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Abstract: The problem of substantiation of molecular mechanics (MM) remains actual due to growing popularity of
hybrid quantum/classical (QM/MM) schemes. Recently proposed deductive molecular mechanics (DMM) seems to be
a natural tool to derive mechanistic models of molecular energy (classical force fields) from a suitable quantum
mechanical (QM) description of molecular structure. It is based on an assumption that the trial wave function underlying
the MM description is one of the antisymmetrized product of strictly local geminals (SLG). A proof of transferability
of electronic structure parameters (ESPs) in this approximation is an essential component of a logical framework for the
transition from the QM to an MM description because it allows constructing expressions for potential energy surfaces
by proper consideration of the response of the ESPs to the variations of geometry parameters. In the present article the
ESPs defining density matrix elements and basis one-electron states (hybrid orbitals—HOs) in the SLG approximation
are formally considered. The transferability of the density matrix elements with respect to the parameters of molecular
electronic structure and the linear response relations for the HOs are proven to take place under very nonrestrictive
conditions. Special attention is paid to numerical estimates of the ESPs’ features giving an “experimental” support to
approximate expressions for the molecular energy.
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Introduction

Molecular mechanics (MM)1,2 is currently a versatile and very
popular tool in laboratory and industrial practice. It remains the
most practical way of analyzing potential energy surfaces (PES)
for large molecules even though linear scaling O(N) methods of
quantum chemistry are becoming available.3,4 The nature of the
MM as a combination of totally empirical classical force fields
allows to realize its main drawbacks (e.g., inapplicability to highly
correlated systems) and advantages (fast evaluation of the total
energy and its gradient and high accuracy of molecular geometries
obtained) and to characterize it as the most preferable according to
the “quality/cost” criterion but with the field of application limited
to a certain combination of properties, processes, and classes of
molecules.

Despite its long history and a wealth of successful applications,
the MM approach remains not substantiated theoretically. Substan-
tiation of MM is not merely an academic question. The last years
have demonstrated a growing interest5–8 to hybrid quantum me-
chanical/molecular mechanical (QM/MM) schemes where differ-

ent parts of the entire molecule are treated by different methods.
Although the QM/MM methods shift the limits for numerical
applications, they require more insight into the electronic structure
underlying the MM schemes because it is not clear how to con-
struct the junction between quantically and classically treated
subsystems. Although many ad hoc recipes for the junction con-
struction are proposed in the literature (see, e.g., reviews6–8), the
problem has not been yet solved, which leads to numerous artifacts
in QM/MM schemes reviewed in ref. 8. The general formal solu-
tion of this problem proposed in refs. 9 and 10 is based on the
assumption that a generic MM scheme can be obtained from a
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suitable QM method by a series of approximations. Thus, the
prospect of development of effective QM/MM schemes constitutes
the practical aspect of the general task of the MM substantiation.
An important prerequisite for the announced derivation of MM
from QM is the choice of the quantum chemical method underly-
ing the MM description. By taking a proper form of the trial wave
function having some common features (or resemblance) with the
MM schemes we can significantly simplify the task. The repre-
sentation of the total energy of the covalently bound molecule in
the current MM schemes is tightly bound to the concept of two-
center bonds. The energy is taken as a sum of intrabond, bending,
torsion, and nonbonding contributions. The specific forms of force
fields depend on the implementation, and quite a lot of schemes
with systems of parameters fitted to reproduce various character-
istics of different classes of molecules have been proposed.12–18 In
the course of the evolvement of the MM approach increasingly
sophisticated contributions are added to the original simplistic
picture,2 which allow extension of the MM approach to more and
more complex and not transparently tractable classes of the mol-
ecules.19–21 Thus, an acceptable substantiation of the MM should
not be reduced to deriving or validating any specific MM scheme.
By contrast, a generic mechanistic picture must be obtained on the
basis of the adequate QM description.

The standard QM methods in that or another manner based on
the delocalized picture of the molecular electronic structure pro-
vided by the SCF approximation are not quite suitable for the
purpose of the MM substantiation. First, the general SCF energy
expression contains contributions of the same form for all pairs of
atoms, and separation of the energy into bonding and nonbonding
contributions is not built into the SCF methods. Second, even
applying different localization techniques intended to reconcile the
SCF picture of the electronic structure with the chemist’s view
relying upon the bond’s concept leads not to very much progress
due to “tails” of the localized orbitals, which are difficult for
handling and absolutely nontransferable (it is also impossible to
prove theoretically the transferability of the MO LCAO coeffi-
cients or, even, of the SCF density matrix elements).

The above discussion allows specification of some criteria for
selecting a QM method suitable to serve as a starting point for the
MM derivation: discrimination and different treatment of bonding
and nonbonding contributions to the energy, strict locality of
one-electron states, variational determination of the electronic
structure parameters (ESPs). Failure to fulfill any of these criteria
leads to a necessity to take whichever of the mentioned features as
assumptions (as, e.g., in ref. 22, where the analysis was based on
the PCILO method23).

The unability of the SCF approximation to be a basis for the
additivity concept in general (and thus for the MM in particular)
was clear even on very early stage of the theory development. Yet
then (see ref. 24) it had been proposed to use a geminal-based
description for substantiating the additive methods and the bond
energy concept. However, the one-electron carrier spaces to be
used for geminal construction had not been sufficiently specified,
and the entire geminal-based scheme had not been explored nu-
merically to a due extent. Recently we proposed25,26 a semiem-
pirical method that satisfies the suitability criteria formulated
above. It uses the trial wave function in the form of antisymme-
trized product of strictly local geminals (SLG), and variationally

determines the strictly local one-electron states and the density
matrix elements. Numerical implementations with the MINDO/
325,27 and NDDO26 parameterizations of the semiempirical Ham-
iltonian have shown that the SLG method supercedes the SCF one
in the description of the heats of formation, molecular geometries,
and ionization potentials of organic molecules. Incidentally, it
provides a good basis for description of molecular electronic
structure in chemical terms. The approximate transferability of the
ESPs of the SLG approach was numerically demonstrated in ref.
28, where it was shown that the energy calculated with some ESPs
“fixed” and characteristic for a particular class of atoms and for
bonds is close to that obtained by direct minimization of the SLG
energy. More refined treatment was proposed in refs. 29 and 30,
where linear response relations for the form of one-electron states
were used to derive explicit expressions for the angular depen-
dence of the energy in the case of sp3 hybridized carbon and
nitrogen atoms. The numerical estimates of the MM force field
parameters obtained in ref. 29 on the basis of the analytical
expressions for the constants of force fields are close to those
accepted in the MM. Special attention was paid to off-diagonal
force fields and to possible sources of the angular dependence of
the energy29 as well as those of pyramidalization potential in
nitrogen-containing compounds.30 The development of these ideas
has led to the formulation of the “deductive molecular mechan-
ics,”31 which represents atoms by their hybridization tetrahedra
(see below) of different shapes adjusted according to geometry and
valence state variations rather than by harmonically interacting
point masses (“balls and springs”) used in standard MM. All these
results are obtained within the assumptions of (1) the perfect
transferability of ESPs characterizing chemical bonds, and (2) of
the validity of linear response relations for hybridization with
respect to geometry variations. In the present article we address the
problem of transferability of the density-related ESPs, explore the
precision and the validity limits for the linear response formulae
for the shapes of hybridization tetrahedra, and consider the possi-
bility of recovering the standard MM description from the deduc-
tive molecular mechanics.

This article is organized as follows: in Section 2 we briefly
review the main features of the SLG method (with the MINDO/3
semiempirical parameterization) relevant to constructing the MM
description. In Section 3.1 the ESPs characterizing the density
distribution in chemical bonds and lone pairs as they appear in the
SLG method are analyzed and the features assuring their transfer-
ability are singled out. In Section 3.2 we briefly discuss the
structure of the hybridization manifold and give expressions for
the variations of the hybridization-related ESPs in response to
geometry changes. Results of numerical experiments are given in
these sections to support our theoretical derivation of transferabil-
ity and of linear response relations. In Section 4.1 we discuss
different possible approximate descriptions of the ESPs and energy
leading to various versions of the deductive MM theory. In Section
4.2 we consider the possibility of deriving the standard MM
picture from the DMM by projecting out excessive (from the MM
point of view) variables of the latter and give theoretical expres-
sions for the force fields’ parameters of the standard MM. Finally,
we discuss the relation between the transferability of the density
related ESPs and that of the MM force fields.
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SLG Description of Molecular Electronic
Structure

Constructing the SLG trial wave function according to refs. 25 and
26 requires the following moves. First, the one-electron basis of
the strictly local hybrid orbitals (HOs) must be constructed. These
orbitals are obtained by an orthogonal transformation of the s and
p AOs for each “heavy” (nonhydrogen) atom. These transforma-
tions are represented by 4 � 4 orthogonal matrices hA � O(4) for
each heavy atom A. All the HOs are assigned either to respective
two-electron chemical bonds or to electron lone pairs. Each chem-
ical bond refers to two such HOs: �r� and �l� (right- and left-end
ones, respectively). Each lone pair is formed by one HO only (a
right one for the sake of definiteness).

Chemical bonds and lone pairs are described by singlet two-
electron functions—geminals32 taken in the form originally pro-
posed by Weinbaum.33 With use of the second quantization nota-
tion they are written as:

gm
� � umrm�

� rm�
� � vmlm�

� lm�
� � wm�rm�

� lm�
� � lm�

� rm�
� � (1)

for chemical bonds and:

gm
� � rm�

� rm�
� (2)

for lone pairs. The normalization condition imposed on the ampli-
tudes reads:

um
2 � vm

2 � 2wm
2 � 1. (3)

The geminals thus defined in the carrier space spanned by so
constructed HOs are termed to be strictly local geminals (SLG).

The wave function of electrons in the molecule is then taken as
the antisymmetrized product of the geminals given by eqs. (1) and
(2):

��� � �
m

gm
��0�. (4)

The SLG energy is a function of the intrabond matrix elements
of spinless one- and two-electron density matrices:

Pm
tt� � �0�gmtm�

� t�m�gm
��0�, 	m

tt� � �0�gmtm�
� t�m�

� t�m�tm�gm
��0�,

Pm
rr � um

2 � wm
2 , Pm

ll � vm
2 � wm

2 , Pm
rl � Pm

lr � �um � vm�wm,

	m
rr � um

2 , 	m
ll � vm

2 , 	m
rl � 	m

lr � wm
2 , (5)

where t and t� (
 �1) correspond to the right (�1) and to the left
(�1) ends of the bond and to the Fermi operators r and l,
respectively. Certain energy contributions further reduce to Cou-
lomb interaction of effective atomic charges residing on the atoms.
Applying the Mulliken scheme for the charges to the SLG wave
function yields them in the form:

QA � 2 �
tm�A

Pm
tt � ZA. (6)

If the Hamiltonian of the MINDO/3 form34 in the HO basis is
used with the SLG trial wave function the total energy can be
written in a form somewhat close to the MM energy with interac-
tions between bonded and nonbonded atoms treated in different
ways and closely relates it to that given in ref. 22 in the context of
analysis of a variety of additive schemes of molecular energy:

E � �
A

EA � �
A
B

EAB,

EA � �
tm�A

�2Um
t Pm

tt � �tmtm�tmtm�Tm	m
tt � � 2 �

tkt�m�A
k
m

gtkt�m
Tk Pk

ttPm
t�t�,

ERmLm

bond � 2�RmLm�	m
rl � 2Pm

rrPm
ll � � 4�rmlm

RmLmPm
rl,

EAB
nonbond � QAQB�AB � ZAZBDAB, (7)

where Tm refers to the atom bearing the HO tm; DAB is MINDO/3
specific core–core repulsion; the reduced Coulomb integral is:

gtkt�m
Tk � 2�tktk�t�mt�m�Tk � �tkt�m�t�mtk�

Tk. (8)

and the resonance (electron hopping) one is:

�tm1 t �m2

AB � �
i�A

�
j�B

hm1i
A hm2j

B �ij
AB. (9)

In this energy expression it is assumed that the nonbonding con-
tribution appears for all pairs of atoms, whereas the bonding is
only for those with an actual bond.

Molecular integrals entering the above expressions depend on
molecular geometry and on the orthogonal matrices hA for all
nonhydrogen atoms A. The expressions for the matrix elements in
the HO basis are given in ref. 25.

The energy expression eq. (7) depends on the amplitudes of
bond geminals through the values of Pm

tt� and 	m
tt�, and on the form

of HOs through the molecular integrals. The amplitudes of two
ionic (um, vm) and one covalent (Heitler–London type, �2wm)
configurations in eq. (1) for each geminal are determined with the
use of the variational principle as well as the matrices hA of
transformation of the AO basis to the HO one.

This comprises the essence of the semiempirical SLG method.

Electronic Structure Parameters in the SLG
Picture

In the previous section we briefly reviewed the semiempirical
implementation of the SLG method for analysis of the electronic
structure and expressed the total molecular energy in the form of
eq. (7), which allows the representation of the molecular PES as a
sum of local increments. These increments depend on the ESPs of
two classes: (1) those defining the hybridization of atomic basis
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sets, and (2) the intrabond density matrix elements. In this section
we concentrate upon the proof of transferability of the electron
density matrix elements, related to the geminal amplitudes, and on
the structure of the hybridization manifold as it appears in the SLG
approximation.

Density Matrix Elements and Their Transferability

As is reported in Section 2, the energy in the SLG approximation
is a function of one- and two-electron density matrices. Their
matrix elements are, in turn, expressed through the geminal am-
plitudes, appearing while diagonalizing the effective bond Hamil-
tonians. Thus, any analysis of the properties of the density ESPs
starts from description of the latter.

Effective Bond Hamiltonians

Within the original SLG approach25,26 the geminals are character-
ized by the amplitudes [see eq. (1)] um, vm, and zm 
 �2wm

[which simplifies the normalization condition eq. (3) for the am-
plitudes to: um

2 � vm
2 � zm

2 
 1]. To determine them, the effective
Hamiltonians for each bond geminal are constructed. The optimal
values of these amplitudes are the solution of the eigenvector
problem (see also ref. 35):

�Am Dm 0
Dm Cm Dm

0 Dm Bm

��um

zm

vm

� � �m�um

zm

vm

� , (10)

corresponding to its lowest eigenvalue.
The matrix elements of the effective bond Hamiltonians are

defined as (with the MINDO/3 Hamiltonian):

Am � 2Um
r � �rmrm�rmrm�Rm � 4�RmLmPm

ll

� 2 �
B�Rm

�RmBQB � 2 �
tm1�Rm

m1�m

grmtm1

Rm Pm1

tt ;

Bm � 2Um
l � �lmlm�lmlm�Lm � 4�RmLmPm

rr

� 2 �
B�Lm

�LmBQB � 2 �
tm1�Lm

m1�m

glmtm1

Lm Pm1

tt ;

Cm �
1

2
� Am � Bm� � ��m; Dm � ��2�rmlm

RmLm, (11)

where

��m � gm � �RmLm, gm �
1

2 �
t��r,l�

�tmtm�tmtm�Tm. (12)

The calculations of refs. 25 and 26 performed on organic
compounds of different classes (alkanes, alcohols, amines, etc.)
have demonstrated a remarkable stability of all the geminal-related
ESPs. The values of the polarity Pm

rr � Pm
ll do not exceed 0.07 by

absolute value for the compounds containing carbon, nitrogen, and
hydrogen atoms (for the situation with oxygen and fluorine, see
below). Also, the ionicity um

2 � vm
2 for a rich variety of bonds has

a stable value about 0.4. The bond orders 2Pm
rl all acquire values

between 0.92 and 1.0. These features, although not completely
unexpected because the transferability of the parameters of the
single bonds in organic compounds is well known experimentally,
require a theoretical explanation.

Pseudospin Representation and the Perturbative Estimates of
the Bond-Geminal ESPs

To provide the required explanation we notice that the effective
Hamiltonians for the bond geminals can be represented as a sum of
the unperturbed part, which, when diagonalized, yields an invari-
ant, that is, exactly transferable, values of the ESPs and of a
perturbation responsible for specificity of different chemical com-
positions and environments.

Pseudospin Operator of the Bond Geminal. Let us introduce a
pseudospin 	̂m operator corresponding to the pseudospin value
	m 
 1. The matrices of its components in the basis of the
configurations defining the geminal are given by:

	̂zm � �1 0 0
0 0 0
0 0 �1

�, 	̂�m � �0 �2 0
0 0 �2
0 0 0

�,

	̂�m � �	̂�m�†. (13)

The configurations with �	̂zm� 
 �1 are the ionic ones with both
electrons located on the same end of chemical bond (right or left,
respectively). In terms of the pseudospin operator averages, the
quantities in eq. (5) are expressed as follows:

Pm
tt �

1

2
�1 � t�	̂zm��, Pm

rl �
1

2
�	̂�m�, Pm

lr �
1

2
�	̂�m�,

	m
tt �

1

2
��	̂zm

2 � � t�	̂zm��, 	m
rl � 	m

lr �
1

2
�1 � �	̂zm

2 ��. (14)

The effective bond Hamiltonians can be rewritten in terms of the
pseudospin operators introduced just above. Indeed, the effective
Hamiltonian eq. (10) for each of the bond-representing geminals
has the form:

Hm
eff � H0m

eff � �Im	̂zm
2 � �Pm	̂zm,

H0m
eff � �Cm Dm 0

Dm Cm Dm

0 Dm Cm

� ,

�Im �
1

2
� Am � Bm� � Cm � ��m, �Pm �

1

2
� Am � Bm�, (15)

where the part of the effective Hamiltonian proportional to 	̂zm
2 is

responsible for reproducing the relative contribution of the ionic
and covalent configurations to the bond geminal, and the contri-
bution proportional to 	̂zm relates to the asymmetry (polarity) of
the bond. The geminal amplitudes obtained by diagonalizing the
unperturbed bond Hamiltonians H0m

eff and the density or 	̂-type
ESPs thus obtained are perfectly invariant:
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u0m � v0m � w0m �
1

2
, � z0m �

1

�2� , P0m
tt� �

1

2
, 	0m

tt� �
1

4
,

�	̂zm�0 � 0, �	̂zm
2 �0 �

1

2
, �	̂�m�0 � �	̂�m�0 � 1 (16)

with respect to the sorts of atoms and to the geometry parameters,
although the unperturbed effective Hamiltonians H0m

eff themselves
are, of course, not. The invariant values of the ESPs are also rather
close to the exact SLG values obtained in refs. 25 and 26.

Perturbative Estimate of ESPs with Respect to Noncorrelated Bare
Hamiltonian. One can try to estimate the optimal values of the
ESPs specific for each bond and molecule perturbatively by using
the linear response approximation.36 According to the latter, the
response 
� A� of a quantity described by the operator A to the
perturbation �B of the Hamiltonian (where � is the parameter
characterizing the intensity of the perturbation) has the form:


� A� � ��� A; B��, (17)

where the zero frequency Green’s function in the energy domain is
given by the relation:

�� A; B�� � 2 �
i�0

�0�A�i���0 � �i�
�1�i�B�0�. (18)

Inserting the amplitudes of the geminals for the ground and the two
excited states of the bond and two excitation energies (which are
equal to �2�Dm� and 2�2�Dm�) for the effective Hamiltonian
H0m

eff to the general expression for the Green’s functions eq. (18)
one can immediately check that only the diagonal (with respect to
A and B running over the relevant components of the pseudospin
operator and its squared z-component) Green’s functions are non-
vanishing. Therefore, the first-order responses of the averages of
the pseudospin operator components can be written as:

�	̂zm� � 
�	̂zm� �
Bm � Am

4�rmlm
RmLm

,


�	̂zm
2 � � �

��m

8�rmlm

RmLm
,


�	̂�m � 	̂�m� � 0. (19)

The last expression demonstrates that at least in the linear response
approximation the bond order does not change (i.e., is invariant
even for the different atoms forming the bond and geometries).
This result, though suggests certain stability of the bond orders, is
in fact a consequence of the SCF type of the two-electron wave
function implicitly assumed by the decomposition of the bond
effective Hamiltonian eq. (15). The unperturbed part thus defined
yields the symmetric ground state with the total weight of the ionic
configurations equal to that of the covalent one. This coincides
with the result characteristic for the SCF approximate treatment of
the symmetric bond. It is obvious that the formulae for the bond-

order variation and the two-electron density matrix elements (and
the SCF approximation itself) are not valid at larger interatomic
separations [the denominators in eq. (19) become too small] al-
though the exact solution of the SLG problem has a correct
asymptotic behavior for single bonds even at infinite interatomic
separations. This attractive feature of the SLG model is lost in the
perturbative treatment based on the Hamiltonian separation eq.
(15) as it is in the SCF approximation as well.

Perturbation of the Density Matrix Elements for Correlated
Ground State. To overcome the above failure of the perturbative
estimation of the two-electron density and of the bond orders, let
us consider a symmetric bond. This would correspond to a differ-
ent decomposition of the effective bond Hamiltonian than that of
eq. (15). We assume that the contribution to the effective bond
Hamiltonian, which is proportional to 	̂zm

2 is included into the
unperturbed (zero order) Hamiltonian. The problem then reduces
to a 2 � 2 matrix diagonalization. The ESPs, as they appear from
solution of this problem, are:

	m
tt� �

1

4 �1 � tt�
1

	��m�� , Pm
tt �

1

2
, Pm

rl �
�m

2	��m�
, (20)

where

�m � 4�rmlm
RmLm/��m, 	��m� � �1 � �m

2 (21)

Small interatomic separations characteristic for the real bonds
correspond to the limit �m 
 1 and the ESPs have the asymptotic
behavior as:

	0m
tt� �

1

4 �1 � tt�
1

�m
� , Pm

rl �
1

2 �1 �
1

2�m
2� . (22)

Now, when the total ionic contribution to the geminal is cal-
culated exactly (variationally), the bond polarity can be estimated
perturbatively in the linear response approximation, but with the
correlated ground state of the symmetricly effective bond Hamil-
tonian taken for evaluating the Green’s function. It can be conve-
niently done with use of a dimensionless asymmetry parameter:

�m �
Bm � Am

��m	��m�
. (23)

Inserting the corresponding ground state to the definition of the
Green’s function ��	̂zm; 	̂zm�� one obtains:

�	̂zm� � �m

	��m� � 1

	��m� � 1
(24)

for the polarity of the bond between atoms with the fixed hybrid-
izations. It vanishes for infinite interatomic separation as it should
be for the exact wave function. The bond ionicity and the bond
order are not affected in the linear response approximation.

The expression for the bond polarity coincides with that of eq.
(24) even if the second-order perturbation correction to the wave
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function is used (i.e., the contribution to the bond polarity propor-
tional to �m

2 is absent). At the same time the second-order cor-
rected bond ionicity and bond order have the following form:

�	̂zm
2 � � �	̂zm

2 �c�1 � �m
2

2	��m� � 1

2�	��m� � 1�� ,

�	̂�m � 	̂�m� � �	̂�m � 	̂�m�c�1 � �m
2

2	��m� � 1 � 	2��m�

2�	��m� � 1�2 � ,

(25)

where the ESPs with the subscript c correspond to the estimates by
eq. (20).

Lone Pairs

Another archetypical form of two-electron group is the lone pair.
As is mentioned above, the lone pair is described by a degenerate
geminal containing the contribution of only one ionic configura-
tion. For the sake of definiteness we set it to be the right-end ionic
configuration of the corresponding degenerate bond [the amplitude
um becomes equal to unity, see eq. (2)]. The ESPs related to the
lone pair can be readily evaluated:

�	̂zm� � 
�	̂zm� � 1, 
�	̂zm
2 � �

1

2
,

Pm
rl � Pm

lr � 0, 	m
rr � 1, 	m

ll � 	m
rl � 	m

lr � 0. (26)

These quantities are perfectly invariant and transferable from one
molecule to another and basically characterize (within the accepted
approximation, of course) the qualitative difference between the
atoms of different chemical elements: by the number of lone pairs
they bear.

Numerical Estimates of Density ESPs’ Transferability

The above analytical results must be controlled by numerical
estimates to get a feeling of the real sense of the “first” and
“second” orders. Table 1 represents the results of calculations on
the ESPs �	̂zm�, �	̂zm

2 �, and �	̂�m� by the SLG method [eq. (10)]
and by the approximate formulae [eqs. (19), (20), (22), (24), and
(25)] for some characteristic bonds in small molecules. The results
show that in the case of bonds with small polarity all the formulae
perform very well. The most precise approximations [eqs. (24) and
(25)] give results that perfectly coincide with the exact (SLG-
MINDO/3) ones even for very polar O—H and F—H bonds. Also,
estimates according to the asymptotic (�m 
 1) formulae [eq.
(20)] give reasonable results for the ESPs of the bonds in not too
polar molecules at their equilibrium geometries. The main source
of stability of the bond order values is the validity of the above
limit, which in its turn, takes place due to the fact that the
difference between one- and two-center electron-electron repul-
sion integrals (��m) at interatomic separations characteristic for
chemical bonding is much smaller than the resonance interaction at
the same distance. The data of Table 1 illustrate the difference
between that which may be called MM atom types. For example,

the primary C—H bonds in the ethane and propane molecules have
very similar ESPs, at the same time somewhat differing from those
for the secondary C—H bonds in the propane molecule.

Further analysis of the quantities �m allows to single out two
types of factors loaded upon this parameter: those related to the
bond itself (which are again hybridization dependent) and the rest
describing the environment of the bond. These factors contribute
additively:

�m � �0m � �1m, (27)

where the intrinsic bond-related part is:

�0m �
1

��m	��m� �2�Um
l � Um

r � � �lmlm�lmlm�Lm � �rmrm�rmrm�Rm

� �
tm1�Lm

m1�m

glmtm1

Lm nm1 � �
tm1�Rm

m1�m

grmtm1

Rm nm1� , (28)

where nm equals 1 for an incident chemical bond and 2 for a lone
pair. This contribution is characteristic for the pair of atoms RmLm

with given ratios of the s- and p-weights in the HOs �rm� and �lm�
ascribed to the bond at hand and clearly depending on the chemical
nature of these atoms through specific values of atomic parameters
and numbers of lone pairs.

The contribution to the bond asymmetry coming from the
environment of the bond is:

�1m �
1

��m	��m� �2 �
B�Lm

�LmBQB � 2 �
B�Rm

�RmBQB � 4�RmLm�	̂zm�

� 2 �
tm1�Lm

m1�m

glmtm1

Lm tm1�	̂zm1� � 2 �
tm1�Rm

m1�m

grmtm1

Rm tm1�	̂zm1�� . (29)

In the molecules where all bonds are weakly polar one can expect
that the external part �1m is small. Also, in the molecules con-
taining many polar bonds, the effect of randomly distributed ef-
fective atomic charges almost vanishes by this leading to small
values of external contributions �1m. Thus, the only situation
when one could expect the environment to affect the characteris-
tics of the otherwise transferable bond is that when the bond under
consideration falls to a close vicinity with a few strongly charged
atoms arranged in such a way that their fields sum up to a nonzero
overall field acting along the bond. That is, clearly, one of the
situations that elaborated MM parameterizations mark as a special
one, requiring specific values of parameters. The separation of �m

according to eq. (27) allows obtaining transferable, environment-
independent approximating functions for the ESPs by substituting
into eqs. (24) and (25) the parameter �0m instead of �m. The
numerical results are given in Table 1. It shows that this approach
leads to the approximate ESPs perfectly coinciding with those
obtained by the SLG method itself that demonstrates the applica-
bility of such a scheme. The comparison of data in Table 1 allows
singling out the effects of the environment. For example, the
primary C—H bonds in the ethane and propane molecules result in
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coinciding values of the ESPs estimated by using �0. Therefore,
the small difference between the ESPs of these bonds obtained by
the SLG method is totally caused by the slightly different envi-
ronment, that is, by the �1 values, which are equal to 0.003 and
0.006, respectively. The small magnitude of the deviations be-
tween the SLG and approximately estimated ESPs can be ratio-
nalized by the smallness of their effect on the total energy of the
molecule. For example, even in the case of a polar water molecule
the approximation of the bond ESPs by their values based on the
�0 estimates leads to an increase of the total energy by only 0.014
kcal/mol compared to the exact SLG calculation.

Mathematical Description of Hybridization in the SLG
Picture

In the framework of the SLG scheme the structure of one-electron
basis states is defined by orthogonal transformations of AOs for
each atom with an sp-valence shell. The energy expression eq. (7)
is the function of the parameters defining these transformations.
The 4 � 4 O(4) matrix hA of transformation from the AO to the
HO basis set on the atom A depends on six angular variables.
Three of them (pseudorotation angles �� b 
 (�sx, �sy, �sz) with
subscripts indicating pairs of basis AOs mixed by the correspond-
ing 2 � 2 Jacobi rotations) define the structure of the HOs
(s-/p-mixing and relative directions of the HOs) while other three
[quasirotation angles �� l 
 (�yz, ��xz, �zy)] define the SO(3)
matrix performing rotation of the set of four HOs as a whole
(prefix quasi refers to the fact that no physical body rotates under
its action, only the system of HOs). Generally, the transformation
of orbitals caused by a pseudorotation forms a set of HOs that is
known as hybridization pattern (like sp3, sp2, etc.), which is more
or less stable, while the set of quasirotation angles is totally
nontransferable, depends on the relative placement of bonded
atoms and, obviously, is governed by the resonance contribution to
the energy because only the latter depends on the directions of the
HOs.

The mathematical description of hybridization is based on
employing the algebraic group structure of the hybrids’ manifold.
Due to the latter, any small variation of HOs in a vicinity of a given
set of HOs represented by a 4 � 4 orthogonal matrix h can be
expressed with use of the SO(4) matrix H close to the unity
matrix:

H � I � 
�1�H � 
�2�H,

h� � Hh 	 h � 
�1�h � 
�2�h,


�1�h � 
�1�Hh, 
�2�h � 
�2�Hh. (30)

The general form of matrix H is analyzed in ref. 31, where its
expansion up to the second order in the vicinity of the unity matrix
is given. Also, simple expressions for the first-order variation of
the structure of the HOs due to small quasi- and pseudorotations

�� l and 
�� b applied to the set of HOs at a given atom are derived:


�1�s � ��
�� b, v��,


�1�v� � s
�� b � 
�� l � v� , (31)

where � stands for the vector product of 3-vectors and we use a
quaternion (s, v�) representation (see ref. 31 and below) of the HOs
where the coefficient s at the s-AO in the HO LCAO expansion is
a scalar and the coefficients at the p-AOs form the vector part v� of
the quaternion. Because we know the dependence of the molecular
integrals (and, therefore, energy) on the HO LCAO coefficients we
find according to eq. (31) their dependence on the ESPs �� b and �� l

defining hybridization.

Deductive Molecular Mechanics and Possibility
of Derivation of Standard MM

Basics of Deductive Molecular Mechanics

The analysis of the properties of the ESPs pertinent to the SLG
approximation performed above allows rewriting the energy [eq.
(7)] as follows:

E � �
m
��2Um �

��m

2
� 2�rmlm

RmLm��
1

2 �
k
m

�
tt���r,l�


TkT�mgtkt�m
Tk�� (a)

� �
A
B

ZAZBDAB � (b)

� �
m

�
t��r,l�

� t�	̂zm��Um
t �

1

2
�tmtm�tmtm�Tm� � (c)

�
1

2 �
k
m

�
tt���r,l�


TkT�mgtkt�m
Tk �t�	̂zk� � t��	̂zm�� � (d)

� �
m
� �

t��r,l�

1

2
�tmtm�tmtm�Tm � �RmLm�
�	̂zm

2 � � (e)

� �
A
B

QAQB�AB � �
m

�RmLm�	̂zm�2 � (f)

�
1

2 �
k
m

�
tt���r,l�


TkT�mgtkt�m
Tk tt��	̂zk��	̂zm� � (g)

� �
m

�rmlm
RmLm
�	̂�m � 	̂�m� (h)

(32)

This representation allows the following family of approximate
treatments for the energy. If the geminal amplitude-related ESPs
are fixed at their transferable values—the corresponding approxi-
mation is called the FA, that is, the fixed amplitudes one—the
energy [eq. (32)] reduces to the lines (a) and (b), which yields an
expression dependent on the molecular geometry and the hybrid-
ization ESPs only. The other lines in eq. (32) reappear if correc-
tions to the amplitude-related ESPs are taken into account. This
corresponds to the amplitude tuning in response to the geometry
variations or environment details, and this family of approxima-
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tions is thus called the TA, that is, the tuned amplitudes approxi-
mation. The simplest one in this family is that which retains only
the terms linear in �	̂zm� � �m [lines (c) and (d)], thus allowing
the bond asymmetry (polar bonds and nonvanishing effective
charges). Including the terms linear in �m

�1 provides the possibility
to take into account the variations of two-electron density matrices
in response to geometry and environment variations [line (e)], but
only including the quadratic terms yields corrections to the bond
orders [line (h)]. Further, in this article we mean by the TA
approximation its simplest (�m-linear) version. Because the cor-
rections to the bond orders appear only in the second order in small
parameters �m and �m

�1 the FA and the simplest TA approxima-
tions may have some value as can be seen from Table 1 by
comparing columns (10), (19), and (20).

Further components of the description are those related to the
HOs. The latter enter into the theory through the Hamiltonian
matrix elements in the HO basis. The matrix elements entering eqs.
(7) and (32) are either invariant with respect to basis transforma-
tions (the interatomic Coulomb interaction �AB), or can be
uniquely expressed through contributions of s-AO to the HOs (the
one-center matrix elements). The only class of molecular integrals
depending on the whole structure of the HOs (including directions)
is that of the resonance integrals. As we mentioned in Section 3.2,
each spx-HO can be considered as a normalized quaternion (s, v�).
Following ref. 31 we represent the entire system of HOs at any
given atom by four vector parts v�m of the corresponding orthonor-
mal quaternions. Even this representation is superfluous, because
only six Jacobi angles suffice to describe the system of HOs of
each given atom completely. Nevertheless, usage of the vector
parts is visual. If the latter are assumed to have the corresponding
nucleus as their common origin, the tetrahedral shape thus ob-
tained contains (with an excess) all necessary information about
the system of HOs of the given atom. In ref. 31 such a construct
was called the hybridization tetrahedron of the heavy atom at hand.
Using the hybridization tetrahedra as elements of the theoretical
construct allows further discrimination of possible approxima-
tions. Due to the mentioned dependencies of the molecular inte-
grals on the Jacobi angles both the FA and TA approximations to
the energy [eq. (32)] depend on the relative orientation of the
hybridization tetrahedra through the bond resonance integrals
� rmlm

RmLm. The resonance integrals also depend on the shapes (relative
weights of the s- and p-contributions to the HOs, which ultimately
define the interhybrid angles) of the hybridization tetrahedra. All
other terms in eq. (32) in the FA and TA approximations depend
only on the shapes of the hybridization tetrahedra. This leads to the
possibility to either fix the relative weights of the s- and p-orbitals
(FO, i.e., fixed orbitals approximation) at spn (n 
 1 � 3) or any
other allowable values, and by this fix the shapes of the hybrid-
ization tetrahedra, which thus become interacting rigid bodies or to
allow the relative weights of the s- and p-orbitals to be tuned, thus
leading to the TO—tuned orbitals—picture of the flexible hybrid-
ization tetrahedra. Whichever combination of the FA or TA treat-
ments for the density matrix elements, on the one hand, with the
FO or TO treatments for the HOs, on the other hand, results in a
representation of the molecular energy [eq. (32)] as such of the
system of tetrahedral bodies (rigid or flexible) whose interactions
and self-energies depend on distances between their centers, their
shapes, and relative orientations. For example, the energy variation

due to small pseudo- and quasirotations of the hybridization tet-
rahedron in the vicinity of the equilibrium for sp3-hybridized
carbon atom in the FA approximation is given by a diagonal
quadratic form:


��
�2�E � 2��
�� b

Rm��bb
RmRm�
�� b

Rm� � �
�� l
Rm��ll

RmRm�
�� l
Rm��,

�ll
RmRm �

4

�3
����

RmLmsm
Lm � ���

RmLm�1 � �sm
Lm�2��,

�bb
RmRm � 2�����

RmLm �
1

�3
���

RmLm� sm
Lm

� ����
RmLm �

1

�3
���

RmLm� �1 � �sm
Lm�2��, (33)

Three equal eigenvalues (diagonal elements) correspond to varia-
tions of �� b, while three other equal eigenvalues correspond to
those of �� l. Following the general reasoning,37 this can be treated
as a mechanistic model for molecular energy, for which the name
“deductive molecular mechanics” has been coined in ref. 31. These
constructs apparently satisfy the conditions formulated in the In-
troduction for a QM-derived mechanistic model of molecular PES.
However, there are several questions that need to be clarified. First,
we have to see what might be the relation between the DMM and
the standard MM known in the literature. Second, the precision of
the FA, TA, FO, and TO approximate treatments must be evalu-
ated. Third, the interrelation between the ESPs and the molecular
geometry must be established. The rest of the article is devoted to
investigating these three topics.

Relation between Deductive and Standard MM

General Setting

The content of the deductive molecular mechanics as formulated in
ref. 31, and above is a description of the molecular energy in the
form of eq. (32) as a function of shapes and mutual orientations of
the hybridization tetrahedra and of geometry parameters. On the
other hand, the standard MM can be qualified as a scheme directly
parameterizing the molecular energy as a function of molecular
geometry only. From this point of view the Jacobi angles variables
�� b, �� l, describing the shapes and orientations of hybridization
tetrahedra, are superfluous and must be excluded. This can be done
by finding the response of the corresponding ESPs to the variations
of bond lengths and valence angles with use of linear response
relations between different subsets of variables pertinent to the
DMM picture. To do so let us consider a minimum of the energy
with respect to both geometry and the ESPs. In the vicinity of a
minimum the energy can be expanded up to second-order with
respect to nuclear displacements q and variations of the ESPs x:

E � E0 �
1

2
� x � x0��x�xE�x � x0� � � x � x0��x�qE�q � q0�

� �q � q0��q�xE�x � x0� �
1

2
�q � q0��q�qE�q � q0�, (34)
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where linear terms disappear due to minimum conditions. For the
sake of definiteness we restrict ourselves by the FA picture. Then
the only remaining ESPs are the Jacobi angles describing the
shapes and orientations of the hybridization tetrahedra. Minimiza-
tion of the energy [eq. (34)] with respect to x for a given value of
q leads to basic linear response relation between the ESPs and the
geometry distortions:

x � x0 � ���x�xE��1�x�qE�q � q0�. (35)

The scheme of this type was used in ref. 38 to demonstrate the
transferability of scaling factors typically applied to reach an
agreement between the calculated (ab initio) IR frequencies and
the experimental ones.

Linear Response Relations for Hybridization ESPs

The main use of formulae (35) is for exclusion of the angular
variables describing the hybridization tetrahedra from the mecha-
nistic picture. Now we estimate the precision of the linear response
relations [eq. (35)] between geometry and hybridization variations
themselves by numerical study of elongation of one C—H bond
and deformations of valence angles. We consider the tetrahedral
methane molecule as a reference [its parameters then correspond to
subscript 0 in eqs. (34) and (35)]. First of all, we notice that the
�x�xE matrix further simplifies for methane since sm

Lm 
 1 and,
therefore, simple analytical expressions become possible. Also, we
remark that the FA approximation is adequate here because, for
example, even very large elongation of one C—H bond by 0.1 Å
leads to changes of the bond geminal amplitudes u, v, and w not
exceeding 0.003. The same applies to the averages of the
pseudospin (	̂) operators.

Linear Response of Hybridization to Bond Elongation. Let us first
consider the relation between hybridization and elongation of the
C—H bond. For this end we need the mixed second-order deriv-
atives coupling the bond stretching with the hybridization ESPs.
For every C—H bond in methane we can introduce a diatomic
coordinate frame with the � axis directed along the bond and
express the resonance integral as:

�rmlm
CHm � ���

CHsm � ���
CHvm�, (36)

where the subscript m enumerates the C—H bonds. In the case of
methane, sm 
 1

2
and vm� 
 �3/ 2. Changing the bond length

causes the response of the vector 
�� l to be exactly zero (vector
product of collinear vectors) because the directions of the chemical
bonds and the HOs coincide in the reference structure of methane.
At the same time, the response of the shape of the hybridization
tetrahedron represented by the vector 
�� b is nonvanishing and can
be written as:29


�� b � �
�3

4
�
�3���

CH � ���
CH

�3���
CH � ���

CH e�m
rm, (37)

where the derivative of ��� with respect to the interatomic distance
is ���, e�m is the unit vector directed along the CHm bond and 
rm

is the variation of the length of the same C—H bond. The denom-
inator in this expression corresponds to the eigenvalue of the
�x�xE matrix referring to �� b, while the numerator corresponds to
the block of the �x�qE matrix where q is the bond length rm and
x is �� b.

Formula (37) gives the analytical expression for the coupling
coefficient between the bond elongation (in Å) multiplied by unit
vector of this bond direction and changes of pseudorotation angles

�� b in methane (in radians). Its numerical value C1 is 0.2764 rad �
Å�1. This distortion corresponds to the following form for the
matrix of small transformation of the whole set of HOs [matrix H
in eq. (30)]:



1 �
 �
 �


 1 0 0

 0 1 0

 0 0 1

� (38)

where the linear response estimate for 
 is C1 � (
r/�3). This
form of the transformation matrix is perfectly numerically repro-
duced both in the FA and TA pictures. Figure 1 represents the
relative deviation of 
 estimated in the linear response approxima-
tion with respect to the exact value obtained by the energy mini-
mization (both values are obtained within the FA picture). This
figure shows that the linear response is good even for large
distortions (deviation from linearity is only about 1% for stretching
of 0.05 Å). The approximately linear dependence of the error itself
on the variation of the bond length certifies that the second-order
estimate should perfectly describe the 
 parameter obtained by the
energy minimization.

Linear Response of Hybridization to Valence Angle Deformation.
The linear response relations between the molecular shape and the
shape of hybridization tetrahedron are rather tricky due to the
complex structure of the hybridization manifold. The molecular
shape can be formally characterized by unit vectors with the origin
at an atom considered, taken as a center, and pointing to those

Figure 1. Deviation of the linear response estimate of the 
 angle
from the precise one for elongation of the C—H bond in methane.
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bonded to the central one. In the case of methane, the deformations
of thus defined coordination polyhedron are small rotations of unit
vectors e�m directed from the carbon atom to the hydrogen atoms.
Their small rotations 
�� m form an eight-dimensional space that
decomposes to a direct sum of two subspaces: one three-dimen-
sional corresponding to rotations of the molecule as a whole and
another five-dimensional corresponding to independent variations
of valence angles. The former one is precisely mapped on the
three-dimensional space of quasirotations 
�� l while the latter
(five-dimensional) one is mapped on the three-dimensional space
of pseudorotations 
�� b corresponding to changes of the shape of
the hybridization tetrahedron.29 Due to very general theorems of
linear algebra,43 there exists at least a two-dimensional kernel in
the space of deformations of a molecular shape that maps to zero
deformation of hybridization tetrahedron. In ref. 29, the term
“hybridization incompatible” has been coined for the deformations
from this kernel. The structure of deformations laying in the kernel
of the mapping is quite simple: they are produced by equal vari-
ations of opposite (spiro) valence angles. In contrast, the variations
that correspond to increase of one valence angle by 
� and de-
crease of its spiro counterpart by the same value fall into “coim-
age” of this mapping, that is, to the subspace of one-to-one maps
to the space of pseudorotations 
�� b. The deformations in the
coimage can be called “hybridization compatible.” It is clear that
only these latter variations should be considered. It is also clear
that any variation of the valence angle is a sum of equal amounts
of hybridization compatible and hybridization-incompatible defor-
mations. The denominator in the linear response relation [eq. (35)]
is the same as for eq. (37) while the relevant block of the �x�qE
matrix (with q taken as a difference of two opposite valence
angles) is proportional to ���

CH. Applying the linear response tech-
nique to the “hybridization-compatible” variation of two spiro
valence angles we obtain:


�� b � �
���

CH

�2��3���
CH � ���

CH�

�k�, (39)

where k� is the ort directed along the symmetry axis preserved
during this distortion.29

The coupling coefficient between the change of the pseudoro-
tation vector and totally hybridization-compatible deformation of
valence angles can be easily found by eq. (39). Its numerical value
C2 is �0.20734 for the equilibrium interatomic distance. The
considered distortion produces the following HO transformation
matrix [matrix H in eq. (30)]:



1 0 0 �

0 1 0 0
0 0 1 0

 0 0 1

�, (40)

where the linear response estimate for 
 is C2 � 
�. The change of
angle between HOs (i.e., between the vector parts v�m of the
quaternions representing the HOs) is �2�2
/3 for small values of

. The above form of the HO transformation matrix is perfectly
confirmed by our numerical calculations performed within the FA
picture even for very large distortions, which is a consequence of

the mathematical structure of the hybridization manifold described
above. Figure 2 represents the relative deviation between the linear
response estimate of the 
 parameter in eq. (40) and its value
coming from the energy minimization procedure. These data show
that the linear response estimate performs very well even for
improbably large distortions [the deviation from the linear re-
sponse estimate is smaller than 0.25% for the distortion of 0.3 rad
(about 17°)].

The smallness of the coupling coefficient C2 even for the
totally hybridization-compatible deformations allows to qualita-
tively understand certain features of the electronic structure of
cyclopropane as it appears in the SLG approach: a very large
distortion of the C–C–C valence angle from the tetrahedral to 60°
one leads only to a relatively small distortion of the corresponding
interhybrid angle. We model this process by strongly deforming
the methane molecule. Simple estimate is based on eqs. (39) and
(40) and runs as follows. The valence angle deformation when
going from methane to cyclopropane is of 49.5° (
109.5°–60°);
only one-half of it is hybridization compatible; after multiplying
by C2 this yields the value of the interhybrid angle between the
HOs corresponding to the “untouched” C—H bonds of 114.5° (i.e.,
the angle variation amounts only 5°). From the energy minimum
condition for hydrides it follows that the C—H bonds indeed must
follow the directions of the HOs. Numerical experiments per-
formed with the use of the SLG-MINDO/3 method show that if
one of the H–C–H valence angles is fixed at the cyclopropane
value of 60° the energy minimum corresponds to its spiro coun-
terpart of 115°. These results can be directly compared with the
experimental H–C–H valence angle in the cyclopropane molecule,
which equals 115.1°.

An analogous estimate can be applied to cyclobutane. In this
case, we consider the distorted methane molecule with a 90° angle.
The response of the HOs to the deformation is proportional in our
model to the deviation of the valence angle from the tetrahedral
one. The deviation of the C—C—C angle from the tetrahedral one
in cyclobutane (19.5°) amounts to 40% of that in cyclopropane.
Therefore, we can expect that about the same ratio will be ob-
served for the deviations of the H—C—H valence angle from the

Figure 2. Deviation of the linear response estimate of the 
 angle [eq.
(40)] from the precise one for angular distortion of methane.
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tetrahedral one in the cyclobutane and cyclopropane molecules. In
fact, this ratio in the SLG-MINDO/3 numerical experiment is
about 39%.

Estimates of Parameters of the Standard MM Force Fields
Based on DMM

Announced transition from the DMM model of molecular PES to
a model dependent on molecular geometry is formally obtained by
inserting eq. (35) into eq. (34), which yields:

E � E0 �
1

2
�q � q0��q�qE�q � q0�

�
1

2
�q � q0��q�xE��x�xE��1�x�qE�q � q0�. (41)

It apparently consists of two contributions: (1) the leading one—
the second derivatives of the energy [eq. (32)] with respect to the
geometry parameters q, and (2) a smaller correction appearing as
a result of projecting out the ESPs related to the hybridization
tetrahedra. Due to the SLG form of the wave function the energy
expression [eq. (32)] is naturally represented as a sum of atom and
bond increments. Staying for the sake of simplicity within the FA
picture we can conclude that the only geometry-dependent contri-
bution is that proportional to the resonance integrals of respective
bonds. These contributions depend mainly on the natural nuclear
coordinates:40 bond lengths and valence angles entering the defi-
nition of the standard MM force fields. This makes sensible to
consider the geometry dependence of individual bond energies.
For a pair of singly bonded atoms the corresponding energy is:

ERm � ELm � ERmLm

bond � ERmLm

nonbond (42)

which for a symmetric bond may be written as:

E � 2�Um � �RmLm� �
gm

2 �1 �
1

	��m�� �
�RmLm

2 �1 �
1

	��m��
� 2�rmlm

RmLm
�m

	��m�
� ZRmZLmDRmLm, (43)

where Um is the mean arithmetic value of the one-center electron
core attraction parameters Um

r and Um
l .

We consider in more detail the energy curve for the C—H
bond. The curve corresponding to the sp3 hybridization of carbon
atom and to the symmetric TA picture [eq. (20)] is given by Figure
3. It has correct qualitative behavior for all interatomic separations.
The minimum depth on this curve is approximately �0.23 a.u. and
can be considered as the “pure” energy of the C—H bond. It is
generally accepted in the literature that the energy of the C—H
bond is approximately 0.15 a.u. At the same time the latter value
is thermodynamic one, while our value is obtained by extracting
the contributions to the energy intrinsic to this bond and excluding
the interaction between the bonds. The difference between the
thermodynamic value for the bond energy and that obtained from
the SLG energy in the FA picture can be explicitly written in quite
simple form:

1/4�Us�C� � 3Up�C� � 3gtt�
C � 6DHH � EA�C��, (44)

where EA(C) is the energy of the nonhybridized carbon atom.
Adding this value to the minimum of the energy curve for the
C—H bond gives the value close to the thermodynamic one
because the heats of formation are well reproduced within the
SLG-MINDO/3 method.

It is interesting to compare the form of the bond energy curve
(Fig. 3) with the Morse potential. To this purpose we tried to
approximate the curve of Figure 3 by the Morse function D0[1 �
exp(�a(r � re)/re)]2 by minimizing the area between two curves
in the interval from 0.72 to 2.50 Å. With the parameters D0 and re

fixed at the values equal to the minimum depth and position on the
curve (0.2295 a.u. and 1.078 Å) the optimal value of parameter a
is then 2.306, but with these parameters two curves are, in fact,
quite different (the area between curves is almost 11% of area
between the bond energy curve and the abscissa). If we optimize
all three parameters of the Morse curve they become slightly
modified D0 
 0.2333 a.u., re 
 1.045 Å, and a 
 2.295. This
reduces the area between the curves by 30%. It should be con-
cluded that the energy profile in the TA approximation is not
particularly well reproduced by whatever Morse curve.

To estimate the parameters of harmonic force fields we con-
sider the symmetric correlated single bond, where the energy can
be obtained without any reference to its environment. In our case,
the derivative of the bond energy with respect to a geometry
parameter q has the form:

�Em

�q
� ZRmZLm

�DRmLm

�q
� 2

�m

	��m�

��rmlm
RmLm

�q

�
1

2 �1 �
1

	��m�� ��RmLm

�q
, (45)

where the derivatives of different ESPs with respect to geometry
variables exactly cancel each other so that the final expression for
the energy derivative acquires the form expected from the pertur-

Figure 3. C—H bond energy profile for the methane molecule ob-
tained within the symmetric TAFO approximation.

502 Tokmachev and Tchougréeff • Vol. 26, No. 5 • Journal of Computational Chemistry



bative analysis of the ESPs given above. If q is the interatomic
distance, setting the derivative to zero yields the equation for
determining the minimum position. Results are given in Table 2. In
the limit �m 
 1 we recover the equilibrium geometry condition
for the FA picture. The meaning of other notation in the Table 2 is
following. The TAsymm refers to a TA estimate for the symmetric
bond (bond asymmetry—polarity—terms omitted), while TApert

refers to the perturbative inclusion of bond asymmetry effects to
the TA picture with use of the �0 parameter. All estimates are quite
reasonable. At the same time, the latter one looks more promising
because it perfectly corresponds to the equilibrium interatomic
separation in methane and other hydrocarbons.

The same concepts can be used to determine the elasticity
constant for the bond stretching by taking the second derivative of
the energy with respect to the bond length. In the FA picture we
get:

kRmLm � �ZRmZLm

d2DRmLm

drRmLm

2 � 2
�2�rmlm

RmLm

�rRmLm

2 �
1

2

d2�RmLm

drRmLm

2 �
rRmLm

0

. (46)

We see from Table 2 that at least for one of the “experimental”
estimates for the stiffness of the C—H bond42 the agreement is
quite acceptable. The deviation from other cited values may be
understood because the bond stretch parameters fitted by other
authors in the context of the structure-oriented MM schemes are
implicitly loaded with the average effects of surrounding atoms.
This disagreement cannot be ascribed to the effects of the pro-
jected out Jacobi angles. Indeed, the off-diagonal constant cou-
pling stretching for two incident C—H bonds in the methane
molecule can be written as:

Koff �
1

4�3

��3���
CH � ���

CH�2

�3���
CH � ���

CH (47)

The only reason why this term appears is the deformation of the
carbon hybridization tetrahedron [eq. (37)] effectively coupling
stretchings of two C—H bonds. Its estimated magnitude is only
0.120 mdyn/Å, which is in an agreement with its IR estimate 0.03
mdyn/Å40 to the order of magnitude. This estimate, however,
establishes the scale of the corresponding effects. One can see that
the DMM specific corrections to the bare estimates of the har-
monic stretching constants [eq. (46)] are small. Nevertheless, in

the cases when the bare harmonic constant vanishes (like the
considered off-diagonal constant does) the DMM correction gives
an estimate correct to the order of magnitude and allows solving
the question on the presence of the off-diagonal terms on a purely
theoretical basis.

Analogous treatment of the energy terms quadratic in valence
angles’ deformations yields the bare estimate for the harmonic
bending constant in the form:

kHCH �
�3

2
���

CH, (48)

From Table 2 one can see that the elasticity constants for bending
force fields are in a good agreement with the values accepted in the
literature.

Discussion

In the previous section we provided the exclusion of the angular
variables characterizing the shapes and orientations of the hybrid-
ization tetrahedra from the mechanistic DMM model of molecular
PES. This results in a model announced in the Introduction, which
is similar to the standard MM models, but is obtained by the
sequential derivation from the QM (SLG) model of molecular
electronic structure. As is mentioned, the transferability of the
ESPs characterizing chemical bonds in molecules and linear re-
sponse relations for hybridization ESPs are main components of
deriving the MM theory of molecular PESs from the correspond-
ing QM theory. Both these features have been mathematically
derived and numerically checked in Section 3.

From a quantitative point of view, the concept of transferability
have gotten some attention in two related areas. First, we mention
the estimates of that of the semiempirical quantum chemical pa-
rameters given in ref. 44. Analogously in ref. 45 the problem of
constructing transferable dynamical matrices in relation to analysis
of vibrational spectra has been considered. The importance of the
transferability of the geminals has been pointed out, yet in ref. 24
as a prerequisite for that of the bond energy. However, in ref. 24
the geminal transferability had not been proven, and the authors
tried to prove directly that of the MM bond stretching force fields.
The latter is an important characteristic of the MM approach itself.
Here, we present a step towards quantitative analysis of the trans-
ferability and eventually to the mathematical proof of the later for
the MM force fields by proving the transferability of the density
matrix elements—equivalent to that of the geminal amplitudes,
but more directly related to the energy. Under the assumptions
given by eqs. (15) and (16), the averages of the pseudospin
operators (and, thus, all the bond ESPs) are invariant in that sense
that they do not depend on the environment of the bond under
consideration and even on the nature and the hybridization of the
atoms the bond connects. This corresponds to the FA picture (see
above and ref. 28). It is important that the invariance (at the
established level of precision) of the density matrix elements can
be proven only for the basis of the variationally determined
HOs—a specific characteristic of the SLG approach.25,26 In the
basis of AOs, the density matrix elements are not invariant even

Table 2. DMM-Based Estimates of the MM Force Field Parameters to
Those Accepted in Some Standard MM Parameterizations.

r0
CH Å kCH mdyn/Å kHCH mdyn/deg

FA: 1.069 8.30 0.509
TAsymm: 1.078 7.77
TApert: 1.096 7.17

Standard MM:
[2]: 1.113 [2]: 4.5 � 4.7 [39]: 0.549
[39]: 1.105 [40]: 5.31 [41]: 0.508
[41]: 1.090 [42]: 7.90 [40]: 0.493
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approximately. Although the SCF approximation formally suffice
to obtain these invariant results it is very crude, which allows to
pose further question: to what extent the density ESPs’ invariance
may stand further improvements of the description and whether it
is possible to relate the invariance of the density matrix elements
with the transferability of the MM force fields. To answer these
questions we notice that the invariant values of ESPs can be
improved by perturbative corrections (the TA picture) reflecting all
diversity of chemical compositions and environments the bond
may occur in. All the variety of perturbations is characterized by
two small dimensionless parameters: �m

�1 [eq. (21)] and �m [eq.
(23)]. Both parameters depend on the atoms connected by the
bond, their separation, and their hybridization. The perturbative
treatment allows estimation of the precision of transferability. For
example, using eqs. (22), (24), and (25), we conclude that the bond
order is transferable up to a second order with respect to both �m

�1

and �m; the ionicity (the total weight of the ionic configurations)
is transferable up to a second order with respect to �m and up to
a first order with respect to �m

�1; the bond polarity is transferable
up to a first order with respect to both �m

�1 and �m. The second
order transferability of bond orders explains to a certain extent the
success of the concept of “single bond” suitable for a large variety
of chemical bonds. Within this picture all specific characteristics of
the force fields are loaded into parameters of the (effective) Ham-
iltonian, which are numbers specific either for a given atom in
certain hybridization state or for a pair of such hybridization states
of atoms—ends of the bond. Although the density ESPs can be
considered as constants independent of any details of molecular
composition or geometry, the force fields that are basically sums of
products of ESPs by matrix elements of the molecular Hamiltonian
are geometry dependent and composition specific. The force fields
thus obtained are expected to be the same for the same composi-
tion of the bond and to depend weakly (to the extent of the
variance of the �m1 parameters) on the environment. These prop-
erties are basically much more than necessary for substantiating
the MM-like description.

Conclusions

In the present article we discussed the problem of deriving the MM
representation of the molecular PES from a relevant QM descrip-
tion. Using the SLG wave function we analyzed the ESPs related
to bond geminals and to hybridization tetrahedra. It was shown that
the bond-related parameters can be represented as functions of
parameters of the MINDO/3 Hamiltonian in the HO basis, trans-
ferable from one molecule to another. The functional form of the
ESPs found is valid at arbitrary interatomic separations. At the
interatomic separations close to the equilibrium bond lengths char-
acteristic for the MM-like treatments, two approximations, both
suitable for substantiation of the ESPs transferability, were con-
sidered. One is the fixed geminal amplitudes approximation, which
results in perfectly transferable numbers, referring to the ESPs in
question. Another, more precise, is the tuned geminal amplitudes
approximation, which takes into account small corrections to the
invariant ESPs. Two small parameters characterizing specificity of
the bond and effects of its environment were introduced. By this
the whole manifold of quantum chemical parameters defining the

effective bond Hamiltonian boils down to only two relevant pa-
rameters, �m

�1 and �m. The presence of such, only two-dimen-
sional manifold and smallness of the parameters, for a wide range
of bonds in quite different environments essentially explains the
transferability of the density-related ESPs. This allows for a family
of mechanistic models describing molecular PESs in terms of
hybridization tetrahedra with interactions dependent on distances
between their centers and on mutual orientations. Linear response
relations for variation of hybridization parameters due to elonga-
tion of chemical bonds or specific changes of valence angles are
considered. They allow exclusion of the angular variables describ-
ing the shapes and orientations of hybridization tetrahedra, and to
represent the molecular energy in both the FA and TA approxi-
mations as that of the system of interacting point masses46 (“balls
and springs” picture), depending on the molecular geometry only.
This energy has a form of a sum of local (bond) increments
corresponding to the force fields of the standard MM. The esti-
mates of the parameters of these force fields coming from the
analytical expressions are compared with those obtained in numer-
ical experiments showing the high accuracy of analytical esti-
mates. The reasons for this possibility are the transferability of the
bond-related ESPs and the linear response relations for the hybrid-
ization tetrahedra. They both are numerically tested for their pre-
cision.

The results obtained provide both the theoretical proof and
numerical support to the constructs of the QM/MM junction given
in refs. 8 and 30. Although some direct interest to using semiem-
pirical methods as QM components of the hybrid QM/MM meth-
ods is reported in the literature,47–50 the main goal reached by the
present work is to develop a general theoretical framework poten-
tially applicable to a more refined QM method and to provide at
least the most simple numerical implementation for this frame-
work. The feasibility of the proposed approach for the nonempiri-
cal techniques is highly probably justified by analysis given in ref.
51, which shows the existence of an “effective” minimal basis
(actually of the core and valence type) of one-electron states—
effective hybrid orbitals as extracted from the Hartree–Fock cal-
culations in the DZP or even TZP basis—and practically account-
ing for the whole electronic structure of the molecule at hand.
Also, the success of the schemes permitting to perform decompo-
sition of the total energy into local (atomic and diatomic) contri-
butions is to be mentioned in this connection.52,53 This gives hope
that the criteria for the QM method possibly underlying the MM-
like description of the molecular PES can also be satisfied by
certain ab initio methods.

Acknowledgments

This work was completed during the stay of A.M.T. in the RWTH
Aachen in the frame of the Alexander von Humboldt Postdoctoral
Fellowship, which is gratefully acknowledged, as is the kind
hospitality of Prof. R. Dronskowski. The authors are grateful to the
referees for valuable comments. A.L.T. gratefully acknowledges
valuable discussions with Profs. I. A. Misurkin and N. F.
Stepanov. Prof. I. Mayer read the final version of the present article
and gave valuable comments and suggestions, which is gratefully
acknowledged.

504 Tokmachev and Tchougréeff • Vol. 26, No. 5 • Journal of Computational Chemistry



References

1. Dashevskii, V. G. Conformations of Organic Molecules; Khimiya:
Moscow, Russia, 1974.

2. Burkert, U.; Allinger, N. Molecular Mechanics; ACS: Washington,
DC, 1982.

3. Goedecker, S. Rev Mod Phys 1999, 71, 1085.
4. Wu, S. Y.; Jayanthi, C. S. Phys Rep 2002, 358, 1.
5. Warshel, A.; Levitt, M. J Mol Biol 1976, 103, 227.
6. Gao, J. In Reviews in Computational Chemistry; VCH Publishers,

Inc.: New York, 1996.
7. Sherwood, P. In Modern Methods and Algorithms of Quantum Chem-

istry; Grotendorst, J., Ed.; NIC Series, 3, John von Neumann Institute
for Computing: Jülich, 2000.
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