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Abstract: Our goal is to develop accurate electrostatic models that can be implemented in current computatio-

nal protein design protocols. To this end, we improve upon a previously reported pairwise decomposable, finite

difference Poisson–Boltzmann (FDPB) model for protein design (Marshall et al., Protein Sci 2005, 14, 1293).

The improvement involves placing generic sidechains at positions with unknown amino acid identity and explicitly

capturing two-body perturbations to the dielectric environment. We compare the original and improved FDPB meth-

ods to standard FDPB calculations in which the dielectric environment is completely determined by protein atoms.

The generic sidechain approach yields a two to threefold increase in accuracy per residue or residue pair over the

original pairwise FDPB implementation, with no additional computational cost. Distance dependent dielectric and

solvent-exclusion models were also compared with standard FDPB energies. The accuracy of the new pairwise

FDPB method is shown to be superior to these models, even after reparameterization of the solvent-exclusion

model.

q 2007 Wiley Periodicals, Inc. J Comput Chem 00: 000–000, 2007
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Introduction

Current computational protein design programs could be

improved by the inclusion of an accurate model for electro-

statics. Since proteins exist in highly polarizable solvents, the

accuracy of the electrostatics model is dependent on the accu-

racy of the solvation model. To overcome the computational

demands of explicitly modeling all of the water molecules in a

macromolecular system, a continuum dielectric description of

water is used in many biomolecular applications.1,2 In contin-

uum solvation models, the protein is treated as a low dielectric

cavity within a high dielectric solvent. The boundary between

the protein and solvent dielectric is defined by the protein’s mo-

lecular surface. When carrying out amino acid sequence selec-

tion for protein design, the location of the dielectric boundary

becomes ambiguous because the final amino acid identities and

their conformations are not known until the very end of the cal-

culation. In order to overcome this limitation and to satisfy the

need for computationally efficient energy functions, alterations

to the Generalized Born model,3,4 a modified version of the Tan-

ford–Kirkword model,5,6 and various empirical models7–10 have

been reported for protein sequence design.

Within the limitations of a continuum solvent description, the

Finite Difference Poisson–Boltzmann (FDPB) model is often

considered a standard for accuracy.11,12 A general strategy for

implementing an FDPB model that is pairwise decomposable by

sidechain conformation (rotamer) has been reported.13 This strat-

egy involves evaluating explicit perturbations to the dielectric

boundary. For example, the desolvation energy of a sidechain on

being transferred from the unfolded state to the folded state is

calculated by solving for the difference in solvation energy

between the one-body state (i.e., the folded backbone and one

sidechain) and the unfolded state model for the sidechain. Two-
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body perturbations are calculated as the difference in solvation

energy between a state with two sidechains (the ‘‘two-body

state’’ in Fig. 1B) and the one-body state. The total pairwise

sidechain desolvation is thus the desolvation of the sidechain by

the backbone plus the sum of two-body perturbations. The

energy terms in this method are fully pairwise decomposable by

sidechain conformation and are therefore compatible with the

energy matrices and optimization algorithms used in most com-

putational design methods.

The accuracy of the pairwise decomposable FDPB model

was assessed by comparing the energy calculated with the entire

molecular surface defined by all of the protein sidechains (the

‘‘exact’’ surface in Fig. 1A) to the energy calculated using the

sum of perturbations method. It was found that the desolvation

of sidechains could be accurately approximated with an RMS

error of 0.64 kcal mol21 per sidechain.1 The generic sidechains

described by Zhang et al.14 for calculation of pairwise solvent-

accessible surface area present a straightforward and efficient

strategy for improving the accuracy of pairwise approximate

FDPB calculations. Figure 1 shows the difference between the

original pairwise FDPB model and the generic sidechain

approach. At all positions for which the identity or conformation

of the amino acid is unknown, a generic sidechain composed of

three spheres is placed, making the one-body state more closely

resemble the true protein molecular surface and the two-body

perturbations less dramatic.

A generic sidechain approach to approximating the volume

occupied by a protein’s sidechains has been used previously in

many applications, including residue classification with respect

to the molecular surface,15,16 protein–protein docking,17 and sol-

vation.14 Pokala and Handel have reported a one-body generic

sidechain formulation of the Generalized Born (GB) model.3 For

each residue in a design calculation, they approximate the low

dielectric environment by spheres at all other positions. We take

a similar approach using the FDPB model, but, importantly, we

also calculate two-body perturbations that lead to a better

approximation of the protein environment. In order to overcome

the computational limitations of an O(n2) calculation, distance

cutoffs are tested.

Because of the computational demands of solving the PB

equation numerically, there is a great deal of interest in methods

that approximate the PB model, such as the GB model, and also

in fast empirical models.1 The solvent-exclusion model of Lazar-

idis and Karplus (LK)18 is computationally efficient and has

Figure 1. Illustration of exact, no generic sidechain (G0), and generic sidechain (G3) calculations.

The dark gray area denotes solvent dielectric (e 5 80) and the white area denotes protein dielectric

(e 5 4). (A) The exact molecular surface is defined by the backbone and all sidechains of the protein.

(B) The two-body state for the G0 model is defined by two sidechains and the protein backbone. (C)

The two-body state for the G3 model is defined by the two sidechains, the protein backbone, and

three-sphere generic sidechains at all other positions. The one-body state is analogous to (B) or (C) but

with only one sidechain represented explicitly. (D) The definition of radius and distance for the three-

sphere generic sidechain.
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been used by Baker and coworkers in the successful design of a

novel fold.19 Here we test the improved pairwise FDPB model

against the LK model. Since the original parameterization of the

LK model was based primarily on experimental solvation free

energies, we derive new parameters based on FDPB energies to

see how well the functional form of the LK model is able to

reproduce this particular benchmark. While it is found that the

generic sidechain method out-performs the LK model, the trade-

off between computational efficiency and accuracy of the energy

function is discussed.

Methods

FDPB Calculations

A set of 24 proteins with hydrogens added was taken from the

Richardson Top 500 database of high resolution X-ray crystal

structures (http://kinemage.biochem.duke.edu/databases/top500.

php). The PDB codes for the set are: 1IGD, 1MSI, 1KP6, 1OPD,

1FNA, 1MOL, 2ACY, 1ERV, 1DHN, 1WHI, 3CHY, 1ELK,

2RN2, 1HKA, 3LZM, 1AMM, 1XNB, 153L, 1BK7, 2PTH,

1THV, 1BS9, 1AGJ, and 2BAA. A subset of 10 structures was

used in the generic sidechain parameter optimization: 1IGD,

1KP6, 1FNA, 2ACY, 1DHN, 3CHY, 2RN2, 3LZM, 1BK7, and

1THV. The DelPhi program20 was used to solve the linearized

Poisson–Boltzmann equation using the following settings: 2 grids

Å21, 0.05M salt, a protein dielectric of 4 and a solvent dielectric

of 80. In all calculations on a single structure, the protein’s posi-

tion relative to the grid was held constant. PARSE radii and

charges were used.21 The test set contains 2028 polar residues

when using PARSE charge definitions. All prolines and disul-

phide-bonds were treated as part of the backbone.

The three-sphere generic sidechain method (herein referred to

as G3) reported by Zhang et al.14 was used in all calculations

described below unless otherwise noted. Calculations denoted

G0 refer to the method of Marshall et al.13 A grid-based search

was carried out to find a more optimal set of generic sidechain

dimensions for FDPB calculations. Within the grid search, the

parameters reported previously,14 sphere radius 5 2.85 Å and

distance between spheres 5 0.61 Å, were found to be near-opti-

mal and were used as given. A detailed description of the pa-

rameter search is given in the supplementary information.

To be consistent with the ORBIT force field,22 the following

terms were computed: (i) backbone desolvation, the energetic

cost of desolvating the protein backbone by sidechains; (ii) side-
chain desolvation, the energetic cost of polar sidechains being

desolvated by the backbone and by other sidechains; (iii) side-
chain/backbone screened Coulombic energy, the solvent

screened electrostatic interaction energy between sidechains and

the backbone, and (iv) sidechain/sidechain screened Coulombic
energy, the solvent screened electrostatic interaction energy

between pairs of sidechains. Each of these terms was computed

with all protein atoms present in their crystallographic position

(‘‘exact’’) and using reduced representations of the protein

(‘‘pairwise’’). The pairwise calculations are analogous to those

described in Marshall et al.13 However, for all G3 calculations,

three-sphere generic sidechains were used at all positions for

which no sidechain was present. The unfolded state reference

for sidechain desolvation consisted of the sidechain i plus the

local backbone atoms: Ca(i 2 1), C(i 2 1), O(i 2 1), N(i), H(i),
Ca(i), C(i), O(i), N(i 1 1), H(i 1 1), and Ca(i 1 1). Screened

Coulombic interactions were only calculated in the folded state.

The most notable difference between the G0 and G3 methods

is the calculation of the backbone desolvation energy (DGbb
desolv).

The unfolded state for the backbone is still described by a crys-

tallographic backbone with no sidechains present. A ‘‘zero-

body’’ folded state is then defined by the backbone with generic

sidechains at all positions. Single residue (one-body) perturba-

tions to the zero-body state are summed to get the total one-

body backbone desolvation energy:

DGbb
desolv ¼ DGbb

zero�body � DGbb
unfolded

þ
Xn

i

�
DGbb;i

one�body � DGbb
zero�body

� ð1Þ

By equation 1, the backbone desolvation energy is derived from

(n 1 2) DelPhi calculations, where n is the number of residues

in the protein. In order to calculate all of the one- and two-body

energies for a structure with n residues, p of which are polar, a

total of

ðnþ 2Þ þ 2pþ pðn� pÞ þ pðp� 1Þ (2)

DelPhi calculations are needed, where (n 1 2) corresponds to

backbone desolvation, 2p corresponds to the unfolded state and

one-body folded state models, p(n 2 p) corresponds to perturba-

tions of polar residues by nonpolar residues, and p(p 2 1) corre-

sponds to perturbations and interactions between polar residues,

noting that two-body perturbations are not symmetric.

Distance Dependent Dielectric and

Lazaridis–Karplus Calculations

New parameters for the solvent-exclusion model originally

reported by Lazaridis and Karplus (LK)18 were derived using

the following 14 structure training set: 1MSI, 1OPD, 1MOL,

1ERV, 1WHI, 1ELK, 1HKA, 1AMM, 1XNB, 153L, 2PTH,

1BS9, 1AGJ, and 2BAA. While the CHARMM19 parameters

described by LK18 are atom-based, the new parameters are side-

chain-based. For instance, lysine was assigned a single parame-

ter for all heavy atoms with non-zero partial atomic charges in

the PARSE charge set: Ce and Nf. Since the desolvation energy

of a sidechain in the LK model is independent of the DGref

parameter, only values for DGfree were derived by fitting to the

‘‘exact’’ FDPB desolvation energy

DGi
desolv ¼ DGi

free

X

t2i

X

u 62i;local bb
ftðrtuÞVu (3)

where the function f is the Gaussian free energy density of atom

t and Vu is the volume of desolvating atom u. For each sidechain

i in the training set, the sum of Gaussian solvent exclusion terms

was calculated over each atom t in sidechain i and each atom u

3FDPB Model for Computational Protein Design

Journal of Computational Chemistry DOI 10.1002/jcc



that is not in the sidechain i or its local backbone. For each set

of amino acids, with the following amino acids considered to-

gether: Asn and Gln; Ser and Thr; and Asp and Glu, a linear

least squares fit was used to get DGfree from the exact FDPB

sidechain desolvation energy DGdsolv. The new LK parameters

are listed in Table S1. For the distance dependent dielectric

(DDD) calculations, dielectrics were assigned as 5.1r for side-

chain/backbone interactions and 7.1r for sidechain/sidechain

interactions, according to Zollars et al.10 These values were

derived by fitting to FDPB screened Coulombic energies. Since

there were five structures in common between their training set

and the 24 structures used here, the error in screened Coulombic

energy was assessed for the remaining 19 structures.

Results

The accuracy of the pairwise FDPB methods was measured by

comparison to ‘‘exact’’ FDPB energies calculated with all protein

atoms present. The RMS error between the exact energies and the

G0 and G3 models are listed in Table 1. The pairwise energies

from the GO and G3 models are plotted against the exact energies

in Figures 2 and 3. The G3 model performs better than the G0

model in all cases. As expected, the one-body sidechain desolva-

tion improves dramatically over the G0 model in which only des-

olvation of the sidechain by the backbone is counted (Figs. 2C

and 2D). Similarly, the one-body G3 model is more effective than

the one-body G0 model at capturing the descreening of strong

sidechain/backbone interactions (Figs. 2E and 2F). It is interest-

ing to note that the one-body G3 model for sidechain desolvation

is more accurate than the two-body G0 model with a 4 Å cutoff

(Table 1). This indicates that the approximate surface provided

by the generic sidechains is more effective at reproducing the

exact energies than adding the one-body energy to the truncated

sum of two-body sidechain perturbations in the G0 model, a rele-

vant model to consider since a distance cutoff will almost cer-

tainly be used in design calculations.

As shown in Table 1 and Figure 3, the G3 two-body models

for sidechain desolvation and sidechain/backbone screened Cou-

lombic energy provide improvements over the one-body models

and the G0 two-body models. An especially dramatic improve-

ment in accuracy is seen for the two-body approximation for side-

chain/sidechain interactions. Each data point in Figures 3E and 3F

corresponds to a pair of residues. For the G0 model, there are no

descreening contributions from other sidechains to sidechain/side-

chain interactions, whereas the generic sidechains provide a vast

improvement by approximating the reduced dielectric of other

sidechains. The accuracy of the model is only slightly reduced by

using an approximate distance dependent dielectric model for

pairs separated by more than the specified cutoffs. The dielectric

values were based on those reported by Marshall et al.13 For both

cutoff values tested, more than 90% of all polar sidechain pairs in

the test set were not treated with an FDPB calculation. Such cut-

offs would provide a considerable speed enhancement in the

energy calculation stage of a design calculation.

Although the G3 model performs better than the G0 model

for sidechain desolvation, there are noticeable outliers in Fig-

ure 3B. There was also one residue in the test set with a nega-

tive G3 two-body desolvation energy which is not shown in Fig-

ure 3B but is included in the calculated error in Table 1. Out of

the 2028 residues in the test set, there are 19 for which side-

chain desolvation is underestimated by more than 1.5 kcal

mol21 when using the G3 model. For this set of 19 residues,

the amino acid types are exclusively Asp, Glu, Arg, and Lys,

Table 1. Accuracy of the Electrostatic Models.

G0a G3b

RMSD (kcal mol21) R RMSD (kcal mol21) R

Backbone desolvation energy

One-body 3.96 0.997 3.51 0.998

Sidechain desolvation energy

One-body 1.93 0.718 0.79 0.915

Two-body, all pairs 0.64 0.962 0.40 0.979

Two-body, pairs\6 Å 0.67 0.968 0.35 0.984

Two-body, pairs\4 Å 0.82 0.952 0.39 0.980

Sidechain/backbone screened Coulombic energy

One-body 0.90 0.957 0.34 0.987

Two-body, all pairs 0.36 0.987 0.18 0.996

Two-body, pairs\6 Å 0.41 0.984 0.17 0.996

Two-body, pairs\4 Å 0.51 0.979 0.23 0.994

Sidechain/sidechain screened Coulombic energy

Two-body, all pairs 0.13 0.948 0.05 0.987

Two-body, pairs\6 Åc 0.13 0.939 0.06 0.979

Two-body, pairs\4 Åd 0.13 0.933 0.07 0.972

aMarshall et al.13

bSphere radius 5 2.85 Å, distance from Ca and distance between spheres 5 0.61 Å.
cFor pairs separated by more than 6 Å, a distance dependent dielectric constant of 4.93r was used.
dFor pairs separated by more than 4 Å, a distance dependent dielectric constant of 5.56r was used.
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and they are from 12 different structures. Two of these outliers,

shown as ‘‘X’’ symbols in Figure 3B, plus the point with a neg-

ative desolvation were sensitive to moving the molecule slightly

with respect to the grid. This sensitivity to grid placement has

been discussed previously for the pairwise FDPB calculation13

and for more standard applications.23 Although it would

Figure 2. Accuracy of one-body G0 and G3 FDPB methods. One-body backbone desolvation calcu-

lated using the (A) G0 and (B) G3 methods. One-body sidechain desolvation calculated using the (C)

G0 and (D) G3 methods. One-body screened Coulombic interaction energy between sidechains and

backbone calculated using the (E) G0 and (F) G3 methods.

5FDPB Model for Computational Protein Design
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Figure 3. Accuracy of two-body G0 and G3 FDPB methods. Two-body sidechain desolvation calcu-

lated using the (A) G0 and (B) G3 methods. Points marked with ‘‘X’’ in (B) correspond to sidechains

for which the desolvation energy is sensitive to the placement of the protein with respect to the grid.

Two-body screened Coulombic interaction energy between sidechains and backbone calculated using

the (C) G0 and (D) G3 methods. Two-body screened Coulombic interaction energy between pairs of

sidechains calculated using the (E) G0 and (F) G3 methods.
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increase the calculation time n-fold, averaging over n transla-

tions with respect to the grid would alleviate this problem. An

additional seven of the outliers had nearby residues that gave

large, negative perturbations, leading to two-body energies with

larger error than the one-body approximation. In five of the

seven cases, these large negative perturbations are caused by

glycines, the amino acid for which the G3 approximation is the

most inaccurate. The remaining 10 cases with large, negative

error had exact desolvation energies greater than 8 kcal mol21

and one-body error greater than the two-body error, indicating

that these points are simply difficult to capture by a pairwise

summation scheme. For both two-body sidechain desolvation

and sidechain/backbone screened Coulombic energy, the error

decreases slightly when cutoffs are imposed. This may point to

the fact that only local perturbations are necessary with the G3

model and that inclusion of longer-range perturbations leads to

errors in accounting for sidechain overlap, as described by

Zhang et al.14

The generic sidechain parameters used here are the same as

those used in Zhang et al.14 for solvent accessible surface area

calculations. Since an alternative set of parameters may be more

optimal for the molecular surface definition used in FDPB calcu-

lations, we carried out a grid search of parameters to find a

superior set of parameters and to assess how sensitive the G3

method is to generic sidechain dimensions. As shown in Fig-

ures 4 and S1, the error is sensitive to sphere size and spacing

over the entire parameter space explored, but parameter sets

near radius 5 2.85 Å and distance 5 0.61 Å have relatively low

error. The optimality of these parameters for both surface area

and FDPB calculations supports the assertion that generic side-

chains of these dimensions accurately represent the average

space occupied by amino acid sidechains in folded proteins.24

Therefore, if the surface definition (e.g., solvent-accessible or

molecular surface) is consistent between the pairwise and exact

calculations, these parameters will be suitable. It is also notable

that the training set with which these parameters were originally

Figure 4. Sensitivity of the G3 FDPB method to generic sidechain parameters. Each line shows the

error in a different force field component: two-body sidechain desolvation (n), one-body sidechain/

backbone screened Coulombic energy ( ), two-body sidechain/backbone screened Coulombic energy

(~), and two-body sidechain/sidechain screened Coulombic energy (l). The lower panel shows the ra-

dius (&) and distance (*) that were sampled in each trial. The parameter set radius 5 2.85 Å and dis-

tance 5 0.61 Å is indicated by an arrow.

Table 2. Parameter Sensitivity of the G3 Model.a

Grid spacing (grids Å21) 2 2 2 4b

Ionic strength (mM) 50 150 50 50

Translations No. 1 1 3 1

One-body backbone desolvation 3.51 3.57 3.30 3.13

One-body sidechain desolvation 0.79 0.81 0.79 0.80

Two-body sidechain desolvationc 0.40 0.41 0.38 0.41

One-body sidechain/backbone screened Coulombic energy 0.34 0.34 0.34 0.34

Two-body sidechain/backbone screened Coulombic energyc 0.18 0.18 0.19 0.18

Two-body sidechain/sidechain screened Coulombic energyc 0.05 0.06 0.05 0.06

aError is reported as RMSD in kcal mol21.
bOnly the exact calculations were carried out with a grid spacing of 4 grids Å21, while the one-

and two-body calculations were carried with a grid spacing of 2 grids Å21.
cAll two-body calculations were carried out without distance cutoffs.
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derived has an overlap of only one protein with the 10 structures

used in the parameter search here, suggesting that these parame-

ters are robust for general protein design targets.

Depending on the computational demands of a particular

modeling application, different FDPB parameters may be prefer-

able.11 In order to assess the sensitivity of the error in the G3

model to parameter changes, we have sampled several possible

FDPB parameter sets that might be used in standard calcula-

tions. As shown in Table 2, any changes in error values with

ionic strength and translation averaging are small. We also com-

pared the approximate numbers obtained using the G3 model at

a grid spacing that would be reasonable for a design calculation

(2 grids Å21) with an exact calculation carried out at finer grid

spacing (4 grids Å21). The right-hand column in Table 2 shows

the RMS error between these energies.

It is of general interest to see how the pairwise approximate

FDPB method described here performs in comparison to fast

pairwise decomposable methods already used for protein de-

sign.1 We compared the performance of the solvent-exclusion

model of LK18 and a DDD model with the G3 method. Both of

the LK and DDD models are highly parameterized. Since multi-

ple parameter sets have been reported for the LK model, we

tried both the CHARMM19 LK parameters18 and a new set of

parameters tuned specifically to reproduce PB energies. We used

the distance dependent dielectric values that led to a stabilized

designed protein in a recent experimental protein design study.10

The results of this comparison are shown in Table 3 and Figures 5

and 6. The G3 model is more effective than the LK and DDD

models at approximating exact FDPB calculations. While the

performance of the LK model (Figs. 5B and 5C) varies greatly

with parameters, the LK model has a nonlinear relationship with

exact PB desolvation energies regardless of parameter set.

Discussion

We have shown that it is possible to improve the agreement

between a pairwise decomposable FDPB method and an exact

FDPB method with no additional computational cost. The

improvement stems from the more accurate approximation of

the dielectric boundary provided by generic sidechains. The

RMS errors for screened Coulombic interactions between polar

sidechains and between polar sidechains and the protein back-

bone are decreased by nearly threefold and twofold, respectively.

The error associated with the desolvation of polar sidechains is

reduced by nearly twofold. For the two-body perturbation-based

Table 3. Comparison of FDPB, LK, and DDD Models.

RMSD (kcal mol21) R

Sidechain desolvation energya,b

Two-body G0 0.53 0.969

Two-body G3 0.36 0.979

LK (CHARMM19)c 1.90 0.897

LK (tuned) 0.73 0.914

Sidechain/backbone screened Coulombic energya,d

Two-body G0 0.37 0.986

Two-body G3 0.19 0.996

DDD, e 5 5.1re 0.83 0.921

Sidechain/sidechain screened Coulombic energya,d

Two-body G0 0.13 0.943

Two-body G3 0.05 0.986

DDD, e 5 7.1re 0.14 0.915

aAll two-body calculations were carried out without distance cutoffs.
bTen structures in test set: 1IGD,1KP6, 1FNA, 2ACY, 1DHN, 3CHY,

2RN2, 3LZM, 1BK7, 1THV.
cLazaridis and Karplus.18

dNinteen structures in test set: 1MSI, 1KP6, 1OPD, 1FNA, 1MOL,

2ACY, 1ERV, 1DHN, 3CHY, 1ELK, 1HKA, 1XNB, 153L, 1BK7,

2PTH, 1THV, 1BS9, 1AGJ, 2BAA.
eZollars et al.10

Figure 5. Accuracy of the G3 model (A) versus the LK solvent exclusion model (B,C) for approxi-

mating sidechain desolvation. Results for both the CHARMM19 (B) and tuned (C) LK parameter sets

are shown. All plots contain data for the 758 polar sidechains from the 10 structures listed in Table 3

and described in the methods section.
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terms (i.e., sidechain desolvation and sidechain/backbone

screened Coulombic energy), this more accurate description of

the dielectric boundary leads to less dramatic perturbations to

that boundary, accounting for the inherent nonadditivity of such

perturbations more effectively than the previously reported pair-

wise FDPB method.13

Ideally, a protein design energy function is both accurate and

computationally efficient. The FDPB methods are three to four

orders of magnitude slower than the standard ORBIT energy

function. For example, a surface design of the small 51-residue

helical protein engrailed homeodomain gave 6.4 million rotamer

pairs for 29 design positions. The precalculation of all rotamer

singles and pairs energies required on the order of �9 CPU

hours using the standard ORBIT energy function with a surface

area based solvation term, �0.1 CPU hours using a modified

version of the ORBIT energy function with a DDD term and the

LK model, and �1000 CPU hours using the G3 model. This

large computational cost requires one to carefully assess the

appropriateness of the G3 model for different design problems.

Because of the large investment of time and resources involved

in synthesizing and characterizing designed proteins, an expen-

sive calculation may be worthwhile, especially if the calculation

involves positions with important electrostatic contacts such as

in the active site of an enzyme. Unfortunately, the cost of the

FDPB models may preclude large design targets since the calcu-

lation also scales poorly with the size of the grid on which the

PB equation is solved.

The results shown here indicate good agreement between

standard many-body electrostatic energies and those derived

from summing one- and two-body perturbations. In a protein

design calculation, the one- and two-body perturbations are

stored in a look-up table, which is used to find the optimal

sequence. Standard FDPB calculations serve as a reasonable

benchmark for assessing the sequence energies that will be eval-

uated by summing one- and two-body perturbations from the

table of rotameric energies. For search algorithms such as Monte

Figure 6. Accuracy of the G3 model (A,C) versus the DDD model (B,D) for approximating sidechain/

backbone and sidechain/sidechain screened Coulombic interactions. Data is shown for the 19 structures

listed in Table 3 and described in the Methods section.
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Carlo25 or FASTER,26 where total sequence energy is evaluated

and used as a criteria to accept or reject rotamer changes, this

benchmark is sufficient. However, the comparison with standard

FDPB calculations leaves the possibility of a cancellation of

error when summing over perturbations: some perturbations may

be ‘‘too small’’ and some may be ‘‘too large.’’ This may

become important when using algorithms based on Dead End

Elimination.27 In such algorithms, the sequence energy is not

evaluated, but instead two-body energies are used to eliminate

rotamers that are not in the optimal sequence. There is no clear

way to gauge the accuracy of the individual perturbation ener-

gies when comparing to standard benchmarks since there is no

‘‘exact’’ perturbation energy. Indeed, the most stringent test of

this improved electrostatics term will be in the context of a pro-

tein design force field and, ultimately, in experimental validation

of designed protein sequences.

References

1. Koehl, P. Curr Opin Struct Biol 2006, 16, 142.

2. Vizcarra, C. L.; Mayo, S. L. Curr Opin Chem Biol 2005, 9, 622.

3. Pokala, N.; Handel, T. M. Protein Sci 2004, 13, 925.

4. Archontis, G.; Simonson, T. J Phys Chem B 2005, 109, 22667.

5. Havranek, J. J.; Harbury, P. B. Proc Natl Acad Sci USA 1999, 96,

11145.

6. Havranek, J. J.; Harbury, P. B. Nat Struct Biol 2003, 10, 45.

7. Marshall, S. A.; Morgan, C. S.; Mayo, S. L. J Mol Biol 2002, 316,

189.

8. Wisz, M. S.; Hellinga, H. W. Proteins 2003, 51, 360.

9. Cerutti, D. S.; Jain, T.; McCammon, J. A. Pro Sci 2006, 15, 1579.

10. Zollars, E. S.; Marshall, S. A.; Mayo, S. L. Protein Sci 2006, 15,

2014.

11. Feig, M.; Onufriev, A.; Lee, M. S.; Im, W.; Case, D. A.; Brooks,

C. L. J Comput Chem 2004, 25, 265.

12. Baker, N. A. Curr Opin Struct Biol 2005, 15, 137.

13. Marshall, S. A.; Vizcarra, C. L.; Mayo, S. L. Protein Sci 2005, 14,

1293.

14. Zhang, N. G.; Zeng, C.; Wingreen, N. S. Proteins 2004, 57, 565.

15. Dahiyat, B. I.; Mayo, S. L. Science 1997, 278, 82.

16. Marshall, S. A.; Mayo, S. L. J Mol Biol 2001, 305, 619.

17. Huang, P. S.; Love, J. J.; Mayo, S. L. J Comput Chem 2005, 26,

1222.

18. Lazaridis, T.; Karplus, M. Proteins 1999, 35, 133.

19. Kuhlman, B.; Dantas, G.; Ireton, G. C.; Varani, G.; Stoddard, B. L.;

Baker, D. Science 2003, 302, 1364.

20. Rocchia, W.; Alexov, E.; Honig, B. J Phys Chem B 2001, 105,

6507.

21. Sitkoff, D.; Sharp, K.; Honig, B. J Phys Chem 1994, 98, 1978.

22. Gordon, D. B.; Marshall, S. A.; Mayo, S. L. Curr Opin Struct Biol

1999, 9, 509.

23. Gilson, M. K.; Sharp, K.; Honig, B. J Comput Chem 1987, 9, 327.

24. Creighton, T. E. Proteins: Structure and Molecular Properties; W.H.

Freeman: New York, 1993.

25. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller,

A. H.; Teller, E. J Chem Phys 1953, 21, 1087.

26. Desmet, J.; Spriet, J.; Lasters, I. Proteins 2002, 48, 31.

27. Desmet, J.; De Maeyer, M.; Hazes, B.; Lasters, I. Nature 1992, 356,

539.

10 Vizcarra et al. • Vol. 00, No. 00 • Journal of Computational Chemistry

Journal of Computational Chemistry DOI 10.1002/jcc


