e., we will find a projec-
tion fromSn to a ball inRn. (Thus the circleS1 is projected
into a line segment; the surface of a sphereS2 is project into
a disk;S3 is projected into a sphere; etc.) The projection is
azimuthal, so that directions from the pole are preserved inthe
projected space.

The sequenceSn can be defined recursively by

S0 = [±1],

Sn = [cos θ, sin θ Sn−1],

whereθ is the colatitude and0 ≤ θ ≤ π. The area ofSn lying
betweenθ andθ + dθ is therefore

dA = an−1 sin
n−1 θ dθ,

wherean is the area ofSn. We project that portion ofSn

with colatitude in[0, θ] to a ball inRn of radiust. Equating
the measures (area onSn and volume inRn), we obtain

vnt
n = an−1

∫ θ

0

sinn−1 θ′ dθ′

wherevn is the volume of a unit ball inRn. Using the relation,

an−1 =
d(vnt

n)

dt

∣

∣

∣

∣

t=1

= nvn,

we obtain

t =

(

n

∫ θ

0

sinn−1 θ′ dθ′
)1/n

. (8)

The general “equal-area” projection is given by the mapping

[cos θ, sin θ Sn−1] → t,

wheret ∈ R
n, t̂ is given by the point onSn−1, andt is given

by Eq. (8). Some special cases of Eq. (8) are

t =



















θ, for n = 1,
2 sin 1

2θ, for n = 2,
[

3
4 (2θ − sin 2θ)

]1/3
, for n = 3,

2 sin 1
2θ

[

1
3 (1 + 2 cos2 1

2θ)
]1/4

, for n = 4.

The casen = 1 corresponds to unwrapping a circle onto a
line; andn = 2 gives the Lambert azimuthal equal-area pro-
jection. We are interested in the casen = 3 as a way of
mapping orientations from unit quaternion space toR

3. A
quaternionq = [cos θ, sin θ û] represents a rotation ofψ = 2θ
aboutû. Noting thatq and−q represent the same rotation, we
may make the restriction0 ≤ θ ≤ 1

2π . We choose, there-
fore, to map this hemisphere ofS3 ontou in the unit ball, by

making the substitutionsθ = 1
2ψ andt =

(

3
4π

)1/3
u to give

u =

(

ψ − sinψ

π

)1/3

.

(The other hemisphere, corresponding to1
2π < θ ≤ π, maps

onto the shell1 < u ≤ 21/3.) We call thisu representation of
orientations “turn space.”
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