
 21 

Chapter 2 

 

Dramatic Performance Enhancements for the FASTER 

Optimization Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

The text of this chapter was adapted from a manuscript coauthored with  
Stephen L. Mayo. 
 

Allen, B. D.; Mayo, S. L., Dramatic performance enhancements for the FASTER 
optimization algorithm. Journal of Computational Chemistry 2006, 27 (10), 1071–1075. 
 



 22 

Abstract 

 FASTER is a combinatorial optimization algorithm useful for finding low-energy 

side-chain configurations in side-chain placement and protein design calculations.  We 

present two simple enhancements to FASTER that together improve the computational 

efficiency of these calculations by as much as two orders of magnitude with no loss of 

accuracy.  Our results highlight the importance of choosing appropriate initial 

configurations, and show that efficiency can be improved by stringently limiting the 

number of positions that are allowed to relax in response to a perturbation. The changes 

we describe improve the quality of solutions found for large-scale designs and allow 

them to be found in hours rather than days.  The improved FASTER algorithm finds low-

energy solutions more efficiently than common optimization schemes based on the dead-

end elimination theorem and Monte Carlo.  These advances have prompted investigations 

into new methods for force field parameterization and multiple state design. 
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Introduction 

Computer programs for protein design and structure prediction typically include a 

module used to optimize side-chain coordinates in the context of fixed backbone 

coordinates.   To perform this type of calculation, side-chain conformations (rotamers) of 

one or more amino acid types are oriented onto each residue position, and all possible 

pairwise rotamer-backbone and rotamer-rotamer interaction energies are calculated using 

a molecular mechanics force field.  This system of interactions is then optimized to find a 

rotamer configuration of low molecular mechanics energy.   The difficulty of finding the 

lowest-energy configuration increases dramatically with the number of positions 

designed and the number of rotamers allowed at each position.1  Useful optimization 

strategies include Monte Carlo with simulated annealing (MC),1–4 methods based on dead-

end elimination (DEE),5, 6 methods based on self-consistent mean field theory,1, 7 genetic 

algorithms,1, 8, 9 and the FASTER method.10  The DEE-based methods have proven 

especially useful because they ensure that the global minimum energy configuration 

(GMEC) is identified when they converge.5 This feature allows researchers to conclude 

with certainty that any deviations between simulation and experiment are due to problems 

with the energy functions or simulation model, and are not the result of incomplete 

optimization.   However, current DEE-based algorithms often fail to converge to a single 

solution when challenged with difficult optimization problems.6  For this reason, we have 

begun to favor the FASTER algorithm described by Desmet, Spriet, and Lasters10 for 

difficult designs.  

Like Monte Carlo, FASTER is a stochastic optimization algorithm that makes 

perturbations to intermediate solutions and keeps the improvements that it finds.  
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However, FASTER discovers low-energy solutions far more efficiently, and frequently 

finds the GMEC as determined by DEE-based algorithms.   In cases for which DEE does 

not converge, it cannot be determined whether or not the solution produced by FASTER 

is optimal.  We typically treat these cases by running many FASTER trajectories in 

parallel with different random number seeds until the lowest-energy solution has been 

found multiple times.  At this point the solution is considered satisfactory; we refer to 

such a solution as a FASTER-determined minimum energy configuration (FMEC).  This 

procedure can be time-consuming for problems with many positions and many rotamers 

at each position.  In this paper we present two simple modifications to the published 

FASTER algorithm that improve the efficiency with which it finds FMEC solutions by as 

much as two orders of magnitude.   In our laboratory, this improvement has reduced the 

turnaround time for very large designs from days to hours, and has allowed us to begin 

developing new methods for force field parameterization and multiple state design.    

 

Improvements to FASTER 

Original FASTER 

As originally described,10 a FASTER optimization trajectory is computed by 

executing the following five steps in order: backbone-derived minimum energy 

configuration (BMEC), iterative batch relaxation (iBR), conditional iBR (ciBR), single 

perturbation and relaxation (sPR), and double perturbation and relaxation (dPR).  The 

output rotamer configuration of each step is used as input for the next, as follows.  

BMEC: Generate a starting rotamer configuration by choosing the rotamer at each 

position with the most favorable interactions with the backbone; rotamer-rotamer 
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interactions are ignored.  iBR: At each position, find the best rotamer in the context of the 

input configuration at all other positions.  Simultaneously update the rotamers at every 

position after all positions have been considered.  Repeat until convergence or cyclic 

behavior is detected.  ciBR:   Proceed as in iBR, but randomly accept the new rotamer 

found at each position with 0.8 probability. sPR:  One position at a time, perturb the 

structure by fixing a rotamer at that position, and allow all other positions to relax as in 

one round of iBR.  The resulting configuration is accepted only if it has the lowest energy 

found so far.  Pick positions for perturbation in random order.  Repeat until convergence.  

dPR: Proceed as in sPR, but perturb pairs of rotamers at different positions together.   

 

Improvement to starting configurations 

 Regarding the choice of initial rotamer configuration to use as input to FASTER, 

Desmet et al. noted that the positions of many side-chains can be accurately placed on the 

protein backbone without considering interactions with other side-chains.10   Although 

they showed that this BMEC can serve as an adequate input to FASTER for side-chain 

placement calculations, our results indicate that the BMEC is suboptimal when FASTER 

is applied to more difficult protein design problems.  Because rotamer-rotamer 

interactions are ignored, the BMEC is usually a poor solution in terms of amino acid 

sequence and energy compared to the optimized solutions found by FASTER and other 

algorithms.   Furthermore, the optimization scheme we employ involves computing many 

separate FASTER trajectories with different random number seeds; because neither the 

BMEC nor iBR are stochastic, all trajectories are identical until the ciBR step.  We 

hypothesized that FASTER would be able to find the FMEC more effectively if a pool of 
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partially optimized solutions were generated and initial configurations drawn from that 

pool. Therefore, we replace the BMEC step at the beginning of each trajectory with a 

short Monte Carlo run starting from a random configuration.  This procedure gives 

diverse starting solutions with energies significantly better than the BMEC at negligible 

computational cost.   

 

Improvement to sPR via selective relaxation 

As described above, a step of sPR or dPR involves perturbation of the rotamer 

configuration at one or two positions, followed by relaxation of all the remaining 

positions in response to the perturbation.  In general, however, only a subset of the other 

positions actually interact significantly with a perturbed position.    Thus, the time spent 

selecting a new rotamer at each of the potentially numerous uncoupled or weakly coupled 

positions is essentially wasted.  This problem can be addressed by limiting the set of 

positions that are relaxed after every perturbation to those that interact most strongly with 

the perturbed position.  The interaction between a perturbed position and a potential 

relaxing position may be assessed according to the absolute value of the pairwise 

interaction energy between the positions before the perturbation.  Before a position is 

perturbed, all the other positions are sorted into a list based on their interactions with the 

position to be perturbed. The positions to be relaxed are then chosen either by using a 

number cutoff (the n most strongly interacting positions), or an energy cutoff.  The 

optimal value for an energy cutoff depends on the magnitudes of the energies produced 

by the force field, whereas a number cutoff does not.  Therefore, we report calculations 
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performed with number cutoffs, so that our results might be more useful to researchers 

using different energy functions.   

 

Methods 

The performance of FASTER was tested on four full sequence designs using each 

method for generating initial configurations (BMEC and MC), and with the number of 

relaxing positions limited to various values of n.  We calculated designs for a 28-residue 

DNA-binding domain of mouse zinc finger Zif268 (PDB code 1AAY, residues 133–

160),11  the 34-residue WW domain from human rotamase Pin1 (1PIN, residues 6–39),12 

the 56-residue B1 domain of streptococcal protein  G (1PGA),13 and the 66-residue cold-

shock protein Bc-Csp from Bacillus caldolyticus (1C9O, chain A).14  These small, stable, 

monomeric domains have been the targets of several protein design and stability 

studies.15–18 

For each of the four designs, all nonprotein atoms and residues outside the ranges 

given above were removed; hydrogens were added using REDUCE.19  All positions were 

designated core, boundary, or surface as described previously.15  The amino acids Ala, 

Val, Leu, Ile, Met, Phe, Tyr, and Trp were allowed at core positions; Ala, Ser, Thr, Asp, 

Asn, His, Glu, Gln, Lys, and Arg were allowed at surface positions; amino acids from the 

combination of both sets were allowed at boundary positions. All positions were designed 

except those with proline or glycine in the wild-type sequence.   We used the Dunbrack 

backbone-dependent rotamer library20 with expansions of +/- one standard deviation 

around χ1 and χ2  for aromatic amino acids and around χ1 for hydrophobic amino acids.  

The average number of rotamers per position over all four designs was 212.  Pairwise 
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energies were computed using energy functions as previously described,6, 21except the 

polar hydrogen burial term was omitted.   The design choices reported here reflect the 

procedures typically used in our laboratory for full-sequence designs.    

Optimizations with FASTER were performed as follows.  First, rotamers with 

rotamer-backbone interaction energies greater than 20 kcal/mol or pairs with pairwise 

interaction energies greater than 50 kcal/mol were eliminated from consideration.6, 22  

Then, simple Goldstein DEE singles elimination was applied until no further rotamers 

could be eliminated.6, 23  The input configuration for each trajectory was either the BMEC 

or the result of a short MC run.  The MC was performed by starting with a random 

configuration and optimizing for 1 cycle of 1x106 steps using a linear temperature 

gradient from 4500 K to 150 K, followed by quenching1 of the best-energy sequence that 

was found.  iBR was applied to the input configuration until convergence, followed by 20 

cycles of ciBR.  Finally, sPR was run with a user-defined value of n until convergence.  

dPR was deemed too computationally expensive to use on all trajectories, and was only 

applied to the 10 best solutions from each calculation in order to assess whether the 

FMEC was optimal.   

For comparison with FASTER, we also optimized the designs using Monte Carlo.  

The Monte Carlo optimization was performed according to the procedure described 

above for FASTER, except that the iBR, ciBR, and sPR passes were skipped, the number 

of Monte Carlo steps was increased to 2x107, and the low temperature decreased to 0 K.  

For each design, we computed the same number of trajectories using this Monte Carlo 

procedure as we had when using FASTER.  We also attempted to optimize the designs 
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using our DEE-based hybrid exact rotamer optimization algorithm (HERO), according to 

the published procedure.6  

 

Results and discussion 

The four designs described above were each optimized using 10 different combinations 

of parameters. We tested values of n (the number of positions to relax) from the set (5, 

10, 15, 20, N), where N is the total number of positions in the protein.  For each n tested, 

we tried FASTER starting from the BMEC solution, and also starting from solutions 

generated by MC.  Starting from the BMEC and setting n = N corresponds to FASTER as 

originally reported by Desmet et al.10  For each of the four designs, and for each of the 10 

parameter combinations tested, we computed 2000 separate FASTER trajectories (8000 

for 1AAY).  The results of these calculations are presented in Table 1.  

Whereas a typical FASTER run might comprise 100 trajectories, here we 

examined at least 2000 in each case to more accurately assess how easily the FMEC 

could be found.  In particular, we note that when using the original FASTER procedure 

(BMEC and n = N) for 1AAY, as few as 0.01% of the trajectories actually found the 

FMEC.  In this case, the probability of finding the FMEC during a standard run of 100 

trajectories approaches zero.   
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Table 1:  Test calculations illustrating performance enhancements for FASTER    

Design  n a  # FMECb  % FMECc  t (minutes)d  

(((min(minute

s) 

 Se  x f  

  BMEC MC BMEC MC BMEC MC BMEC MC BMEC MC 

1AAY 5 4 29 0.05 0.36 0.24 0.25 485 69 14 98 

 10 5 42 0.06 0.53 0.38 0.41 604 79 11 86 

 15 5 41 0.06 0.51 0.53 0.59 848 114 8 59 

 20 4 23 0.05 0.29 0.69 0.74 1370 257 5 26 

 N=28 1 25 0.01 0.31 0.85 0.85 6780 273 1 25 

1PIN 5 112 53 5.60 2.65 0.26 0.22 5 8 15 9 

 10 113 71 5.65 3.55 0.37 0.36 7 10 11 7 

 15 105 77 5.25 3.85 0.50 0.47 10 12 7 6 

 20 98 87 4.90 4.35 0.60 0.56 12 13 6 6 

 N=34 23 65 1.15 3.25 0.82 0.74 71 23 1 3 

1PGA 5 0 9 0.00 0.45 1.9 1.7  378  16 

 10 10 73 0.50 3.65 3.1 2.8 620 77 10 78 

 15 10 110 0.50 5.50 4.6 4.0 920 73 7 83 

 20 21 110 1.05 5.50 6.2 5.2 590 95 10 63 

 N =56 4 116 0.20 5.80 12.0 14.0 6000 241 1 25 

1C9O 5 0 12 0.00 0.60 1.3 1.4  233  99 

 10 1 26 0.05 1.30 2.0 1.8 4000 138 6 166 

 15 2 35 0.10 1.75 3.0 2.6 3000 149 8 155 

 20 1 36 0.05 1.80 3.9 3.2 7800 178 3 129 

 N=66 1 54 0.05 2.70 11.5 8.8 23000 326 1 71 
a The number of positions relaxed after every perturbation during sPR 
b The number of trajectories that found the FMEC 
c The percent of trajectories that found the FMEC.  The total number of trajectories 
attempted was 8000 for 1AAY and 2000 for all others. 
d The time in processor-minutes required to compute a single trajectory, averaged over all 
trajectories in the run 
e The score S, representing the number of processor-minutes required, on average, to find 
the FMEC once.  Calculated as S = t / f, where f is the fraction of trajectories that found 
the FMEC.  Smaller values are better.  “—” indicates that S is undefined because f = 0.   
f The multiplicative factor of improvement compared to the original FASTER protocol 
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Each combination of parameters may be compared via the score S = t / f, where t 

is the average number of processor-minutes required to compute a single trajectory, and f 

is the probability that a trajectory would find the FMEC, estimated using the data in 

Table 1.  Thus, S represents the number of processor-minutes it would take, on average, 

to find the FMEC once; smaller values are better.   Using this score as our metric, an 

improvement in efficiency may occur due to an increase in the fraction of trajectories that 

find the FMEC, or a decrease in the average convergence time per trajectory, or both.   

Table 1 clearly illustrates the utility of starting with an MC solution rather than 

with the BMEC; when n = N, the improvements in efficiency x observed on switching to 

MC range from a factor of 3 (1PIN) to a factor of 71 (1C9O).  Improvements in this 

range are also observed for most other values of n we tested; notable exceptions are the 

1PIN designs with smaller values of n, for which the BMEC was more effective.  In each 

case, the observed improvements in efficiency when using MC were predominantly due 

to the greater fraction of trajectories that found the FMEC.  For each trajectory, the 

running time was dominated by the sPR step, and the additional cost of MC was 

negligible.   

With the choice of BMEC/MC held constant, observed changes in f due to the 

reduction of n from N to (20,15,10) have different magnitudes and signs in the four 

designs.  However, the average time t required to complete a single trajectory was always 

reduced, typically by a factor of 3–5 when n = N is compared with n = 10.  Thus, 

significant improvements in the computational efficiency S were always observed when 

reducing n to the range of 10–20.  For 1PGA and 1C9O when n = 5, the FMEC was never 

found when the BMEC was used as an input structure; we therefore avoid the use of n 
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smaller than 10.   Although we have not systematically evaluated parameter combinations 

for designs larger than 66 positions, we do not anticipate problems using values of n in 

the range of 10–20 for larger designs.   

The overall performance of FASTER is dramatically improved when both 

enhancements are used together.  When using MC instead of the BMEC and with n = 10, 

the computational efficiency S of the 1AAY calculation was improved compared to the 

original FASTER by a factor of 86.  Optimizations for the other designs 1PIN, 1PGA, 

and 1C9O were improved by factors of 7, 78, and 166, respectively.   We note that this 

improvement in efficiency is not only a convenience.  Because users have limited time 

and computer resources, they will rarely be able to compute as many trajectories for a 

given design as we describe in this paper.  Thus, the improvements allow protein 

designers to find solutions that are better than those they would have found with the 

original FASTER protocol, and not merely to find the same solutions more rapidly.   

In an attempt to show that the FMEC solutions found by FASTER were optimal, 

we performed DEE-based optimizations using HERO.  HERO converged for the 1PIN 

design, yielding a sequence and energy identical to the FMEC found by the FASTER 

trajectories; the other three HERO calculations failed to converge, and so the optimality 

of the FMEC solutions for the 1AAY, 1PGA, and 1C9O designs is not known.  We also 

tested the optimality of the FMEC solutions by applying dPR until convergence to the top 

ten solutions found in every FASTER calculation.  In no case did this dPR optimization 

yield a better solution than the FMEC, giving us further confidence that the FMECs used 

to generate the values in Table 1 are the best solutions that FASTER can provide.   
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To determine whether the improved FASTER procedure we describe performs 

better than when Monte Carlo is used alone, we repeated the optimizations with a more 

extensive MC section and with the FASTER-specific passes omitted, as described above.  

Table 2 shows that the improved FASTER algorithm is able to find the FMEC solution 

for each design much more frequently than MC alone, even though the MC trajectories 

used somewhat more processor time than the FASTER trajectories.  Notably, the pure 

Monte Carlo procedure was never able to find the FMEC for the 1PGA design.  For the 

1AAY, 1PIN, and 1C9O designs, the improved FASTER algorithm was more efficient 

than Monte Carlo alone by factors of 10, 7, and 8, respectively.  Interestingly, the 

improvement factors reported in Table 2 also indicate that Monte Carlo is actually more 

powerful for these three designs than the original FASTER algorithm.  Nevertheless, the 

improved FASTER procedure we report is clearly preferable for all four designs.   
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Table 2:  Comparison of the improved FASTER to Monte Carlo  

Design  Opta  # FMECb  % FMECc  t (minutes)d  

(((min(minutes

) 

 Se  x f  

  w/ g w/o g w/  w/o  w/  w/o  w/  w/o  w/ w/o 

1AAY Monte 12 10 0.15 0.1

3 

1.13 1.25 753 1000 9 7 

 Faster 42 25 0.53 0.3

1 

0.41 0.90 78 288 86 24 

1PIN Monte 53 26 2.65 1.3

0 

1.28 1.43 48 110 1 1 

 Faster 71 66 3.55 3.3

0 

0.36 0.80 10 24 7 

 

3 

1PGA Monte 0 0 0.00 0.0

0 

3.63 3.73     

 Faster 73 80 3.65 4.0

0 

2.80 5.05 77 126 78 48 

1C9O Monte 11 6 0.55 0.3

0 

5.68 5.70 1033 1900 22 12 

 Faster 26 17 1.30 0.8

5 

1.80 3.92 138 461 166 50 

a The optimization strategy that was used.  Monte:  pure MC trajectories as described in 
Methods.  Faster: FASTER trajectories as described in Methods; the number of 
interacting residues in sPR was limited to 10, and the BMEC step was replaced with MC. 
The total number of trajectories attempted for both Monte and Faster was 8000 for 1AAY 
and 2000 for all other designs.   
b–e See Table 1.    
f The multiplicative factor of improvement compared to data for the original FASTER 
protocol reported in Table 1 
g  Indicates whether or not Goldstein singles elimination was performed before the other 
optimization steps.   

 

The improved FASTER algorithm and Monte Carlo were also assessed without 

the pre-elimination of singles by Goldstein DEE.  Table 2 shows that the DEE step 

significantly improved the convergence times of FASTER trajectories, and slightly 

improved the convergence times for the MC trajectories.  Furthermore, the use of DEE 

typically increased the fraction of trajectories that found the FMEC for both FASTER 

and MC, improving overall efficiency by a factor of 2–4 for FASTER and by close to 2 in 
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one case for MC.  We conclude that the pre-elimination of singles by Goldstein DEE is a 

worthwhile enhancement to these optimization strategies.   

 

Conclusions 

 FASTER is a stochastic optimization algorithm that can efficiently find low-

energy solutions to difficult protein design problems.  We report two simple 

enhancements to FASTER that together result in up to two orders of magnitude better 

computational performance with no loss of accuracy.  The first improvement replaces the 

backbone-derived initial configuration with a short Monte Carlo run.  The second 

improvement limits the number of relaxing positions in the perturbation and relaxation 

steps to a fixed value.   The dramatic performance enhancements provided by these 

changes make FASTER significantly more powerful than alternative methods, and allow 

better solutions to be found more quickly for larger, more complex designs.  We expect 

the improved algorithm to facilitate the development of next-generation protein design 

tools that treat multiple states and explicit backbone flexibility.    
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