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Abstract

Loop closure in proteins requires computing the values of the inverse kinematics (IK)
map for a backbone fragment with 2n ≥ 6 torsional degrees of freedom (dofs). It occurs
in a variety of contexts, e.g., structure determination from electron-density maps, loop
insertion in homology-based structure prediction, backbone tweaking for protein energy
minimization, and study of protein mobility in folded states. The first part of this paper
analyzes the global structure of the IK map for a fragment of protein backbone with 6
torsional dofs and a slightly idealized kinematic model, called the canonical model. This
model, which assumes that every two consecutive torsional bonds Cα–C and N– Cα are
exactly parallel, makes it possible to separately compute the inverse orientation map and
the inverse position map. The singularities of both maps and their images, the critical sets,
respectively decompose SO(3) and R3 into open regions where the number of IK solutions
is constant. This decomposition leads to a constructive proof of the existence of a region
in R3×SO(3) where the IK of the 6-dof fragment has 16 solutions. The second part of this
paper extends this analysis to study fragments with more than 6 torsional dofs. It describes
an efficient recursive algorithm to sample IK solutions for such fragments, by identifying
the feasible range of each successive torsional dof. A numerical homotopy algorithm is then
used to deform the IK solutions for a canonical fragment into solutions for a non-canonical
fragment. Computational results for fragments ranging from 8 to 30 dofs are presented.

Keywords: Protein backbone, inverse kinematics, loop closure, singularity analysis, con-
formation space sampling, homotopy algorithm.

1 Introduction

A protein is a long sequence of amino-acids connected by peptide bonds [6]. Under normal
physiological conditions, bond lengths and angles, as well as dihedral angles around peptide
bonds are usually assumed constant at their equilibrium values. A protein is then modeled as
a serial articulated linkage – the protein’s backbone – with short side-chains protruding from
it. In this paper, we will focus on the serial linkage formed by the backbone. Each amino-acid
contributes three atoms – N, Cα, and C – and two torsional degrees of freedom (dofs) to it.
These dofs correspond to changes in the values of the dihedral angles around the N –Cα and
the Cα– C bonds. See Figure 1. These angles are commonly referred to as the φ and ψ angles,
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respectively. Hence, the backbone of a protein formed by r amino-acids has 2r dofs. The
study of the kinematics of a protein backbone – i.e., the study of its intrinsic mobility without
regard to the forces needed to actually create motion – has attracted considerable interest
(e.g., [5, 12, 13, 14, 25]), in particular to compute protein conformations subject to geometric
constraints. Of special interest is the inverse kinematics (IK) problem for a backbone fragment.
This problem is also known as the loop closure problem [2, 5, 12, 24].

Let F be a backbone fragment with 2n dihedral angles θ = (θ1, · · · , θ2n), n ≥ 3, where each
θi is either a φ or a ψ angle. One terminus (usually a pair of atoms) of F is considered fixed
and the other mobile. We attach a Cartesian frame W (for “world”) to the fixed terminus
and another frame T (for “tool”) to the mobile terminus. The forward kinematics of F is the
function f that maps each value θ to the pose (position and orientation) of T relative to W .
The inverse kinematics f−1 of F maps every pose c of T to the corresponding values of θ. The
IK problem is defined as follows: given c, compute the values of θ. In this paper, we consider
the two cases where n = 3 and n > 3.

Case where n = 3: It is well known that for a 6-dof fragment F the number of values of
f−1(c) is finite and upper bounded by 16 (as they are the zeros of a monovariate polynomial
of degree 16) [5, 13]. However, it has recently been questioned whether this bound is tight [5,
8, 24]. Algorithms are available to compute the values of f−1 when n = 3, for instance the
elegant analytical method developed in [5], but they only return the values of f−1 for given
poses of T .

Each pose of T is a point in the 6-D manifold R3 × SO(3), where SO(3) is the group of
3 × 3 rotation matrices. One goal of this paper is to analyze the global structure of f−1 over
R3 × SO(3). This leads us to study the singularities of the forward kinematics function f ,
that is, the values of θ where the Jacobian of f looses rank. The set of singularities of f (the
singular set of f) maps to a set of critical poses of T (the critical set of f). According to the
Morse-Sard theorem [11, 16], the critical set of f decomposes R3× SO(3) into regular regions,
such that over each such region f−1 keeps a constant number of values.

However, any decomposition of a 6-D space into regions can be extremely complex. So, here
we proceed as follows, with a slightly idealized kinematic model, which we call the canonical
model of F . First, we break the forward kinematics map into the position and the orientation
maps. Next, we show that the orientation map has a relatively simple inverse, which leads to
a simple region decomposition of the 3-D manifold SO(3). Finally, we establish the inverse
position map on the restricted domain of θ defined by the inverse orientation map. For each
possible orientation of T , we decompose R3 into regular regions over which the structure of
the inverse position map remains constant. As we will see, the critical set of the position map
turns out to be an unexpectedly complicated 2-D surface in R3.

A key outcome of this study is that, when n = 3, f−1 actually has 16 values over at
least one small region of R3 × SO(3). Moreover, the way this result is obtained can be used
to construct poses of T in this region. This outcome is not completely surprising, since the
conditions under which the IK of a 6-dof serial linkage has less than 16 solutions have been
established in [15, 19] and a 6-dof fragment of a protein backbone does not satisfy any of them.

Case where n > 3: When F contains more than 6 dihedral angles, it can deform while
keeping its two termini fixed. For a given reachable pose c of T , the conformational space of
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F is then a (2n− 6)-D manifold, which is often called the self-motion manifold of F at c [1].
Several applications in biology, e.g., loop insertion in protein structure prediction with

homology modeling [10], backbone tweaking for energy minimization [21], analysis of loop
and backbone mobility in folded states [4, 20], and structure determination from blurred
electron-density maps [23], require sampling conformations from self-motion manifolds. Some
existing sampling methods, like the Cyclic Coordinate Descent [2] and the Jacobian’s pseudo-
inverse [23], first pick the torsional angles in F at random and then “close” the fragment by
iteratively reducing the distance between the current pose of T and its goal pose c. But these
iterative methods tend to be rather slow and do not guarantee a good coverage of the self-
motion manifold. A more direct method, RLG (Random Loop Generator) [4], successively
samples 2n−6 torsional angles θ1 through θ2n−6 in F and then uses an IK method to compute
the remaining 6 angles. To pick the value of each angle θi, i = 1, ..., 2n − 6, RLG first com-
putes a conservative approximation of the range of values of θi that enable T to reach the pose
c, given the values already selected for θ1, ..., θi−1; next, it samples the value of θi from the
approximated range. However, RLG’s approximation is very conservative. It not only ignores
orientation reachability, but position reachability is also loosely approximated by bounding the
volumes reachable by the successive atoms in F with spherical shells. In practice, RLG has a
high failure rate, i.e., many choices of torsional angles eventually prevent T from reaching the
goal pose.

The other goal of this paper is to develop an efficient algorithm to sample self-motion
manifolds. This algorithm is based on a generalization of our analysis of the IK map f−1

when n = 3 to longer fragments F . Like RLG, our method successively picks 2n− 6 torsional
angles. However, it considers both positional and orientational reachability, and computes
a tight approximation of the feasible range of each angle, given the values already sampled
for the previous angles. Although the mathematical derivation of this approximation is not
straightforward, its computation is very fast. Computational tests show that our new algorithm
samples self-motion manifolds with a reasonably good success rate.

This paper is organized as follows. In Section 2 we present the canonical kinematic model of
a 2n-dof protein fragment, along with the notation used in the rest of the paper. In particular,
we define the forward and inverse kinematics maps, and we decompose them into position and
orientation maps. Next, in Sections 3–5, we consider the case where n = 3. In Sections 3 and 4,
we analyze the structures of the inverse orientation and position maps, respectively, in that
case. In Section 5, we establish the existence of a region in R3×SO(3) where f−1 has 16 distinct
values. We show one instance of a pose of T in this region, along with its 16 inverse kinematics
solutions. In Section 6, we extend our IK analysis to study longer backbone fragments (n > 3)
with non-canonical kinematics. This extension leads to an efficient algorithm for sampling the
self-motion manifold of a 2n-dof fragment F when n > 3. A numerical homotopy algorithm
is used to deform the IK solutions sampled for a canonical fragment into solutions for a non-
canonical fragment.
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Figure 1: Linkage model of a 6-dof fragment of a protein backbone

2 Kinematic Model of a Protein Fragment

2.1 Linkage model

Consider a 2n-dof fragment F of a protein backbone (Figure 1), in which all non-constant
dihedral angles (φ and ψ) are comprised between two Cα atoms. We denote the successive
atoms of F by C1

α, C1, N2, C2
α, ..., Cn, Nn+1, Cn+1

α . We assume that bond lengths and bond
angles are constant, and that the dihedral angle ω around each peptide bond is constant and
equal to π [6]. The 2n dofs of F correspond to the dihedral angles φ around the bonds Ni–Ci

α,
for i = 2, . . . , n + 1 and the dihedral angles ψ around the bonds Ci

α–Ci, for i = 1, . . . , n. In
the following, we denote the angle φ around Ni– Ci

α by θ2i−2 and the angle ψ around Ci
α–Ci

by θ2i−1. So, we parameterize each conformation of F by θ = (θ1, . . . , θ2n). So, each angle θi

with an even (resp. odd) subscript is a φ (resp. ψ) angle.
We idealize the kinematic model of F slightly more, by assuming that every two consecutive

torsional bonds Ci
α–Ci and Ni+1–Ci+1

α are exactly parallel. This corresponds to assuming equal
bond angles ∠(Ci

αCiNi+1) and ∠(CiNi+1Ci+1
α ). We also assume that bond lengths and bond

angles have the same values in all residues. We refer to this idealized model as the canonical
model of F .

For convenience, but with no additional simplification, we then replace the representation
of Figure 1 by the kinematically equivalent model of Figure 2, in which F is a sequence of n
identical units, each made of two perpendicular links, a “long” one of length `2 and a “short”
one of length `1. We number the links 1, 2, . . . , 2n, so that each link 2i − 1 is a long link and
each link 2i is a short link. Each long link 2i− 1 originates at atom Ci

α, and each short link 2i
ends at atom Ci+1

α . Angle θ2i−1 rotates short link 2i about long link 2i−1. So, each short link
moves in a plane perpendicular to the preceding long link. Angle θ2i rotates long link 2i + 1
about an axis parallel to long link 2i − 1 and passing through the extremity of short link 2i.
Link 2i + 1 makes a constant angle α = ∠(Ni+1Ci+1

α Ci+1)−90◦ with the plane perpendicular
to link 2i− 1.

We add a long link 2n + 1 at the end of F . This is the only link in F whose orientation
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Figure 2: Canonical model of a 6-dof backbone fragment

depends on θ2n. However, the torsional angle around it is not considered to be part of F .
The specific values chosen for the bond angles ∠(Ci

αCiNi+1) and ∠(CiNi+1Ci+1
α ) and for α

are not important for the rest of this paper. They can easily be changed in our software. The
computational results shown in this paper (except those presented in Section 6.2, where we
extend our methods to non-canonical fragments) have been obtained with ∠(Ci

αCiNi+1) and
∠(CiNi+1Ci+1

α ) set to 120◦, α set to 19◦ (hence, ∠(NiCi
αCi) = 109◦ for all i), and `1 and `2

respectively set1 to 1.1518Å and 3.665Å.

2.2 Forward kinematics

We attach a Cartesian frame to each link, as shown in Figure 2. The origin of frame 2i− 1 is
positioned at the extremity of long link 2i − 1, with its z-axis pointing along this link. The
origin of frame 2i coincides with the extremity of short link 2i, its z-axis is parallel to the
z-axis of frame 2i − 1 and its x-axis points along the short link 2i. Each angle θi rotates the
frame i + 1 with respect to the frame i, hence has no effect on the orientation of the frame i.
So, we consider frame 1 as fixed and we select it as the “world” frame W . We select frame
2n + 1 as the “tool” frame T .

We represent the pose of frame i relative to W by a position vector, pi ∈ R3, the origin of
this frame in W , and a rotation matrix Oi, its orientation in W . The rotation matrix is an
element of the group SO(3) defined by:

SO(3) := {A ∈ R3×3 | AT A = I3×3, det(A) = 1}.
1The lengths `1 and `2 are derived from the standard bond lengths 1.47Å, 1.53Å, and 1.33Å for the bonds

N-Cα, Cα-C, and C-N, respectively.
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We have:

O1 = I3×3,

O2i = O2i−1R2i−1,

O2i+1 = O2iR2iL,

where:

Ri =




cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1


 and L =



− sin(α) 0 cos(α)

0 −1 0
cos(α) 0 sin(α)


 .

Notice that L2 = I3×3, hence L−1 = L. Moreover LT = L.
Thus

O2i+1 = R1;2LR3;4L · · ·LR2i−1;2iL,
O2i = R1;2L · · ·LR2i−1,

where Ri;j = RiRj .
The forward kinematics of F is the function f that maps each θ ∈ (S1)2n, where S1 denotes

the unit circle, to the pose f(θ) of T relative to W , where f(θ) ∈ R3×SO(3). This map is the
product (p, ρ) of a position map p:

p : (S1)2n → R3, θ →
∑

i≤n

O2i+1v1 +
∑

i≤n

O2iv2,

where v1 = [0, 0, `2]T and v2 = [`1, 0, 0]T , and an orientation map ρ:

ρ : (S1)2n → SO(3), θ → O2n+1.

2.3 Inverse kinematics

This paper studies the structure of the inverse kinematics map f−1 = (p, ρ)−1 that maps points
of R3 × SO(3) to subsets of (S1)6. Noticing that for any (X,R) ∈ R3 × SO(3):

(p, ρ)−1(X, R) = p−1(X) ∩ ρ−1(R),

we proceed in two steps. First, we derive the inverse orientation map ρ−1 : SO(3) → (S1)6

mapping points of SO(3) to subsets of (S1)6 of the form Σ× (S1)3, with Σ a finite set. Next,
we compute the inverse position map p−1

M (X), where pM is the forward position map p with
its domain restricted to the manifold M = σ × (S1)3 for individual points σ ∈ Σ. The next
three sections only consider the case where n = 3.

3 Inverse Orientation Map (n = 3)

In this section, we study the structure of the inverse orientation map ρ−1 over SO(3) when
n = 3. We first reduce the number of parameters of ρ to obtain a reduced orientation map
ρ̂. We then study the singular set of ρ̂ and its image, the critical set. The main outcome of
this section is that, for every non-critical orientation R of T , ρ−1(R) is either empty or is the
disjoint union of two 3-D tori. For every critical orientation R, ρ−1(R) forms a single 3-D torus
or, in one special case, a 4-D torus.
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3.1 Reduction

It follows from Subsection 2.2 that the forward orientation map ρ of a 6-dof fragment is:

ρ : (S1)6 → SO(3), θ → R1;2LR3;4LR5;6L.

We notice that the 6 dihedral angles θ1, ..., θ6 appear by pairs θ2i−1 + θ2i. So, we write τi =
θ2i−1 + θ2i, i = 1, 2, 3, and τ = (τ1, τ2, τ3). When θ runs over (S1)6, τ runs over the 3-D torus
(S1)3.

The orientation map ρ factors as the composition of two maps denoted (+) and ρ̂:

ρ = ρ̂ ◦ (+) : (S1)6 → (S1)3 → SO(3)

where:

(+) : (S1)6 → (S1)3, (θ1, ..., θ6) → (θ1 + θ2, θ3 + θ4, θ5 + θ6)

and

ρ̂ : (S1)3 → SO(3), τ → Rτ1LRτ2LRτ3L,

with:

Rτi =




cos(τi) − sin(τi) 0
sin(τi) cos(τi) 0

0 0 1


 .

Given R ∈ SO(3), the values of ρ̂−1(R) are the solutions of:

ρ̂(τ) := Rτ1LRτ2LRτ3L = R.

Since L is a constant matrix with L = L−1, this equation is equivalent to:

ρ̂(τ)L := Rτ1LRτ2LRτ3 = RL. (1)

We notice that the matrix ρ̂(τ)L defines the orientation O6 of frame 6. Since the z-axis of
frame 6 is independent of τ3, we further reduce Equation (1) by eliminating the variable τ3,
To do this, we define the action:

Az : SO(3) → S2, R → Rz,

where z = [0, 0, 1]T . Az maps any rotation matrix R to its last column. Since every column
of R is a unit vector, Az(R) ∈ S2, where S2 denotes the unit 2-D sphere. We remark that
Az(Rτ3) = z. So, applying Az to both sides of Equation (1) yields the reduced equation:

Az(ρ̂(τ)L) := Rτ1LRτ2Lz = RLz. (2)

We can solve this equation for (τ1, τ2). The value of τ3 is then uniquely determined by the
equation:

Rτ3 = (Rτ1LRτ2L)T RL. (3)

To each solution τ = (τ1, τ2, τ3) of Equations (2) and (3) corresponds a set of values of
θ = (θ1, ..., θ6) such that θ2i−1 + θ2i = τi for i = 1, 2, 3. This set is a 3-D torus (S1)3.
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3.2 Singular set

The singularities of ρ̂ are the points in (S1)3 where the 3× 3 Jacobian matrix Jρ̂ has rank less
than 3. The Jacobian of ρ̂ is defined as Jρ̂ = [Dτ1 ρ̂, Dτ2 ρ̂, Dτ3 ρ̂]ρ̂−1, where Dτi ρ̂ is the matrix[

∂ρ̂jk

∂τi

]
. Jρ̂ maps the tangent space T (S1)3 to the Lie algebra so(3) [17]. In Appendix A, with

respect to a given basis of so(3), we compute:

Jρ̂ = [z, Rτ1Lz, Rτ1LRτ2Lz] .

We easily verify that Jρ̂ has at least rank 2 and that it has exactly rank 2 if and only if:

det(Jρ̂) = sin(τ2) cos(α) = 0.

Since cos(α) 6= 0, the (rank-2) singular set of ρ̂ is the union {τ | τ2 = 0} ∪ {τ | τ2 = π}.
This result has a simple intuitive geometric interpretation. The orientation of frame T

relative to W is the composition of three rotations of angles τ1, τ2, and τ3 around directions
parallel to long links 1, 3, and 5, respectively. These links are coplanar if and only if τ2 = 0
or π. When this is the case, no infinitesimal changes of τ1, τ2, and τ3 can rotate T around a
direction perpendicular to the plane containing links 1, 3, and 5. So, the resulting infinitesimal
changes of the orientation of T only span a 2-D subspace of the 3-D tangent space T SO(3).
Instead, whenever links 1, 3, and 5 are non-coplanar, infinitesimal changes of τ1, τ2, and τ3

result in changes of the orientation of T that span all dimensions of T SO(3).

3.3 Critical set and number of solutions

Consider the map:

η : (S1)3 → S2, τ → Az(ρ̂(τ)L) := Rτ1LRτ2Lz,

which appears in the left-hand side of Equation (2). It has the same singular set {τ | τ2 =
0} ∪ {τ | τ2 = π} as ρ̂. Therefore, its critical set – i.e., the image by η of this singular set – is
the union of two sets C1 and C2 (see Figure 3):

• C1 is the subset of S2 spanned by Rτ1LRτ2Lz when τ2 = 0 and τ1 varies over S1.
Since (Rτ1LRτ2Lz)τ2=0 = Rτ1LLz = Rτ1z = z, C1 consists of a single point, z, which
corresponds to the situation where the z-axes of W and frame 6 are parallel. Indeed,
when τ2 = 0, the z-axis of frame 6 is parallel to the z-axis of W for any value of τ1 (recall
that the dihedral angle around every peptide bond is equal to π).

• C2 is the subset of S2 spanned by Rτ1LRτ2Lz when τ2 = π and τ1 varies over S1. We
have: (Rτ1LRτ2Lz)τ2=π = [(sin(2α) cos(τ1), sin(2α) sin(τ1), − cos(2α)]T . So, C2 is the
circle perpendicular to the z-axis and passing through the point LRπLz.

The Morse-Sard theorem, together with the compactness of (S1)3, tells us that the inverse
map η−1, hence ρ̂−1, is a fibration with a compact differentiable manifold as fiber in each of
the two open subsets of S2 bounded by C1 and C2. Likewise the transitive S1 action on C2

8



z

Lz

πLR  Lz

critical circle

 critical point

two solutions

one solution

empty

 a circle of solutions

τ 2
LR   Lz

Figure 3: Critical set of η

given by Rτ1 shows that η restricted to η−1(C2) is also a fibering over C2. To determine the
exact structure of η−1 in these four regions, we notice that:

L(LRτ2Lz) = [cos(α) cos(τ2), cos(α) sin(τ2), sin(α)]T .

So, LRτ2Lz is a circle perpendicular to Lz that is fully contained in the subset of S2 between
C1 and C2, except at τ2 = 0 and τ2 = π where it coincides with C1 and C2, respectively (see
Figure 3). For any fixed τ1 ∈ S1, the set Rτ1LRτ2Lz is the circle obtained by rotating LRτ2Lz
by τ1 around the z axis. Therefore, for every point s in the region between C1 and C2, the
circle Rτ1LRτ2Lz contains s for two distinct values of τ1. Hence, η−1 has two values (τk

1 , τk
2 ),

k = 1, 2. In C1, s = z and the set of values of η−1(s) is {(τ1, 0) | τ1 ∈ S1}. For any s ∈ C2,
η−1(s) has a single value of the form (τ1, π). When s is “below” C2, the set of values of η−1(s)
is empty.

Corresponding to each value (τ1, τ2) of η−1(s) there is a unique value of τ3 given by Equa-
tion (3), hence a single value of ρ̂−1(R).

Thus, for every R ∈ SO(3) such that the orientation of the z-axis of O6 is in the subset of
S2 between C1 and C2, the set of values of ρ−1(R) is the disjoint union of two 3-D tori. For
every R such that the orientation of the z-axis of O6 is in C2, ρ−1(R) consists of a single 3-D
torus. For every R such that the orientation of the z-axis of O6 is in C1, ρ−1(R) is a 4-D torus.
For all other R, ρ−1(R) is empty. On each 3-D torus of ρ−1(R), every θ2j−1 + θ2j , j = 1, 2, 3,
is constant.

4 Inverse Position Map

We now study the structure of the inverse position map p−1 for a given orientation R ∈ SO(3)
of the frame T such that ρ−1(R) is neither empty nor a 4-D torus, i.e., consists of one or
two 3-D tori. Let M be one of these tori. We consider the position map pM restricted to M .
Rather than studying the singular set of pM , we directly determine the critical set of pM by
studying the positions X ∈ R3 where the number of values of p−1

M changes. We then compute
the decomposition of R3 by this critical set.
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4.1 Restriction to ρ−1(R)

From Subsection 2.2 we derive the forward position map p for a 6-dof protein fragment:

p : (S1)6 → R3, θ → (R1;2L + R1;2LR3;4L + R1;2LR3;4LR5;6L)v1

+(R1 + R1;2LR3 + R1;2LR3;4LR5)v2.

Since all τj = θ2j−1 + θ2j , j = 1, 2, 3, are constant on M , each point on M is uniquely defined
by the values of θ1, θ3, and θ5. Hence:

pM : (S1)3 → R3, (θ1, θ3, θ5) → vM + (R1 + Rτ1LR3 + Rτ1LRτ2LR5)v2,

where vM = (Rτ1L+Rτ1LRτ2L+Rτ1LRτ2LRτ3L)v1 is a constant vector. We notice that R1v2,
Rτ1LR3v2, and Rτ1LRτ2LR5v2 are three circles that have the same radius `1, but lie in three
different planes (except when τ2 = 0). In any case, the image of (S1)3 by pM is the Minkowski
sum of these three circles translated by vM .

Given any X ∈ R3, solving the inverse kinematics p−1
M (X) amounts to finding the solutions

of the equation:

X ′ = LR−2v2 + R3v2 + Rτ2LR5v2. (4)

where X ′ = LRT
τ1(X−vM ) and R−2 represents the rotation of−θ2 around z. To further simplify

the right-hand side of (4), we multiple both sides of the equation by Rπ/2, the rotation of π/2
around z, which leads to introducing the map p̂M as shown below:

X ′′ = p̂M (−θ2, θ3, θ5) := Rπ/2(LR−2 + R3 + Rτ2LR5)v2 (5)

where X ′′ = Rπ/2X
′. Notice that in (5) the second circle is contained in the xy-plane, while

the other two circles are arranged symmetrically with respect to the xz-plane when τ2 = π.

4.2 Critical set of p̂M

We now directly determine the critical positions X ′′ by computing where the number of values
of p̂−1

M changes.
For convenience, we rewrite Equation (5) by replacing−θ2, θ3, and θ5 by −π/2+u, −π/2+t,

and −π/2+w, respectively, and the constant τ2 by γ+π. We also normalize `1 to 1 (`2 becomes
3.1820 correspondingly) without affecting the structure of the fragment’s conformation space,
so that all three circles in the equation now have normalized radius 1. We get:

X ′′ − r(t) = q(u,w) (6)

with

r(t) =




ct

st

0


 , q(u,w) =




cu + cγcw − sαsγsw

−sαsu + sαcγsw + sγcw

cα(su + sw)


 , (7)

where c∗ and s∗ stand for cos(∗) and sin(∗).
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Figure 4: The quartic surface Q

For any given X ′′ ∈ R3, when t varies, the left-hand side of Equation (6), X ′′ − r(t),
spans a unit circle centered at X ′′. When u and w vary, the right-hand side, q(u,w), spans
a bounded and connected quartic surface Q (see Figure 4) that is the Minkowski sum of the
first and the last circles in Equation (5). Appendix B gives a detailed description of Q. So,
Equation (6) can be solved by computing the intersection points between the circle X ′′ − r(t)
and the cross-section curve of the surface Q by the plane containing this circle.

The unit vector normal to this plane is z. So, the equation of the plane containing X ′′−r(t)
can be written as:

zT q = d, (8)

where d = zT X ′′ is the last component of X ′′. We let Pd denote the plane defined by this
equation. When X ′′ varies over R3, Pd translates, but its orientation remains fixed.

By replacing q by the expression q(u,w) in (7) in Equation (8), we get the equation of the
cross-section Qd of Q by Pd in terms of u and w:

su + sw =
d

cα
. (9)

For any X ′′, the solutions to Equation (6) are obtained by computing the intersection points
between between Qd and the circle X ′′ − r(t). This amounts to solving for the (real) roots of
an 8th-order polynomial (see Appendix B). The number of real solutions is always even when
the multiplicity of the roots is taken into account, and varies between 0 and 8 as X ′′ varies
over R3.

Let dmin and dmax be the two extreme values of d, between which the plane Pd intersects
the surface Q. For any d ∈ [dmin, dmax], the values of X ′′ such that the circle X ′′ − r(w)
lies in Pd and is tangent to Qd form a curve Xd, called the discriminant curve at d. This
discriminant curve is the locus of all points where the 8th-order polynomial has at least one
multiple real root. The 2-D surface formed by the union of all the discriminant curves as d runs
over the interval [dmin, dmax] is the critical set X , i.e., X =

⋃
d∈[dmin,dmax]Xd. Figures 5 and 6

11
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Figure 5: The cross-section of Q in the plane Pd for γ = 0 and d = 0.0378
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Figure 6: The discriminant curve Xd for γ = 0 and d = 0.0378. The centers of the small squares
are the cusp points of Xd, the centers of the small circles are its self-intersection points, and
the centers of the small triangles are the vertical tangency points. A zoom on a portion of Xd

is shown in Figure 8-(a)
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in Figure 8-(b).
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Figure 8: Enlarged portions of Figure 6-(a) and Figure 7-(b) with an 8-solution region shown
in blue in each case.
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Figure 9: Graphic rendering of X for γ = 0 (one patch of X is not rendered in order to show
the interior of X )
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Figure 10: The planar region graph determined by the discriminant curve of Figure 6. The
circles depict regions and the dashed lines connect adjacent regions. The number of solutions
of the inverse position map in each region is shown in the corresponding circle.
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show a cross-section of Q. and the corresponding discriminant curve, respectively. Figure 7
displays another discriminant curve. Figure 8 contains enlarged portions of Figures 6 and 7.
These figures show that a discriminant curve can be surprisingly complicated, with several cusp
points and self-intersection points. The graphic rendering of X in Figure 9 further reveals the
complexity of X . (An animation of the cross-section of Q and the corresponding discriminant
curve when d varies is available at www.stanford.edu/~phwu1/curve in the case where γ = 0.)

4.3 Decomposition of R3 into regions

The critical set X decomposes R3 into open 3-D regions such that the inverse position map has
a constant number of values over each region. To compute this decomposition, we first compute
the decomposition of a plane Pd by Xd. Next, we partition [dmin, dmax] into open intervals, such
that over each such interval the discriminant curves Xd are homotopic to each other, i.e., keep
the same combinatorial structure determined by the cusp points and self-intersection points.
The decomposition of R3 is obtained by “stacking” the planar decompositions computed in
the successive intervals.

4.3.1 Decomposition of Pd

We use a classical plane-sweep algorithm [18] that sweeps a line L parallel to the y-axis across
the plane Pd from left to right. This algorithm constructs a set S of sub-regions and their
adjacency relation. At the start of the sweep, S is initialized to the empty set. During
the sweep, whenever L crosses a cusp point, a self-intersection point, or a vertical tangency
point, sub-regions are added to S and the adjacency relation is updated. When the sweep is
completed, adjacent sub-regions in S that are not separated by Xd are merged together into
regions that form the decomposition of Pd. The outcome is a planar region graph in which the
nodes are the computed regions and the edges represent the adjacency relation (i.e., any two
nodes connected by an edge represent two regions that are adjacent along a portion of Xd).
The number of solutions of the inverse position map increases or decreases by 2 whenever one
crosses the boundary between two adjacent regions.

Computing the cusp and self-intersection points analytically is difficult. So, we approxi-
mate the discriminant curve into a polygonal curve made of short segments and we compute
those points numerically using this approximation. Whenever the polygonal approximation
is sufficiently accurate (e.g., the maximum distance between the line segments and the dis-
criminant curve is less than 0.5ε > 0, where ε is the minimum of the radii of all regions), the
computed graph correctly predicts all regions and their adjacency relationship. The number
of distinct solutions in each region is obtained by picking any point X ′′ in this region (not too
close from its boundary) and solving Equation (6) at this point.

Figure 10 shows the region graph computed from the discriminant curve displayed in
Figures 6 and 8-(a). The nodes are drawn as circles and the edges as dashed lines. The
number of IK solutions in each region is given in the corresponding circle. An animation
of the discriminant curve and the corresponding region graph when d varies is available at
www.stanford.edu/~phwu1/curve in the case where γ = 0.
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is shown above each line segment.

4.3.2 Decomposition of R3

When d varies from −∞ to +∞, the planar region graph in Pd changes only at a finite number
of critical values of d, which we denote di, i = 1, ..., m. Over each open interval (di, di+1),
i = 0, ..., m, with d0 = −∞ and dm+1 = +∞, the discriminant curves Xd are homotopic and
so the region graph remains constant.

Let Gi be the planar region graph in interval (di, di+1). The region decomposition of R3

is obtained by merging every pair of regions from Gi and Gi+1, for all i = 0, ..., m, that are
adjacent, but not separated by X . The corresponding nodes of the planar region graphs are
also merged to obtain the region graph of the decomposition of R3. The region graph for the
case where γ = 1.3 is shown in Figure 11. In this example R3 is partitioned into 39 regions
including the one where there is no IK solution. The remaining issue is to determine the m
critical values d1, ..., dm of d. The critical set X (see Figure 9) is a 2-D surface made of smooth
patches separated by cusp and self-intersection curves. The cusp (resp. self-intersection) curves
are the locus X cusp (resp. X self) of all the cusp (self-intersection) points of the discriminant
curves Xd when d varies from −∞ to +∞. The critical values of d are contributed either by
X\(X cusp ∪ X self), or by X cusp, or by X self .

The critical values contributed by X\(X cusp ∪ X self) are simply the values of d such that
the plane Pd is tangent to X . It is not difficult to prove that this case occurs only when Pd is
tangent to the surface Q. Equation (9) of Qd yields the 3 critical values −2cα, 0, 2cα, which
define four critical circles on X (shown in red in Figure 9):

{(t, u, w) ∈ (S1)3 | cu = cw = 0, t ∈ S1}.
The computation of the critical values contributed by X cusp and X self is much more compli-
cated. Currently we perform this computation numerically.
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5 Existence of a 16-Solution Region

Theorem 1 There exists a nonempty open region in R3 × SO(3) such that for all (X, R) in
this region, (p, ρ)−1(X,R) contains 16 points.

Proof: Consider first an orientation R0 ∈ SO(3) that lies in the critical circle C2 shown in
Figure 3. The set ρ−1(R0) is a copy of (S1)3. There is a non-empty open region E0 ⊂ C2 such
that for all R in E0, p(ρ−1(R)) contains an open region U so that, for any X ∈ U , p−1(X)
contains 8 points, as shown in Figure 8. Let R′ be a non-critical orientation that is close to
E0. Then ρ−1(R′) is a disjoint union of two 3-D tori Mk, k = 1, 2. For each pMk

, there exists
a nonempty open region EMk

with 8 inverse image points. Moreover, for R′ sufficiently close
to E0, E = E1 ∩ E2 is nonempty. Then (p, ρ)−1(X,R′) has 16 solutions for all X ∈ E.

Using the idea in the proof, we constructed the following pose (X,R) of T :

X =




2.0563
4.9057
−2.3925


 and R =




0.6742 −0.3715 −0.6383
0.2378 −0.7091 0.6638
−0.6992 −0.5993 −0.3897


 ,

such that (p, ρ)−1(X, R) contains 16 solutions (for a fragment in which `1 = 1 and `2 = 3.1820).
These are shown in Figures 12. It is easily seen that the existence of 16-solution region is
independent of the link lengths as long as the short links all have the same length.

6 Generalization

In this section, we first extend the results of the previous sections to propose a recursive
algorithm that randomly samples the conformation space of a canonical protein fragment F
with 2n > 6 torsional dofs, given a fixed pose of the frame T relative to W . This algorithm
partitions F into a (2n − 6)-dof fragment and the remaining 6-dof fragment. Values of the
angles τi and θ2i−1 in the (2n−6)-dof fragment are sampled from their feasible ranges computed
using the orientation and position equations. The remaining 6 torsional angles are determined
using the results of Sections 3 and 4. In the second part of the section, we present a numerical
homotopy algorithm that deforms conformations sampled for a canonical fragment with 2n > 6
dofs into conformations of a non-canonical fragment with the same number n of residues and
the same two anchors. So, the combination of these two algorithms allows us to sample the
conformation space of a non-canonical fragment, given a fixed pose of the frame T relative to
W .

6.1 Inverse kinematics of a long canonical fragment

Following the same general approach as in Sections 3 and 4, we successively consider the inverse
orientation map and the inverse position map.

We first propose a recursive method that successively samples the angles τi = θ2i−1 + θ2i,
i = 1, 2, ..., n−3. For each angle τi, we first compute its feasible range, i.e., the interval of values
for which the inverse orientation map is non-empty, given the values previously sampled for
τ1, · · · , τi−1. The value of τi is sampled from this interval. The last three angles (τn−2, τn−1, τn)
are computed using the results established in Section 3.
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Figure 12: Sixteen IK solutions (see Section 5): each of the four drawings shows four confor-
mations.
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Then we propose a similar method to sample the values of the angles θ1, · · · , θ2n−7. Again,
the last three angles (θ2n−5, θ2n−3, θ2n−1) are computed using the results of Section 4. Each
pair of values for τi and θ2i−1 determines the value of θ2i.

Sampling the values of τi: Like in Section 3, we define the reduced orientation map ρ̂ by:

ρ̂ : (S1)n → SO(3), (τ1, · · · , τn) → Rτ1LRτ2L · · ·LRτnL.

Given R ∈ SO(3), the values of ρ̂−1(R) are the solutions (τ1, ..., τn) of the equation:

Rτ1LRτ2L · · ·LRτnL = R.

After eliminating τn, we get the following equation:

Rτ1LRτ2L · · ·LRτn−1Lz = RLz. (10)

The map η : (τ1, ..., τn) ∈ (S1)n → Rτ1LRτ2L · · ·LRτn−1Lz ∈ S2 is singular if and only if each
of the angles τi, for i = 2, ..., n − 1, is equal to 0 or π, i.e., if all torsional axes are coplanar.
So, the critical set on S2 is the union of 2n−2 critical circles defined by:

{Rτ1LRτ2L · · ·LRτn−1Lz | τ2 = 0 or π ; · · · ; τn−1 = 0 or π}.

Because LL = I, some of these circles coincide, so that the number of distinct critical circles
is only dn/2e (the smallest integer greater than or equal to n/2). Furthermore, when n is odd,
one circle reduces to the point z. All critical circles have the same normal vector z, so that
they partition S2 into parallel regions.

It is not difficult to verify that when n > 3, the solution set of Equation (10) is non-empty
in all critical circles and all parallel regions between these circles. So, the image of η covers
the whole sphere S2.

Therefore, the values of all the angles τi, for i = 1, ..., n − 3, can be sampled uniformly
at random from the interval [−π, π). The following remaining equation (whose unknowns are
τn−3, τn−2, and τn−1) has a non-empty solution set:

Rτn−3LRτn−2LRτn−1Lz = LRT
τn−4

L · · ·LRT
τ1RLz, (11)

since the image of its left-hand side covers the whole S2. Then, given the values sampled for
τ1, ..., τn−4, the feasible range of τn−3 is the set of all values of τn−3 such that the following
equation (whose unknowns are τn−2, and τn−1) has a non-empty solution set:

Rτn−2LRτn−1Lz = LRT
τn−3

L · · ·LRT
τ1RLz. (12)

Following Section 3, the critical set of the left-hand side of this equation consists of a critical
point and a critical circle that decompose S2 into two parallel open regions, such that the
bottom one has zero IK solutions. The right-hand side, LRτn−3L · · ·LRT

τ1RLz, spans a circle
in S2 when τ3 varies over S1. So, we compute the intersection points of this latter circle
with the critical circle (see Appendix C). This gives two intervals for τn−3, (τ1

n−3, τ
2
n−3) and

(τ2
n−3, τ

1
n−3 + 2π), of which one is the feasible range of values of τn−3.

19



It then remains three angles (τn−2, τn−1, τn), corresponding to a 6-dof fragment, for which
the structure of the inverse orientation map has been completely determined in Section 3.3.

It follows directly from the above presentation that the feasible region for (τ1, τ2, · · · , τn−3)
is connected. Thus, the set of all conformations of F that achieve a given orientation R of
the frame T is either connected or consists of two disconnected components. The topological
structure of η−1(RLz) can be derived following the method presented in [22] for planar closed
chains with revolute joints.

Sampling the values of θ2i−1: Following Section 4, for a fixed value of (τ1, · · · , τn), we can
write the position map as follows:

p(θ1, θ3, · · · , θ2n−1) = v0 + (R1 + Rτ1LR3 + · · ·+ Rτ1L · · ·LRτn−1LR2n−1)v2, (13)

where v0 is a constant vector. So, p(θ1, θ3, · · · , θ2n−1) spans the Minkowski sum of n circles
that have the same radius `1, but lie in n different planes in general. Given X ∈ R3, the values
of p−1(X) are the solutions (θ1, ..., θ2n−1) of the equation:

(R1 + Rτ1LR3 · · ·+ Rτ1L · · ·LRτn−1LR2n−1)v2 = X − v0. (14)

We move θ1 in the right-hand side of this equation to get:

(R3 + Rτ2LR5 · · ·+ Rτ2L · · ·LRτn−1LR2n−1)v2 = LR−τ1(X − v0)− LR−τ1R1v2, (15)

which has the same general form as Equation (14). The inverse image p−1(X) is the set of all
the solutions of Equation (15) for all θ1 ∈ S1.

We note that, for any given value of θ1, the right-hand side of Equation (15) defines a point
Y in R3. The value of θ1 is feasible if and only if Y is contained in the volume V spanned
by the Minkowski sum of the n − 1 circles on the left-hand side of the equation. When θ1

varies over S1, Y spans a circle C. The intersection of C with V determines the feasible range
of θ1. However, computing this intersection exactly is difficult. Instead, we notice that the
shape of the volume spanned by the Minkowski sum of three (or more) non-coplanar circles
is approximately convex. So, we bound V by its convex hull H(V ) and we compute the
intersection of C with H(V ). We conservatively approximate the feasible range of θ1 to be the
interval of values that define the portion of C contained in H(V ).

The intersection of C with H(V ) is calculated using the second-order cone programming
method [3]. Appendix D proves that the convex hull H(V ) is the Minkowski sum of n− 1 unit
disks defined by the n− 1 circles. Let x̃i and ỹi be, respectively, the two unit base vectors for
the planes of the ith circle. To form the convex constraints, C is approximated by a regular
polygon with 16 (or more) sides:

C = {Xjλ1 + Xj+1λ2 | λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1, j = 1, · · · , 16},

where Xj , j = 1, · · · , 16, are the vertices of the regular polygon and X17 = X1. We solve2

the following 16 second-order cone programming problems for the intersections between the
2In our implementation, we use Sedumi, version 1.1, which is available from http://sedumi.mcmaster.ca.
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Figure 13: Sampled conformations of an 8-dof fragment: (a) The proximal end; (b) Two
conformations; (c) The distal end.
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Figure 14: Sampled conformations of a 10-dof fragment: (a) The proximal end; (b) Two
conformations; (c) The distal end.
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Figure 15: Sampled conformations of a 12-dof fragment: (a) The proximal end; (b) Two
conformations; (c) The distal end.
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regular polygon and the boundary of H(V ):

maxλ2

subject to : Xjλ1 + Xj+1λ2 =
[
x̃1, ỹ1, · · · , x̃(n−1), ỹ(n−1)

] ·




x1

y1
...

x(n−1)

y(n−1)




x2
i + y2

i ≤ z2
i , i = 1, · · · , n− 1

1− zi ≥ 0
zi ≥ 0
λi ≥ 0, i = 1, 2
λ1 + λ2 = 1.

The feasible range of θ1 is identified by checking if a point within the open interval between
two consecutive candidate intersections is feasible.

For any given value of θ1 sampled in its (approximated) feasible range, we can similarly
compute the (approximated) feasible range of θ3, then pick a value of θ3 in this range, and so
on. The recursion ends when the left-hand side of Equation (15) is the sum of three circles.
The value of (θ1, θ3, · · · , θ2n−7) determines at most 8 solutions for (θ2n−5, θ2n−3, θ2n−1) (as
discussed in Section 4.2 and Appendix B).

Computational results Figures 13, 14, and 15 show conformations sampled with the recur-
sive algorithms described above for fragments with 8, 10, and 12 dofs, respectively. Each angle
is sampled uniformly at random in its computed feasible range. These sampled conformations
cover well the self-motion space of each of the three fragments.

Our algorithm is not guaranteed to succeed in sampling a conformation of the fragment
at each trial. There are two distinct reasons for this. First, the feasible ranges for the angles
τi are computed without taking the inverse position map into account. Therefore, a value of
τi picked in its computed feasible range may not allow the frame T to reach its goal position.
Second, the feasible ranges computed for the angles θ2i−1 are slightly conservative due to the
approximation of a Minkowski sum of circles by its convex hull.

We measured the failure rate of our IK algorithm for values of n (number of residues)
ranging from 4 to 15. For each value of n, we made N = 300 independent trials. Each trial
consisted of picking a new pose of the frame T at random and running our IK algorithm on
this pose. Each pose of T was obtained by sampling the angles θi, i = 1, ..., 2n uniformly at
random from [0, 2π) and then computing the forward kinematics map. For each pose of T ,
the IK algorithm returned failure if a computed feasibility range was empty or there was no
solution for the last three angles (τn−2, τn−1, τn) or (θ2n−5, θ2n−3, θ2n−1). We estimated the
failure rate of the IK algorithm as the ratio of the number of failures by N , and the average
computation time of a sampled conformation as the ratio of the total running time of the
N trials by the number of successful trials. The results are plotted in Figure 16 and 17,
respectively.3 Although the total failure rate may look rather high (between 80 and 90%) at

3Our software is written in Matlab and runs on a P3(1.13-GHz) under WindowsXP.
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Figure 17: Average computation time for a successful trial
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first sight, it is much smaller than with RLG and still yields a good running time per sampled
conformation. In fact, a success rate of 10 to 20% to sample a submanifold of dimensionality
2n − 6 by sampling each one of the 2n parameters defining the ambient manifold is a fairly
good result. Note also that the success rate varies little as n increases.

Additional tests (not shown here) indicates that the approximation of the Minkowski sums
of multiple circles by their convex hulls is responsible for relatively few failures. Most failures
are caused by the choice of the angles τi that does not take the inverse position map into
account.

We also implemented and tested a combination of our algorithm and the RLG algorithm.
The combined algorithm computes the feasible ranges of the angles τi by intersecting the
intervals computed by our algorithm with those obtained by applying the RLG algorithm to
Equation (13), in which v0 is treated not as a constant, but as a function of τi. On fragments
of various lengths, the combined algorithm did not achieve a better success rate than our
algorithm alone. In most cases, the intervals returned by RLG are supersets of the intervals
computed by our algorithm.

6.2 Inverse kinematics of a long non-canonical fragment

All results presented so far assume a canonical fragment in which every two successive bonds
Ci

α–Ci and Ni+1–Ci+1
α are exactly parallel. Moreover, all computational tests have been

conducted with models where the angle between each two successive bonds Ni–Ci
α and Ci

α–Ci

is 109 degrees. We now describe a method to deform a conformation for a canonical fragment
into a conformation for a non-canonical fragment with the same number of dofs.

When successive bonds Ci
α–Ci and Ni+1–Ci+1

α are not exactly parallel and the angle be-
tween each two successive bonds Ni– Ci

α and Ci
α–Ci is not exactly 109 degrees, the model

shown in Figure 2 must be adapted. More specifically, the rotation axis corresponding to θ2i

(the z-axis of O2i) is then obtained by rotating that of θ2i−1 (the z-axis of O2i−1) by an angle
ζi 6= 0 along the y-axis of O2i−1. The lengths of the links must also be modified slightly. The
non-canonical model returns to canonical when ζi = 0 and αi = 19 degree.

Although the principle of the method described below is general, we simplify our presen-
tation by assuming that the deviations relative to the canonical model are the same for all
i = 1, ..., n. With this simplification, we let (ζgoal, αgoal) 6= (0, 19π/180) denote the parameters
for the non-canonical fragment. Similarly, (ζ init, αinit) = (0, 19π/180) stands for the parameters
for the canonical model.

In the product space R2 × R2n of the parameters and joint angles, the IK problem is to
find solutions for:

R1R
0R2LR3R

0R4L · · ·LR2n−1R
0R2nL = R (16)

R1v2 + R1R
0R2Lv1 + · · ·+ R1R

0 · · ·R2n−1v2 + R1R
0 · · ·R0R2nLv1 = X (17)

for a given pose (X, R) ∈ R3×SO(3), where the matrix R0 = Rot(y, ζ) represents the rotation
of angle ζ about the y-axis. Let θinit be a solution to this problem when (ζ, α) = (ζ init, αinit).
Such a solution can be sampled using the methods described in Subsection 6.1. We then
apply the numerical homotopy algorithm [9] described below to derive a solution θgoal for
(ζ, α) = (ζgoal, αgoal).
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Differentiating Equations (16) and (17) yields:

J1dθ + V1

[
dζ
dα

]
= 0

and

J2dθ + V2

[
dζ
dα

]
= 0,

where J1 and V1 (resp. J2 and V2) are the Jacobian matrices for the orientation map (resp.
position map). Thus, we get:

dθ = −
[

J1

J2

]† [ V1

V2

] [
dζ
dα

]
, (18)

where [·]† denotes the pseudo inverse of [·]. We consider the straight path t ∈ [0, 1] →
(ζ(t), α(t)) ∈ R2 such that (ζ(0), α(0)) = (ζ init, αinit) and (ζ(1), α(1)) = (ζgoal, αgoal) and
we integrate dθ along this path to obtain the IK solution for the non-canonical fragment:

θgoal = θinit +
∫ 1

0
dθ.

Here we use a two-step integration algorithm. The first step tracks the solution of Equa-
tions (16)-(17) along the path by computing:

0θi+1 = θi + dθ,

ζi+1 = ζi + dζ,

αi+1 = αi + dα,

where dθ is given by Equation (18). However, due to the linear approximation,
(0θi+1, ζi+1, αi+1) deviates slightly from the solution curve of Equations (16)-(17). So, the
second step iterates the Newton algorithm to correct the predicted value of θi+1:

k+1θi+1 = kθi+1 +
[

J1

J2

]†
V (kθi+1),

where V is a 6-D vector that represents an instantaneous motion from the current position and
orientation to the desired (X, R). Once kθi+1 has converged, the limit is set as θi+1 and the
integration algorithm returns to the first step. The algorithm stops when ζgoal and αgoal are
reached. It is guaranteed to succeed whenever the forward kinematic map in Equations (16)-
(17) are non-singular over the path from (ζ init, αinit) to (ζgoal, αgoal). Often such a path can
be chosen as the line segment between (ζ init, αinit) and (ζgoal, αgoal) as non-canonical models
differ only slightly from the canonical model. If the path contains a singularity of the forward
kinematic map, our algorithm will not converge. When this happens, we choose a different
path and run our algorithm again until a solution is found, or a designated number of iterations
is reached. In the latter case, our algorithm reports failure.

Figure 18 shows two conformations sampled for the canonical 8-dof fragment and the
corresponding two conformations obtained for a non-canonical model. Similarly, Figure 19
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Figure 18: (a): Two conformations sampled for the canonical 8-dof fragment; (b): The corre-
sponding two conformations obtained for the non-canonical fragment with ζ = 1.5π/180 and
α = 19π/180.

0
2

4
6

−4

−2

0

−2

0

2

4

x
2

x
2

x

y
2

y
2z

2
z

2

x
1

x
1

z
1

z
1

y

y
1

y
1

z

(a)

0
2

4
6

−4

−2

0

−2

0

2

4

x
2

x
2

x

y
2

y
2z

2
z

2

x
1

x
1

z
1

z
1

y

y
1

y
1

z

(b)

Figure 19: (a): Two conformations sampled for the canonical 10-dof fragment; (b): The
corresponding two conformations obtained for the non-canonical fragment with ζ = 1.5π/180
and α = 19π/180.
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shows two sampled conformations of a 10-dof fragment. In both examples, ζ = 1.5π/180 and
α = 19π/180.

This homotopy algorithm can easily be extended to handle the case where all the
(ζgoal

i , αgoal
i ) are distinct, as well as to the case where bond lengths and bond angles take

residue-dependent values along the backbone fragment. Then the parameter vector and con-
sequently the Jacobian matrices V1 and V2 have greater dimensionalities.

7 Conclusion

This paper presents a new approach to study the global structure of the IK map of a 6-dof
fragment of protein and to sample conformations of a 2n-dof fragment (n > 3) with two fixed
anchors. Starting with a slightly idealized model of a 6-dof fragment, we split the IK map into
an inverse orientation map and an inverse position map. We analyzed the critical sets of both
maps, which yield a decomposition of SO(3) and R3 into open regions where the number of IK
solutions is constant. This allowed us to prove the existence a 16-solution region in R3×SO(3).
For longer fragments, we proposed a recursive procedure to sample IK solutions. The feasible
ranges of the torsional dofs are successively computed and sampled to generate conformations
that cover well a fragment’s self-motion manifold. Finally we proposed a general numerical
homotopy algorithm to deform conformations of canonical fragments into conformations of
non-canonical fragments with the same number of dofs.

Our current work is aimed at combining these algorithms with collision detection algorithms
to study and sample the clash-free subset of the self-motion manifold of a given fragment, taking
all atoms in both the backbone and the side-chains into account.
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Appendix A : Computation of Jρ̂ (Section 3.2)

The Lie algebra so(3) can be identified with the space of 3 × 3 skew-symmetric matrices
{B ∈ R3×3 | B + BT = 0}. So, a basis for this space is:

Jx =




0 0 0
0 0 −1
0 1 0


 , Jy =




0 0 1
0 0 0
−1 0 0


 , Jz =




0 −1 0
1 0 0
0 0 0


 .

We have:
dRτi

dτi
= JzRτi ,

and for any R ∈ SO(3):

RJxR−1 = R11Jx + R21Jy + R31Jz,

RJyR
−1 = R12Jx + R22Jy + R32Jz,

RJzR
−1 = R13Jx + R23Jy + R33Jz,

where Rij denotes the element of R at the ith row and jth column. With respect to the basis
{Jx, Jy, Jz}, RJxR−1, RJyR

−1, and RJzR
−1 become Rx, Ry, and Rz, respectively. So:

[Dτ1 ρ̂, Dτ2 ρ̂, Dτ3 ρ̂]ρ̂−1 = [Jz, Rτ1LJz(Rτ1L)−1, Rτ1LRτ2LJz(Rτ1LRτ2L)−1],

and with respect to {Jx, Jy, Jz}, Jρ̂ is the following matrix:

Jρ̂ = [z, Rτ1Lz,Rτ1LRτ2Lz].

Appendix B: Quartic Surface Q (Section 4.2)

Recall from Section 4.2 that Q = {q(u, w)}, where:

q(u, w) =




qx

qy

qz


 =




cu + cγcw − sαsγsw

−sαsu + sαcγsw + sγcw

cα(su + sw)


 .

To derive the equation of the surface Q, we first consider a simple surface {q̂(u,w)} given by

q̂(u,w) =




q̂x

q̂y

q̂z


 =




su + sw

cu

cw


 .
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This surface satisfies the following equation and is therefore quartic:

h(q̂) := q̂4
x + q̂4

y + q̂4
z + 2q̂2

x(q̂2
y + q̂2

z)− 2q̂2
y q̂

2
z = 0.

On the other hand, q and q̂ are related by a linear transformation A(α, γ):

q̂ = A(α, γ)q.

Thus, Q is also a quartic surface and satisfies:

h(Aq) = 0. (19)

The Jacobian matrix of q is:

Jq =
[

∂q

∂u

∂q

∂w

]
=




−su −sαsγcw − cγsw

−sαcu sαcγcw − sγsw

cαcu cαcw


 .

It loses rank when tan(u) = tan(w) = sα(1 + cγ)/sγ . Hence, the singular points of q are
{(u0, w0), (u0, w0 + π), (u0 + π, w0), (u0 + π, w0 + π)}, and the critical points are:

q1 = [ sγc2α(1+cγ)√
s2
γ+s2

α(1+cγ)2
,

s2
γc2α√

s2
γ+s2

α(1+cγ)2
,

2sαcα(1+cγ)√
s2
γ+s2

α(1+cγ)2
]T ,

q2 = [ sγ(1+s2
α)−sγcγc2α√

s2
γ+s2

α(1+cγ)2
, −

√
s2
γ + s2

α(1 + cγ)2, 0]T ,

q3 = [−sγ(1+s2
α)+sγcγc2α√

s2
γ+s2

α(1+cγ)2
,

√
s2
γ + s2

α(1 + cγ)2, 0]T ,

q4 = [ −sγc2α(1+cγ)√
s2
γ+s2

α(1+cγ)2
,

−s2
γc2α√

s2
γ+s2

α(1+cγ)2
,

−2sαcα(1+cγ)√
s2
γ+s2

α(1+cγ)2
]T ,

where u0 = w0 = atan(sα(1 + cγ)/sγ). All tangent spaces of Q are 2-D, except at the four
critical points qi, i = 1, ..., 4, where they are 1-D. One can further show that the following two
line intervals:

λq1 + (1− λ)q4 , 0 ≤ λ ≤ 1, (20)
λq2 + (1− λ)q3 , 0 ≤ λ ≤ 1, (21)

form the self-intersection set of Q.
We pose ξ = tan(t/2). The inverse map p̂−1

M (X) for a given X ∈ R3 can be computed by
substituting q = X − [ct, st, 0]T , ct = 1− ξ2/1 + ξ2, and st = 2ξ/1 + ξ2 in Equation (19). The
result is an 8th-order polynomial of ξ, whose roots can be derived using the Sturm method [5,
24].

Appendix C: Intersection of Two Circles on S2 (Section 6.1)

Let us represent two generic circles on S2 by:

{Rot(ν1, β1)X1 | β1 ∈ S1} and {Rot(ν2, β2)X2, | β2 ∈ S1},
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respectively, where νi ∈ S2, i = 1, 2, are two distinct unit vectors, Rot(νi, βi) is the matrix
representing the rotation of angle βi about νi, and Rot(νi, βi)Xi is the vector obtained by
applying Rot(νi, βi) to Xi ∈ S2.

At each intersection between these circles, we pose X3 = Rot(ν1, β1)X1 = Rot(ν2, β2)X2

and we express X3 as a linear combination of ν1, ν2, and ν1 × ν2, i.e., X3 = a1ν1 + a2ν2 +
a3(ν1 × ν2). Since any rotation around νi leaves νi unchanged, we have: XT

3 νi = XT
i νi. Thus:

a1 + a2ν
T
1 ν2 = XT

1 ν1,
a1ν

T
1 ν2 + a2 = XT

2 ν2,

and: [
a1

a2

]
=

[
1 νT

1 ν2

νT
1 ν2 1

]−1 [
XT

1 ν1

XT
2 ν2

]
.

In addition, since X3 is a unit vector, we have:

a2
1 + 2a1a2ν

T
1 ν2 + a2

2 + ‖ν1 × ν2‖2a2
3 = 1.

So:

a2
3 =

1− a2
1 − 2a1a2ν

T
1 ν2 − a2

2

‖ν1 × ν2‖2
.

A solution exists whenever a2
1 + 2a1a2ν

T
1 ν2 + a2

2 ≤ 1. For each value of X3, the values of θi,
i = 1, 2, are the solutions of:

(Xi − (XT
i νi)νi)T (X3 − (XT

3 νi)νi) = ‖Xi − (XT
i νi)νi‖‖X3 − (XT

3 νi)νi‖ cos θi,
‖(Xi − (XT

i νi)νi)× (X3 − (XT
3 νi)νi)‖ = ‖Xi − (XT

i νi)νi‖‖X3 − (XT
3 νi)νi‖ sin θi.

Appendix D: Convex Hull of the Minkowski Sum of k ≥ 3 Circles
(Section 6.1)

Consider Equation (15) reproduced below:

(R3 + Rτ2LR5 · · ·+ Rτ2L · · ·LRτn−1LR2n−1)v2 = LR−τ1(X − v0)− LR−τ1R1v2.

Our goal is to approximate the 3-D volume spanned by the Minkowski sum of the n − 1 ≥ 3
circles in the left-hand side by its convex hull. More generally, at each recursion of the algorithm
described in Section 6.1, we consider an equation in which the left-hand side is the Minkowski
sum of k ≥ 3 circles, which we denote here by K1, ...,Kk, and the right-hand side is a circle
C. The k circles K1, ..., Kk, have the same radius `1, but generally lie in distinct planes. We
want to eventually compute the portion of C that lies within the bounding volume V of the
Minkowski sum. Because the minimal convex set that contains V is its convex hull H(V ), our
goal here is to compute such a convex hull.

Proposition 1 The convex hull H(V ) of the Minkowski sum of k circles K1, ..., Kk is the
Minkowski sum of their corresponding disks D1, ..., Dk, where:

Di := {x̃ixi + ỹiyi | x2
i + y2

i ≤ `2
1}

and x̃i, ỹi are the two unit base vectors for the plane of Ki.

31



Proof: It is obvious that V ⊆ ∑
i Di. Since Di is a disk, hence a convex set,

∑
i Di is also

convex. Thus, H(V ) ⊆ ∑
i Di.

On the other hand,
∑

i Ci ⊆ V . Consider two vectors v1 = v1,1 + v2 + · · · vk and v2 =
v1,2 + v2 + · · · vk such that where v1,1, v1,2 ∈ K1, and vj ∈ Kj for j = 2, · · · , k. They are both
in V . So, according to the definition of H(V ), we have:

λv1 + (1− λ)v2 ∈ H(V ), λ ∈ [0, 1].

Simplifying the left-hand side of the above equation yields:

(λv1,1 + (1− λ)v1,2) + v2 + · · ·+ vk ∈ H(V )

This shows that D1 + K2 + · · · + Kk ∈ H(V ). Next, we let v1 ∈ D1, v2,1, v2,2 ∈ K2, vj ∈ Kj

for j > 2. Since:

λ(v1 + v2,1 + v3 + · · ·+ vk) + (1− λ)(v1 + v2,2 + v3 + · · ·+ vk) ∈ H(V ),

we have:
D1 + D2 + K3 + · · ·+ Kk ∈ H(V ).

Continuing this process yields: ∑

i

Di ⊆ H(V ).

So, H(V ) =
∑

i Di.
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