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Abstract: We adapt a combinatorial optimization algorithm, extremal optimization (EO), for the search problem in
computational protein design. This algorithm takes advantage of the knowledge of local energy information and system-
atically improves on the residues that have high local energies. Power-law probability distributions are used to select the
backbone sites to be improved on and the rotamer choices to be changed to. We compare this method with simulated
annealing (SA) and motivate and present an improved method, which we call reference energy extremal optimization
(REEO). REEO uses reference energies to convert a problem with a structured local-energy profile to one with more
random profile, and extremal optimization proves to be extremely efficient for the latter problem. We show in detail the
large improvement we have achieved using REEO as compared to simulated annealing and discuss a number of other

heuristics we have attempted to date.
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Introduction

Computational protein design seeks to use computational means to
design amino acid sequences that can fold into a desired structure,
or even, to achieve a desired function. In the past 10 years there
have been significant achievements in this area, and a few land-
mark results are: the 1997 full-sequence redesign of a 28-residue
zinc-finger structure without zinc,' the 2003 design of a 93-residue
protein with a structure not previously seen in nature,? and the
2004 design of a biologically active enzyme (triose-phosphate
isomerase).? For recent reviews, see Refs. 4-6.

In spite of the rapid progress and encouraging achievements,
the dream of fully-automated, full-sequence design of an arbitrary
structure still faces some significant challenges. One is the form
of the energy function that can be used to select appropriately
an amino acid sequence that is compatible with a given structure,
and another is an efficient search algorithm that can then select an
energetically optimal solution from an astronomically large num-
ber of protein sequence choices. In this article, we will focus on
the second challenge, the computational search probelm in protein
design. We introduce a new stochastic combinatorial optimiza-
tion algorithm that, to our knowledge, is applied to computational
protein design for the first time, and we show that, with proper
consideration for the energy landscape of the problem, it performs
significantly better than the search problem of choice, simulated
annealing.

We will consider the search problem with a rigid backbone,
with an energy function that can be written as single or pair-
residue terms, and a discrete choice of amino acid conformations
from a backbone-dependent rotamer library (i.e., a collection of
energetically favorable and statistically significant side-chain con-
formations based on backbone torsion angles).” This goal is to
find the global minimum energy conformation (GMEC), and this
is the problem studied in Ref. 1 and in each fixed-backbone stage of
Ref. 2. The search space here is enormous: with on average about
100 rotamers/backbone site, the design of a 80-residue protein will
require searching through 10080 conformation choices. This search
problem in fact has been shown to be NP-complete in Ref. 8, and
Ref. 9 shows further that it is also hard to approximate with a the-
oretical guarantee. Despite the pronounced difficulties, a number
of search algorithms have been used. Dead-end elimination (DEE)
is the main method used in Ref. 1. It is a pruning algorithm that
eliminates the rotamer choices that by energy comparison cannot
be in the GMEC. In a series of papers,'%!3 the inequalities used
for energy comparison have been progressively improved, resulting
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in more and more rotamers eliminated. This method is determin-
istic and exact. Yet, with a fine choice of rotamers necessary for
a realistic design problem, DEE often leaves too many states after
all possible eliminations have been carried out, too many still for
exhaustive search. Another class of search algorithms is stochas-
tic, and the most efficient is simulated annealing (SA). A random
walk is carried out in the conformation space using the Metropolis
acceptance/rejection criterion with a gradual lowering temperature
parameter. This is the method used in Ref. 2 (the code used in Ref. 2
has been released as the computer package RosettaDesign).!* 13

Simulated annealing requires only the total energy of a particu-
lar conformation, and it either accepts or rejects this conformation
based on this energy (and the current temperature). In cases where
the energy function can be written as single and pair-residue terms,
as is the problem studied here, the total energy can be written as a
sum of local energies, and we have adapted a stochastic combinato-
rial optimization method that can use this local-energy information
for efficient searches. In short, the method tries to improve on the
backbone sites that have high local energies, and the new rotamers
it selects are the ones with good local energies. Power-law prob-
ability distributions are used for site and rotamer selections, and
this search algorithm, called extremal optimization (EO), has been
shown to give comparable results with simulated annealing. This
extremal optimization method was first developed for the hard opti-
mization problems in the physics sub-field of spin glass by Boettcher
and his co-workers.'®2% It has also been applied to a number of
classic optimization problems such as graph partitioning, graph col-
oring, and the traveling salesman problem with results comparable
with and sometimes superior than those achieved with simulated
annealing.'® In this article, we adapt EO for protein design and
study further the energy landscape of the problem. We realize that
there is in fact an intrinsic structure in the local energies of the
low-energy conformations; that is to say, the low-energy confor-
mations have similar local-energy profiles that are consistent with
the backbone shape and the characters of the physical interaction
energies. This understanding aids our algorithm development signif-
icantly. By subtracting a set of reference local energies, we convert
a structured local-energy profile to a random one, and the stochastic
power of extremal optimization can then be fully used. We demon-
strate that this new version of EO, which we call reference energy
extremal optimization (REEO), is dramatically more efficient than
the first adaptation of extremal optimization and simulated anneal-
ing. We believe that this result is a general one: for problems whose
low-energy states have a structured local-energy profile, REEO will
perform better than EO.

Methods

Test Proteins, Rotamer Choices, and Energy Function

We test our algorithms on a set of five proteins taken from Ref. 14.
These are shown in Table 1 and are the ones whose sequences were
successfully redesigned using the RosettaDesign program in Refs.
14, 15. As is customary in protein design calculations, a rotamer
library is used to model the side-chain conformations of each amino
acid, resulting in a discrete number of conformation choices. We
use the standard Dunbrack backbone-dependent rotamer library’
(release from May 2002) included in RosettaDesign. With all amino
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Table 1. Five Test Proteins.

Residue number Rotamer

PDB code Short name (start-stop) number (Nyot)
1HZ5 Protein L 62 (1-62) 4295
1AYE Procarboxypeptidase 70 (10-79) 4812
1LMB A-repressor 87 (6-92) 5568
1URN UIA 96 (2-97) 6475
2ACY Acylphosphatase 98 (1-98) 6520

acids allowed at all positions, the default option in the program
selects about 70 rotamers per residue (see Table 1).

The energy function included in RosettaDesign has been
described in detail in the supplementary materials of Refs. 2, 14. It
is a linear sum of several terms including van der Waals, solvation,
probablistic single-rotamer and pair-rotamer energies, and a refer-
ence energy for each of the 20 amino acids. In particular, the solva-
tion energy uses the Lazaridis and Karplus implicit solvent model*
which is a function of atom pairs. In fact, if we use i, to denote the
r-th rotamer at the backbone position i and j; to denote the s-th
rotamer at position j, all energy terms included in RosettaDesign are
single-residue (E(i,)) or pair-residue (E(i,,js)) terms. For a partic-
ular rotamer choice, the total energy for this conformation is then

E =) EG)+ ) Elrjs)- )
i i<j
And if we define
Elirjs) = Elirojo) + ~ )1 + - )1 , @

where N is the total number of residues of our given backbone, then
it is easy to show?*

E =Y Eirjs) 3

i<j

which involves pairwise terms only.

With such a pairwise energy, we can convert our computational
search problem for the GMEC to a graph problem.” In Figure 1, the
large circles represent backbone positions (i and j), and the small
circles represent rotamer choices (i, and j;). The weight on each
edge is the energy £(i,,js) [Eq. (2)]. There is no edge between
two rotamers at the same site. Equation 3 then says that the total
energy of a configuration is the total weight of a complete graph
with one rotamer choice at each site. Our goal is therefore to find the
minimum-weight complete graph among the astronomically large
number of choices.

*Note this conversion to a graph problem can not be accomplished in a
straightforward fashion for many-residue energy terms, for example a sol-
vation energy that is the function of the total exposed (or buried) surface area.
However, methods have been devised to convert this many-residue energy
function to include single and pair-residue terms only. See ref. 21,22.
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Figure 1. The search for GMEC can be considered as a search for the
minimum weight complete graph. The large circles represent backbone
sites (i and j), and the small circles represent rotamer choices (i, and
Js)- The weight on each edge is the energy £ (i,, j;) [Eq. (2)]. There is no
edge between two rotamers at the same site. Then Eq. (3) says that the
total energy of the configuration is the total weight of a complete graph
with one rotamer choice at each site.

For comparison a random-energy case RANDOMG62 has also
been studied. In this problem, the backbone and rotamer choices of
1HZS5 are used but the energies are random, i.e., the energy & (i, j;)
on each graph edge [see Fig. 1 and Eq. (3)] is chosen randomly (and
uniformly) between —1 and 1.

Simulated Annealing with Quenching

The search method of choice in RosettaDesign is simulated anneal-
ing (SA), which in fact does not require the energy to be pairwise
(only the total energy of a conformation is needed). Starting from a
random initial state, a random rotamer at a random site is selected
for a new state. The energy of this new state is then calculated and
compared with the energy of the present state, and the Metropolis
criterion is used to decide whether the new state will be accepted
or rejected. In simulated annealing, the temperature parameter in
the Metropolis criterion is gradually reduced. At a higher temper-
atue, states with larger energy increases from the previous states can
be accepted than at a lower temperature. This creates larger energy
fluctuations in an attempt to escape from meta-stable energy wells in
the search for the GMEC. As the temperature drops, the fluctuations
become smaller as only smaller energy increases are allowed and
the system settles into an energy well. Figure 2 shows the energy
progression of a typical SA run.

In our program, the temperature is reduced from 100 to 0.3
kcal/mol, the same as in the RosettaDesign program, and it is
reduced in a geometric fashion, with a specified reduction ratio. We
have tested three temperature reduction ratios (1) 0.79 which results
in 25 temperature cycles, Neyele = 25; (2) 0.89 with Neyele = 50;
and (3) 0.943 with N¢ycle = 100. To compare the three temperature
reduction schedules, we fixed the total number of moves in each
simulation to 2500 x N, Where N, is the total number of rotamers
used for the protein to be designed. This means 100 X Ny moves
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per cycle for Neyele = 25, 50 X Ny for Neyele = 50, and 25 X Nyo
for Neyele = 100.

At the end of each SA run, we also “quench” the final state; that
is to say: (1) a random ordering of the backbone sites is chosen; (2)
at each site all possible rotamers are selected one by one, with the
rotamers at other residues fixed, and total energies are calculated;
(3) the rotamer that produces the lowest total energy is chosen;
(4) we continue this process until no lower energy is found for all
sites of an ordering. This process ensures that no single-rotamer
moves can lower the energy. It has been noted? that quenching can
produce large improvement in the lowest energy found with modest
additional cost in computer power. In our program, we have gone
one step further by including a round of pair-rotamer quenching after
exhaustive single-rotamer quenches: for each randomly chosen pair
of backbone sites, all possible rotamer pairs are selected and the
pair that gives the lowest energy (with rotamers at other sites fixed)
is kept. Because pair quenching is expensive, we only carry out one
round in which each site is quenched with each other site once in a
random order.

The Extremal Optimization Method

In a series of papers, Boettcher and co-workers introduced a
combinatorial optimization method called extremal optimization
(E0),'6-20 originally applied to a class of hard optimization prob-
lems in a condensed matter physics sub-field called spin glass. In
those problems there are usually a large number of positions, each
position often has two state choices (often called up and down spins),
and for each two positions is an interaction energy that depends on
the spins at those positions. The goal is to find a low-energy con-
formation among an enormous number of configuration choices.
Simulated annealing is also a well-tried method there, needing only
the total energy of a conformation. The EO idea is to use the local
energy information of the problem and improve on the sites that
have high local energies.

1. Start with a random state.

2. Write the total energy as a sum of local energy terms £ =

3. Rank local energy & : Eny = Ene) = - .-
the rank of site IT(k).

4. Make a random change at site [1(k) where the rank k is cho-
sen from a power-law distribution with exponent —t: P(k) ~
k=T, accept the change unconditionally, compute the new local
energies, and go back to 3 for the next iteration.

> Envy where k is

The power-law distribution used in EO is biased toward the site
with the highest local energy Er(). It does not always improve
on that site, as that will often result in the same site picked for
change. Instead it gives all sites chances for change with a biase
toward the high local-energy sites. It is found'®2° that a  roughly
in a range from 1.1 to 1.6 is the best for many of the optimiza-
tion problems studied, including graph partitioning, graph coloring,
and spin glass (max-cut) problems. Note that T = 0 corresponds to
choosing the position randomly (from a uniform distribution) and
T = oo means choosing the highest local-energy position always.
With this power-law distribution, Refs. 16-20 found that EO is
often comparable with SA, and in some cases it performs better
than SA.
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Figure 2. Energy progression for a typical simulated annealing and
a typical extremal optimization run for a protein design problem. As
temperature drops in a simulated annealing run, energy drops slowly,
and fluctuations reduce. For an extremal optimization run, energy
drops quickly in the initial stage, and large fluctuations are maintained
throughout the simulation.

Our First Adaptation of Extremal Optimization for Protein Design

The adaptation of EO to computational protein design is straight-
forward. Our pairwise energy, Eq. (3), can be easily written in the
local-energy form required by EO, if we define the local energy
(often also called fitness, borrowing a term from evolution)

&= & &
J#

Fitness (kcal/mol)

—— E=-192.952
—— E=-192.976
—— E=-193.005

-15 : :

0 20 40 60
Residue number

(a) 1HZ5

Strictly speaking Y, & from Eq. (4) equals two times the total
energy in Eq. (3), but this will not affect the rankings in EO
moves. On our graphical representation of energy in Figure 1, this
local energy function &; [Eq. (4)] is simply the sum of all weights
on the “fan” of edges emanating from a rotamer on a particular
site.

One complication from the protein design problem is that at
each backbone site, we have many rotamer choices. In spin glass
problem usually there are only two choices, and a move involves
changing from the up spin to the down spin and vice versa. Here
which rotamer should we choose to change into? A random choice
of rotamers is an option. A choice of the rotamer that gives the
best local energy is another. Borrowing from the idea of the EO for
selecting sites, we can allow both to happen when we draw from a
power-law distribution (k') =7 where k' is the rank of local energy for
the rotamers at this site and 7’ is a second exponent. Our extremal
optimization method adapted for computational protein design is
then:

1. Start with a random state.
2. Write total energy as a sum of local energy terms

2E = Z & 5,‘:25;;‘ (5)
i=1,..N

,,,,, Jj#i
3. Rank local energy by site
Enmy =€ne) = = E&nw (6)

where k is the rank of site index IT(k).
4. Pick a rank from a power-law distribution with exponent —t:
P(k) ~ k~* which is biased toward the high local energy sites

Fitness (kcal/mol)

—— E=-552.281
—— E=-552.698
—— E=-553.536

20 40 60
Residue number

(b) RANDOMG62

Figure 3. The local-energy profile of three low-energy states for (a) IHZS, using RosettaDesign energies,
and (b) RANDOMG62, with the same backbone and rotamer choices as 1HZS but using random energies. The
realistic problem (a) shows a structured local-energy profile while the random-energy problem (b) shows a

nonstructured local-energy profile.
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5. Atsite [1(k) = i, rank the rotamer r using &;, = 3_.; &, (with
rotamers s at all other sites j fixed by the current state)

& & <&

. < < ...
'y — Yre) — — T (Mot (i) (7)

where k' is the rank of rotamer index IT' (k") and M,y (i) is the
number of rotamers at this site i.

6. Pick a rotamer index k' from a power-law distribution with
exponent —t": P(k') ~ (k)" which is biased toward the low
local-energy rotamers.

7. Change the rotamer at site TT1(k) to rotamer IT'(k"), accept it
unconditionally, and go back to 2 for the next iteration.

The two exponents, one for site selection (7) and one for rotamer
selection (z’), need to be determined from optimization. Note that
one step of an EO run will take more time than one step in a SA
run. In a step of a SA run, only one total energy of the state under
consideration is calculated. In a step of an EO run, local energies
must be calculated and sorted and once a site is chosen for the move,
local energies for all the rotamers at that site need to be calculated
and then sorted.

We have used heap sort for both sorting steps in EO. In spin
glass calculations, in which there are millions of sites and millions
of local energies to be sorted, approximate heap sort has been found
to be sufficient and efficient.”’ In our problem, our sorting need
is divided into two parts: first sorting by site (the number of sites
ranging from 62 to 98 for the five test proteins) and then sorting by
rotamer (about 70 per site). We found that approximate heap sort
does not save us much time and therefore have used exact heap sort
for all EO calculations. Roughly, one EO move costs about the same
time as 25 SA moves. For each run we have therefore used 100 X Ny
EO moves as compared to 2500 x Ny, SA moves.

Reference Energy Extremal Optimization

In spin glass problems, the interaction energies are random and all
positions are essentially equal. In our protein design problems, on
the other hand, the physical interaction energies (used in RosettaDe-
sign) and the shapes of the protein backbone may result in certain
sites having intrinsically lower (or higher) energies than others.

We looked into the low-energy states of 1HZ5 with realistic and
random energies respectively. In Figure 3 we plot the local energies
&; for the three lowest total energies found in our simulations. It
is clear that the local-energy profiles of the low-energy states in
the realistic-energy problem (a) are structured, i.e., they are small
perturbations of each other while maintaining an overall energy
composition, with several well-defined valleys and peaks. On the
other hand, the low-energy states in the random-energy problem do
not exhibit a distinctive local-energy profile.

This local-energy profile complicates the EO searches. Sites with
lower local energies will attract most improvement attempts, yet
there is not much room for improvement. On the other hand, sites
with higher local energies may in fact have more room for improve-
ment. With this in mind, we developed a new method which we call
reference energy extremal optimization (REEO). During site selec-
tion, instead of comparing and sorting local energy &; we compare
and sort the difference between the local energy and a reference
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local energy Sl.R, ie.,

(Ena — &) = (Ene — &) = - = (Enw — Eiw)- @)

In this way, we compare the potential for improvement for these
local energies (or the improvability of local energies) and improve
on the sites with a higher potential for improvement.

Our next question is then what reference energy we should use.
If we knew the GMEC, then using its local energies as reference
energies would be the most efficient. Positions with local energy
above that reference local energy will be improved on, and if we
consider an EO run as a dynamical system, the reference state tends
to serve as a target that can attract other states to it through EO
moves. Without the knowledge of GMEC, we need to find refer-
ence energies that can approximate the energy profile of the GMEC.
A natural choice is using the local energies of the lowest-energy
state achieved so far in the simulation. Among several reference
choices tested (this will be discussed later), this has proven to be
the best.

Search Parameter Optimization

We now need to have a measure to determine for SA which Neycle
to use and for EO and REEO the power-law exponents 7 and 7.
For each search method with generic parameters {P}, we carry out
100 independent runs for the i-th protein in our protein set and the
average energy is denoted E.fli)g({P}). And if we use Elggn to denote
the minimum energy ever found for the i-th protein, then we can
define a quality measure D ({P}) for the parameter set {P}:

Ef,({P}) — EV)
D{PYh =) % ©

i

where N; is the number of residues for the i-th protein and i sums over
the test protein set. What this measure does is that for a particular
parameter set { P} and for a test protein set, find the deviation from the
minimum energy (ever found) per residue. We will use this measure
to find the optimal Ncycle for SA and 7 — v’ combination for EO and
REEQO: the smaller D({P}) the better.

Results

Simulated Annealing

The results for SA runs with (Neyele = 25, 50, and 100) are shown
in the supplementary materials, as are results of quenching after SA
runs. Quenching improves results significantly for all temperature
reduction ratios, more for the runs with fewer cycles than those
with more cycles. This is reasonable as, with a sufficiently large
number of steps per cycle, runs with a slower temperature reduction
rate tend to explore the energy landscape more thoroughly. On the
other hand, we observe that after single and pair-rotamer quenching,
runs with fewer temperature cycles (Neyce = 25) achieve slightly
better results than those with more cycles (Neycle = 50, 100). Using
our measure Eq. 9, D(Neyele = 25) = 0.0611, D(Neyele = 50) =
0.0715, and D(Neycle = 100) = 0.0705 (see Table 3).
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Table 2. SA, EO, and REEO Search Results.
PDB code Method Average Standard dev Minimum Search time Quench time T 7/
1HZ5 SA —192.448 0.544 —193.005 101 44

EO —192.492 0.580 —193.005 119 45 0.4 4.0

REEO —192.915 0.233 —193.005 121 45 1.4 2.5
1AYE SA —211.696 0.474 —212.177 133 72

EO —211.784 0.349 —212.154 156 71 0.4 4.0

REEO —211.918 0.226 —212.082 136 71 1.4 2.5
ILMB SA —254.671 0.581 —255.571 202 135

EO —254.607 0.624 —255.245 209 132 0.4 4.0

REEO —255.399 0.168 —255.571 195 133 1.4 2.5
1URN SA —278.762 0.855 —280.009 267 221

EO —279.220 0.761 —280.009 274 213 0.4 4.0

REEO —279.943 0.156 —280.171 286 208 1.4 2.5
2ACY SA —301.069 1.322 —302.943 297 225

EO —299.693 1.183 —302.375 290 217 0.4 4.0

REEO —302.078 0.806 —302.963 279 219 1.4 2.5
RANDOMG62 SA —520.842 6.568 —536.590 100 44

EO —539.874 3.884 —550.652 118 45 1.0 2.5

REEO —537.921 4.379 —550.781 121 45 0.6 35

Average, standard deviation, and minimum energies are for 100 independent runs, including quenching, and are in kcal/mol.
Search and quench time are in sec; Each calculation is done on a 2.8 GHz Xeon processor. The energy matrix € (i, )
was calculated and read into memory beforehand; this time was not included.

In Table 2, we show the average, standard deviation and min-
imum energy results for 100 independent independent SA runs
(including single and pair-rotamer quenching). The temperature
reduction ratio used is 0.79 (Neycle = 25 with 100 x Ny moves
per cycle; full results in supplementary materials). Search time is
the average time (in sec) per run, and quench time is the average
time (in sec) per run for single plus pair quenching. In our computer
studies, a Linux cluster of 2.8 GHz Xeon processors was used. Each
program is run on a single processor; no parallel processing is used
except for running (independent) programs with different random
seeds simultaneously on different processors. The pairwise energy
matrix £(i,,Jjs) for each protein in Table 1 was calculated before-
hand and stored in a file, involving about 10 million nonzero entries
for 1HZ5 and about 20 million for 2ACY (this calculation took sev-
eral hours for each protein). These energy matrices were read into
memory before search was conducted; the reading time was less
than 60 s and is not included in the times reported in Table 2 or
subsequent tables on search results.

Extremal Optimization

The energy progression of a typical extremal optimization run for
a protein design problem is shown in Figure 2. As compared to
a typical simulated annealing run for the same problem, we see
the same behavior as observed for SA/EO comparisons in other
optimization problems (for example, see ref. 17). The EO run starts
with high energies but very quickly finds some relatively low energy
state. It then maintains relatively large fluctuations as it searches for
the GMEC. The large fluctuations are possible because all states in
the EO run are accepted unconditionally, i.e., there is no rejection
of states as there is in simulated annealing. On the other hand, the
fluctuations are also controlled by the 7 and t’ parameters, as the
move is biased toward the site with the worst local energy and the
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rotamer to be selected is biased toward the one with the best local
energy.

We have also studied the effect of quenching at the end of EO runs
(results in supplementary materials). Here single-rotamer quench-
ing does not improve the results much. This is expected because
single-rotamer quenching is simply an extremal optimization run
with random site selection (tr = 0) and best rotamer selection
(t' = 00). On the other hand pair-rotamer quenching does improve
the average energy results.

The EO results for the five-protein set is shown in Table 2. As
explained before we have chosen 100 x N, EO moves that take
about the same time as 2500 x N,y SA moves. For the five proteins
with realistic energy, 56 T — t’ combinations have been tried (t =
0,0.2,04,...,1.2andt' = 1.5,2.0,...,5.0). To find acombination

Table 3. SA, EO, and REEO Parameter Optimization Using the Quality
Measure D({P}) [Eq. (9)] (in kcal/mol) and the five proteins in Table 1.

Method Parameters D{P})
SA Neyele =25 0.0611
Neyele = 50 0.0715

Neyele = 100 0.0705

EO t=04,7 =40 0.0674
=067 =35 0.0690

=087 =40 0.0691

REEO t=14,7=25 0.0194
t=18,17=25 0.0205

t=18,7=20 0.0211

For each method the top 3 parameter combinations are shown. The measure
is not very sensitive with parameter change. EO achieves comparable results
to SA whereas REEO performs much better than SA and EO.
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of t — 7/ for our test protein set, we use the measure D({P}) defined
in Eq. (9). The three combinations that give the lowest D({P}) are
D(0.4,4.0) = 0.0674, D(0.6,3.5) = 0.0690, and D(0.8,4.0) =
0.0691. Note these numbers are similar to what are achieved using
SA (see Section “Simulated annealing” and Table 3).

Here EO achieves results comparable to SA and often slightly
better results than SA. The optimal EO parameters foundare t = 0.4
and T/ = 4.0, i.e., a fairly flat power-law for site selection and a
fairly steep power-law for rotamer selection. In fact this combina-
tionresembles a slightly relaxed quench. (We have mentioned before
that quench is 7 = 0 and t/ = 00.) The result is not sensitive to
the T — t’ variation (see supplementary materials). The average,
standard deviation, and minimum energy found for this optimal
7 — t/ combination are reported in Table 2.

For the random-energy case (RANDOM®62), 128 v — 7/ com-
binations have been tried, with t = 0,0.2,...,3.0 and v/ =
2.0,2.5,...,5.0. Here, EO achieves much better results than SA.
Average energy and minimum energy found are both significantly
lower, and the standard deviation of the energy distribution has been
reduced as well. The best exponents here are 7 = 1.0 and t/ = 2.5,
i.e., much closer to the T = 1.1 — 1.6 choices found in many of the
random-energy optimization problems.'¢-20

The fact that EO achieves much better results than SA for the
random-energy case and only slightly better for the realistic-energy
problems is another evidence of the existence of an intrinsic local-
energy profile for real proteins [as shown Fig. 3a], i.e., local energies
at certain sites tend to be always higher than those at other sites, EO
site selection then tends to pick these sites for improvement more
often than others. It is therefore understandable why our optimized
EO site-selection power-law exponent 7 is so small (0.4-0.6); this
helps to give a more even chance for site selection.

Reference Energy Extremal Optimization

Our REEO results using this choice of reference energy are also
presented in Table 2. The same number of EO moves are attempted
as the regular EO (100 x N;o), and 70 T — 7’ combinations have been
tried, witht = 0.4,0.6,...,3.0and 7" = 1.5,2.0,...,3.5. Asinthe
case of EQ, to find a combination of T — 7’ for our test protein set, we
use the measure D({P}) defined in Eq. (9). The three combinations
that give the lowest D({P}) for REEO are D(1.4,2.5) = 0.0194,
D(1.8,2.5) = 0.0205, and D(1.8,2.0) = 0.0211.

As compared to EO we observe significant improvement in the
average and standard deviation of the lowest energies found, and in
D({P}) measure (see Table 3). Visually, the results are dramatic. In
Figure 4, the distributions of energies found for 100 SA, EO, and
REEO runs, using the best parameters found for these methods and
the test-protein set (Neycle = 25 for SA, 7 = 0.4 and " = 4.0 for
EO, and 7 = 1.4 and 7’ = 2.5 for REEO), are plotted together
for the five-protein set. REEO achieves signficiant improvement as
compared to regular EO and SA. In particular, for the case of 1HZ5
(Fig. 4a), the lowest energy ever found in all simulation runs is
—193.00548 kcal/mol. This energy is found 29 times in 100 SA
runs, 41 times in 100 EO runs, and a significantly higher 83 times
in 100 REEO runs (see supplementary materials).

The REEO results in Table 2 also shows that with the subtraction
of reference local energies, the optimal exponents for EO now are
t = 14 and v/ = 2.5, much more like the exponents reported
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for random-energy problems than those quench-like combinations
found with the first EO. This clearly shows that the use of reference
energies indeed has converted a structured problem into a more
random, unstructured problem, for which the power of the extremal
optimization algorithm can be fully utilized.

In Table 2 and Figure 4f we also show REEO results for the
random-energy case RANDOMG62. The same 128 t — ¢’ combina-
tions have been tried, as with the EO runs for RANDOMG62, with
7=0,02,...,3.0,and ' = 2.0,2.5,...,5.0. Here the results are
not as good as the straightforward EO results, and the exponents are
more quench-like (t = 0.6, 7" = 3.5).

We have also studied the effect of quenching on REEO (results in
supplementary materials). Before any quenching, REEO achieves
better average and minimum energy than regular EO. Single-rotamer
quenching does little to EO or REEO, and pair quenching improves
the results quite noticeably.

Discussion and Conclusions

Summary

We have studied the combinatorial optimization problem of com-
putational protein sequence design with a fixed backbone. With a
choice of rotamer library and a pair-residue energy function, as
it is used in RosettaDesign, we have a minimum-weight graph
search problem. We have adapted the extremal optimization algo-
rithm, originally developed in the field of computational spin glass
physics, to our search problem in protein design. We systematically
explore the optimal exponent combinations and compare our results
with those obtained from simulated annealing (with quenching). We
notice a significant boost in performance when a reference energy
is subtracted during the EO backbone site comparison process and
show that this REEO performs significantly better than both SA and
regular EO. We note that this is the case because we have converted
a search problem with a structured local energy composition (due to
the particular 3D structure of the backbone and the intrinsic physical
properties of rotamer interactions) to one that is more random, and
thus we are able to use the full power of the extremal optimization
algorithm.

Can We Improve Our Results Further?

‘We have tried several other variations of REEQO; none achieved better
results than the one described earlier. We mention these ideas here
as they may help the reader developing better algorithms.

We have tried two other choices for reference energy. The first
is what we call rotamer minimum energy. For each rotamer, we can
find the minimum local energy this rotamer can give by finding the
minimum pairwise energies it forms with all rotamers at other sites
of the protein. This energy gives a measure of lowest local energy
this rotamer can achieve and can be used as reference energy when
this rotamer appears in a state in the simulation. Another choice is
what we call site minimum energy, which, for a particular site, is
the minimum of all the rotamer minimum energies at this site.

We have also asked whether it is better to use the absolute value
of this difference for comparison, i.e.,

€nay = Efy | = [Ene) — Ep)l = - = |[Enw) — Efan|- (10)
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Figure 4. Energy distributions for 100 simulated annealing, extremal optimization, and reference energy
extremal optimization runs, using Neycie = 25 for SA runs and the best overall T — ¢’ combination for EO
and REEO runs (t = 0.4 and 7" = 4.0 for EO and t = 1.4 and 7’ = 2.5 for REEOQ, see Table 2).
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This appears to have given more weight for changes to both the case
when the local energy is much higher than the reference energy and
the case when the local energy is much lower than the reference
energy.

Our local energy is defined after scaling [Eq. (2)], through which
process we eliminated the single-rotamer energies and placed their
weights evenly on the edges linked to the rotamers. Because only
the total energy is minimized in our problem, we also can imag-
ine a different kind of scaling which absorbs more weight to the
single-rotamer terms from pair-rotamer terms while keeping the
total energy the same, trying, in fact, to make a many-body problem
more like a one-body problem.

As shown in Figure 5, as we get to the later stages of an EO run,
it is more and more difficult to find a state with a lower energy. The
number of moves (shown in solid line) needed increases dramat-
ically, and the number of sites that need to have rotamer changes
from one lowest-energy state so far to another also increases. In early
stages, it often take just tens of moves and just 2 or 3 site changes to
produce a lower energy, but later it takes tens of thousands of moves
and when a new lowest energy state is found about one-fifth of the
sites have changed (13/62). In the physics literature,!” these large-
scale changes are called avalanches—a large cumulation of small
moves that results in a large-scale change in the state of the system.
Our question is then: is there a better way to identify more efficiently
the coordinated moves needed to produce such an avalanche? Pair-
rotamer quenching is in fact such a move, in which two rotamers
change together. We have seen (in supplementary materials) that
they produce rather significant gains. We have also explored the
idea of decomposing the total energy in not local fan energies but
energies of paths that can cover the complete graph. Sites along the
path will then be able to change together. This idea is still at an early
stage of development.

There is an interesting stochatic algorithm FASTER?%?7 that in
fact makes a large number of moves at the same time. Itis shown that
with some improvement?’ this method performs significantly better

-y
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Figure 5. The number of rotamer changes (in circle) and the number
of simulation moves taken from one current lowest energy found to the
next are plotted for a typical extremal optimization run for the 62-residue
1HZS protein. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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than simulated annealing and can find low energy states extremely
rapidly. We have done some preliminary study of this algorithm and
hope to investigate its dynamics more in the future.

We have noted that quenching is fact a type of EO, with 7 = 0
and v = oo. In our EO and REEO, we start with a combination
(t,1’) and reach the quenching stage with T = 0,7’ = co. We can
imagine a gradually reduction of (t, t’), imitating the temperature
reduction schedule in simuated annealing. We have not studied this
implementation.

Finally, it is interesting to note that while here we use local
energies extensively in EO and REEO searches, they have also been
used to biase Monte Carlo and simulated annealing searches (see
for example Refs. 28-30).

Conclusions

The hard optimization problems that EO has been applied to, such
as spin glass, graph partitioning, graph coloring, and the travel-
ing salesman problem, are all random-energy problems.'® For these
cases, EO has been shown to be comparable with or sometimes
better than SA. For our design problem, with low-energy states hav-
ing a consistent local-energy profile, the subtraction of reference
local-energies, as carried out in REEO, achieves significantly better
results than EO or SA. We believe our result is general. Further,
the existence of such a low-energy local-energy profile (consistent
with REEO results) suggests that a “funnel”-like energy landscape
may exist for the fixed-backbone protein design problem, as has been
suggested for the protein folding problem (see for example Ref. 31).
That is to say, the overall funnel shape of the design/folding energy
landscape (which is superimposed with smaller scale roughness of
local maxima and minima) drives the dynamic process of design and
folding, resulting in a stable design/folding sequence. Because of
this dominant bias, the low-energy states are similar to the GMEC.
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