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We present an efficient method for the calculation of free energy landscapes. Our approach involves
a history dependent bias potential which is evaluated on a grid. The corresponding free energy
landscape is constructed via a histogram reweighting procedure a posteriori. Due to the presence
of the bias potential, it can be also used to accelerate rare events. In addition, the calculated free
energy landscape is not restricted to the actual choice of collective variables and can in principle
be extended to auxiliary variables of interest without further numerical effort. The applicability
is shown for several examples. We present numerical results for the alanine dipeptide and the
Met-Enkephalin in explicit solution to illustrate our approach. Furthermore we derive an empirical
formula that allows the prediction of the computational cost for the ordinary metadynamics variant
in comparison to our approach which is validated by a dimensionless representation.
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INTRODUCTION

The characteristics and the behaviour of physical sys-
tems can be understood and predicted by the investiga-
tion of the underlying free energy landscape. The knowl-
edge of this often complex surface allows one to deter-
mine reaction pathways for chemical reactions as well
as stable configurations for proteins [1–5, 9] and glass-
forming systems [6–8]. A successful tool for these studies
are computer simulations which help to explore the char-
acteristics of the system in detail. Naturally, during the
last years a lot of effort has been spent to develop novel
efficient and time-saving methods.
Specifically in protein sciences, the free energy approach
is promising for the investigation of unknown folding
mechanisms. To achieve a proper description of the
dynamical behaviour, the trajectories may be projected
onto a set of well chosen collective variables [1, 2] which
allow to define an effective energy landscape. These vari-
ables can be interpreted as effective reaction coordinates
spanning the phase space respectively the free energy
space of the system. Well known collective variables are
the number of native contacts, dihedral angles and the
essential eigenvectors or principal components of the pro-
tein [1, 2]. Thus a set of well suited reaction coordinates
offers the opportunity to describe the folding or unfolding
of a protein adequately without too much loss of infor-
mation.
However, it has to be mentioned that in some cases suit-
able collective variables are hard to determine. The in-
vestigation of the underlying dynamics of the system can
then be performed by computational methods like dis-
crete path sampling [8, 10] and transition path sampling
[11, 12] to overcome this problem. These techniques rep-
resent computational algorithms which are not depen-
dent on the usage of collective variables.
Experiments and computer simulations have shown that

naturally occuring proteins often have free energy land-
scapes with global funneling properties [1–3, 5, 8, 9].
Nevertheless local minima can occur which represent
trapped conformations of the protein [1, 9]. The transi-
tions between these minima which are called rare events
occur on timescales which are typically not accessible in
computer simulations. Over the last years several nu-
merical methods have been developed to accelarate rare
events and to compute the underlying free energy land-
scapes. In the following we will mention the most com-
mon ones which have been well established in the scien-
tific community.
Often used methods are thermodynamic integration [13–
15] and free energy perturbation [16]. These techniques
are well suited to calculate static properties like hydra-
tion energies but normally fail in the calculation of free
energy differences between specific folding mechanisms.
To overcome this situation and to gain insight into dy-
namical quantities, more sophisticated ideas have to be
adopted.
The umbrella sampling method [17] allows to determine
free energy differences via the corresponding probability
distributions of the whole accessible phase space. An ef-
fective additional biasing potential drives the system to
more unlikely regions such that the whole phase space is
visited. This idea has also been used in adaptive force
biased calculations [18, 19], steered as well as adiabatic
Molecular Dynamics simulations [20, 21] and multicanon-
ical sampling approaches [22–24]. Another promising
method for the investigation of folding properties is the
replica-exchange algorithm [25].
Specifically in the last years several techniques have been
proposed which employ an adaptively varying bias po-
tential as an estimate for the free energy. Examples
for these methods are the Metadynamics algorithm in
its several variants [26, 27] and the related local eleva-
tion method respectively the conformational flooding ap-
proach [28, 29].
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The main idea of the Metadynamics method relies on
a successive flattening of the free energy landscape by
an additional potential energy in form of small gaussian
hills which are positioned at relaxed times at the present
location of the system. Then the free energy can be esti-
mated as a negative mirror of the potential energy which
is exact in the limit of long simulation times [27]. It has
been shown that this method is in principle valid for all
collective variables and offers a broad range of applica-
bility [27]. Even the calculation of microscopic averages
within the metadynamics scheme has been successfully
examined [30]. Nevertheless the drastic error dependence
on the parameters of the algorithm [31, 32] in the origi-
nal metadynamics scheme has to be mentioned. Keeping
the errors within tolerable ranges results in a drastic in-
crease of simulation time. To avoid local bumps in the
landscape and to keep the errors low, extensions of the
existing Metadynamics method [33–36] have been pro-
posed which offer a more reliable derivation.
In this paper we present a Histogram reweighted Meta-
dynamics technique which offers the opportunity to over-
come some drawbacks of the original method and its vari-
ants. Our method is grid-based which means that the
energy landscape spanned by the collective variables is
divided into several regions. By adding a short range cut-
off biasing potential which is only evaluated at the grid
points of a predefined grid, the corresponding simula-
tion time can be massively decreased. Finally, the corre-
sponding biased probability distributions are reweighted
by histogram techniques [37–40] to compute the free en-
ergy landscape a posteriori. It has been noticed that
these techniques offer a low error dependent description
[39, 40].
Additionally a projection scheme is introduced which al-
lows the investigation of further collective variables if the
probability distributions of the studied variables are well
overlapping and if the projected coordinates are well-
suited and fastly varying. Although it is clearly impossi-
ble to reconstruct the whole highly dimensional phase
space of the protein, our projection scheme allows to
investigate additional low dimensional reaction coordi-
nates like dihedral angles or spatial distributions in good
agreement to directly derived energy landscapes. As a
consequence of this scheme, no further simulation time
is required as the analysis can be performed a posteriori
and the landscape is not restricted to the actual chosen
set of coordinates.
This becomes useful by regarding the fact that difficulties
for predefined collective variables may arise, if they are
not the true reaction coordinates of the system [27, 41]
or give unsuitable descriptions of the corresponding free
energy landscapes. This is in particular a problem if
the underlying folding or unfolding mechanisms are too
complex for being projected onto a low dimensional sub-
space which may lead to wrong conclusions [27] or if the
phase space cannot be sampled efficiently. In these cases,

discrete path sampling [8, 10], transition path sampling
[11, 12] and additional methods [41–44] allow to investi-
gate the hidden complexity of the free energy landscape
without the usage of collective variables as alternative
approaches.
By comparison to other approaches, it has to be no-
ticed that in recent publications [32, 45, 46] the usage
of umbrella sampled biased probability distributions re-
spectively using histogram reweighting procedures [48]
for the correction of free energy landscapes has also been
claimed. Even the evaluation of the underlying potential
on a grid point has been recently proposed for metady-
namics [46] as well as for a closely related adaptive bias
molecular dynamics scheme [47]. Both ingredients have
also been applied in a grid-based adaptive umbrella sam-
pling scheme [49] over a decade ago and the above men-
tioned techniques are implemented in common software
packages [50–55].
A main reason for the introduction of grid evaluations
is a massive decrease in computation time which scales
by a constant factor. This fact is also used in [46] where
smoothly truncated Gaussians are evaluated by a kd-tree.
Further realizations of grid techniques incorporate adap-
tive grids where the potential energy is calculated by
a polynomial extrapolation on the grid points [51, 53],
choosing the potential of a close grid point as the bias-
ing potential on the particle [51] or applying cut-off radii
for the gaussians [51]. It was also shown that the above
mentioned adaptive biased grid approach in its computa-
tional cost scales linearly with simulation time in contrast
to ordinary metadynamics [47]. Here cubic B-splines are
used for the evaluation of the biasing potential on the
corresponding grid points.
Our approach has the advantage of a well-defined sim-
ple potential all over the energy surface. This allows to
change the resolution of the grid on-the-fly even after the
simulations have finished to resolve regions of specific in-
terest in more detail. In addition, it is easy to implement
and scales with a constant number O(2d) of calculations
per timestep, where d is the number of collective vari-
ables, respectively the dimension of the grid.
As a further remark, our potential energy landscape
is purely used as a biasing potential to accelerate rare
events. Hence, the fine resolution of the free energy land-
scape is achieved by histogram techniques. This allows
us to use a very rough potential energy surface created in
a short simulation time. Additionally the bias force is al-
ways well-defined such that discontinouities are avoided.
Therefore our method in its interpretation is closely re-
lated to the Wang-Landau approach [56] and adaptive
umbrella biasing techniques [49] with the effectiveness of
[47]. This finally results in a simple and robust algorithm
which is easy to implement in common public software
packages like GROMACS [58–60] or other programs and
allows to tune the resolution of the landscape on demand
easily after the simulations have finished.
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We further derived an empirical formula for the com-
putational cost required for the ordinary metadynamics
scheme in comparison to our approach. Thus we were
able to show that the grid technique for reasons of com-
putational efficiency is often more preferable especially
for a large number of hills in comparison to the number
of atoms in the system.
The paper is organized as follows. In the second section
we introduce the method and the theoretical background.
The third and the fourth section illustrate model test
cases and the numerical details of the following peptide
simulations. The fifth section presents the results for the
alanine dipeptide and the Met-Enkephalin. In the sixth
section the values for the computational cost required for
both methods are investigated and an empirical formula
is derived. We conclude with a brief summary in the last
section.

HISTOGRAM REWEIGHTED METADYNAMICS:

THEORETICAL BACKGROUND

The system we consider is described by a set of coordi-
nates x evolving under the action of dynamics following
the trajectory x(t) and described by a canonical equi-
librium distribution at temperature T . The set of coor-
dinates x may include atomic positions or angles as well
as any other auxiliary collective variable representing the
characteristics of the system.
If the system shows metastability, some regions separated
by large energy barriers cannot be explored by the evo-
lution of the trajectories in a reasonable simulation time.
Guided by the conventional metadynamics approach an
additional potential has to be added at specific constant
times t1, t2, ...tN on the trajectory x(t) to overcome the
barriers and to accelerate the rare events. It has to
be ensured that the protein relaxes between these times
such that the system diffuses in the next local minimum.
For the force evaluation in the ordinary Metadynamics
method, the sum over all previously added gaussian func-
tions has to be performed [26] which results in a strong
increase of computation time. To avoid this increase, we
use an approach where the additional potential energy is
evaluated on the grid points of a predefined grid closely
related to [46, 47, 49], spanning the whole range of the
accessible phase space in the set of collective variables x.
The grid points x

G,i
are separated by the grid constant

σ
G
, which is the distance between two neighboring grid

points in one dimension. The system now evolves in time
moving over the energy landscape covered by the grid. At
the times t = t1, t2, ...tN the following potential energy

∆VT (xG,i
, t) = G(x − x

G,i
) ω (1)

with

G(x − x
G,i

) = e
−

(x(t)−x
G,i

)2

2x2
c

(

1−
( |x(t) − x

G,i
|

x
c

))

(2)

defined by

G(x − x
G,i

) 6= 0 : |x(t) − x
G,i

| < xc

G(x − x
G,i

) = 0 : |x(t) − x
G,i

| ≥ xc
(3)

is evaluated on all grid points N
GK

whose distance from
x(t) is closer than the cut-off radius xc. The magnitude
of the potential energy is given by the height ω like in
the conventional metadynamics scheme. As it has been
discussed in [27] the values for ω have to be low.
The potential energy at the grid points then evolves in
simulation time with

VT (xG,i
, t

N
) = VT (xG,i

, t
N−1

) + ∆VT (xG,i
, t

N
) (4)

emerging rapidly if the specific neighborhood of the grid
point is often visited by the trajectory, e.g. in free energy
minima. Then we need to update 2d values of grid points
for each calculation, where d is the number of collective
variables or in other words the dimension of the grid.
The biasing potential exerted on the system at times t ≥
t
N

yields

VB(x, t) =

NGK
∑

i

G(x− x
G,i

) VT (xG,i
, t

N
) (5)

where the summation is over the number of grid points
NGK within xc, with the actual value of the poten-
tial VT (xG,i

, t
N
) of each grid point at x

G,i
as defined in

Eqn. (4) and the weighting factor G(x−x
G,i

) of Eqn. (2).
The resulting local minimum between two grid points can
usually be neglected if the distance between neighboring
grid points σG is small compared to the typical expected
diameter of a free energy minimum, respectively a high
resolution of the grid. Repeating the whole scheme al-
lows to fill the minima efficiently until the potential en-
ergy is reached to overcome the energetic barriers. The
energy landscape with constant values VT (xG,i

) and the
corresponding continuous function VB(x) are finally used
in the biased simulation runs to produce flat probability
distributions. An illustration of the scheme is presented
in Fig. 1.
It has to be noticed that the specific choice of the biasing
potential is arbitrary [27, 46] although in combination
with the grid potential evaluation it can be pointed out
that the function proposed in Eqn. (2) offers the advan-
tage of a fast computation. Due to the well-defined po-
tential at every position, it can be even used to achieve a
finer resolution of the grid in combination with histogram
reweighting techniques. As a further remark, it has to be
mentioned that the final biased simulations as well as the
previous simulation runs for the construction of the bias-
ing potential can be trivially parallelized in the spirit of
the multiple walker metadynamics technique [61] to save
computation time.
In the following we give a short description of the his-
togram reweighting technique. The free energy landscape
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FIG. 1: Illustration of the Histogram Reweighted Metady-
namics scheme with xc = σ

G
= 1σ. Panel A shows the con-

stant potential energy VT (xG,i
, τ ) of the grid points at times

τ < t < τ1. The biasing potential energy VB(x, t) of Eqn. (5)
for times τ < t < τ1 is shown in Panel B. At times t = τ1
(Panel C) a new gaussian function ∆VT (x, t) is placed at the
actual position of the system at x = −1.25σ which is only
evaluated at the grid points such that ∆VT (xG,i

) is summed
to the old potential VT (xG,i

, τ ) via Eqn. (4) yielding the new
values VT (xG,i

, τ1)(shown as circles). The resulting new bias-
ing potential function VB(x, t) is shown in Panel D.

is finally calculated via the WHAM equations [37–40]
by a reweighting of the biased probability distributions.
This procedure allows the calculation of the free energy
within a finite tolerance value [40] and its combination
to the biasing potential for refinement and construction
has been shown to be advantageous [27, 31, 46, 57]. The
scheme is given by two equations

P (x) =

∑Nsim

i=1 ni(x)
∑Nsim

i=1 Nie−(Fi−VB(x))/kBT
(6)

and

Fi = −kBT log

(

∑

xbins

P (x)e−VB(x)/kBT

)

(7)

which allow to compute the best estimate of the unbi-
ased probability P (x) where Nsim denotes the number
of independent simulations, ni(x) the number of counts
in a histogram bin associated with x, VB(x) is the final
constant biasing potential of Eqn. (5) at position x and
the free energy shift is Fi for each simulation with ther-
mal energy kBT . Due to the fact that Fi and P (x) are
unknowns, Eqn. (6) and Eqn. (7) have to be solved by
iteration to self-consistency within a predefined tolerance
value. The values of P (x) can then be used to calculate
the resulting free energy of the bin via

F (x) = −RT log

(

P (x)

P (0)

)

(8)

where P (0) is a reference value and R denotes the molar
gas constant [39]. It has to be pointed out, that the er-
ror in the energy is strongly dependent on the resolution
of the histogram leading to more or less pronounced ap-
proximations. For a detailed description of the method
we refer the reader to Refs. [38, 39].
As it was mentioned in the introduction, the main part of
a successful calculation relies on the choice of appropri-
ate collective variables on which the free energy surface
is spanned. Well-suited collective variables are dihedral
angles as well as the essential eigenvectors of the sys-
tem [62]. It has been recently demonstrated that the
application of eigenvectors as collective variables results
in adequate descriptions of the folding mechanisms and
of the free energy landscape in ordinary Metadynamics
computations [63, 64]. Thus we follow this approach due
to the assumption that nearly all relevant motion is cap-
tured in the first eigenvectors of the system [62]. This is
remarkable by regarding the fact that drastic difficulties
appear if wrong reaction coordinates are chosen which do
not capture the main motion [27, 41]. But nevertheless,
it has again to be remarked that the usage of eigenvectors
is not a guarantee for correctness of the free energy land-
scape due to hidden complexities in higher dimensional
collective variables [27]. In the following we give a brief
description of the method.
The essential eigenvectors can be calculated by the super-
imposed coordinates ~r of N atoms of the system which
build the covariance matrix C via

C =< (~r− < ~r >)(~r− < ~r >)T > (9)

where i, j = 1, 2, . . .3N and the time-averaged or ref-
erence value is denoted by the brackets < . . . >. The
diagonalization of C leads to

C = EΛE
−1 (10)

where E is a matrix of eigenvectors and Λ is a matrix of
eigenvalues marking the positional fluctuations. Sorting
the eigenvalues in decreasing order allows to identify the
largest positional fluctuations with all important struc-
tural transitions by the first eigenvectors which form the
essential dynamics of the system [62]. The projection at
time t on the i−th eigenvector is then defined by

pi(t) = (~r(t)− < ~r >) · ~ei (11)

with the specific eigenvectors ranging from i =
1, 2 . . .3N .
If the motion of the system is not restricted to the es-
sential subspace in the biased simulations such that even
lower eigenvectors contribute, the potential biasing en-
ergy of Eqn. (5) even activates the motion of the remain-
ing subspace. Hence the concerted motion of all eigenvec-
tors is influenced by the biasing energy. Therefore a pro-
jection scheme allows to construct the free energy land-
scapes of additional collective variables like lower eigen-
vectors or dihedral angles a posteriori.
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The main idea is that the applied bias potential energy
drives the system through structural transitions which
could be in principle also observed in additional collec-
tive variables. The occurrence of the variables x(t) have
to be projected onto the new collective variable ξ(t) ex-
posed at the same time. Formally, this is given by

f : x(t) → ξ(t), (12)

together with the corresponding biasing potential energy

f : VB(x, t) → VB(ξ, t). (13)

After the final timestep τ , the constant potential energy
at the new grid points ξ

G,i
can be evaluated by using

the maximum last values of VB(ξ, τ). Choosing the max-
imum value for VB(ξG,i

) within certain small regions δ,
where δ is the half distance between two grid points gives

VB(ξG,i
) = max(VB(ξG,i

± δ, τ)) (14)

for the construction of the potential energy landscape in
the new set of chosen reaction coordinates. The values
for VB(ξG,i

) can now be inserted into the Eqns. (6) and
(7) with the corresponding biased probabilities P (ξ

G,i
).

The final potential energy landscape in the new set of col-
lective variables of Eqn. (14) is evaluated by the existing
data and by explicit calculation of each ξ(t). Sampling
the biased probabilities in the new set of variables finally
allows to determine the unbiased probabilities by using
the histogram reweighting procedure in the new set of
collective variables at any resolution.
Again it has to be ensured that the motion is not con-
strained and that the potential energy even activates
lower eigenvectors to establish a free system behaviour.
In principle all collective variables which are fastly vary-
ing and cover a small subspace can be seen as suitable re-
action coordinates if a sufficient simulation time is given.
Additionally they also have to clearly distinguish between
different states of conformations, can be well sampled
meaning a good overlap in the distribution functions and
covering of the phase space and show no hysteresis effects
due to hidden complexities [27]. Several publications dis-
cuss this problem and new techniques to overcome it in
more detail [8, 10–12, 41–44]. If these requirements are
fulfilled, the projected energy landscape into the new col-
lective variables can be seen as reliable. Nevertheless, it
has to be noticed that the validity of a landscape is re-
lated to the suitability of the chosen projected collective
variables. This is also true for the original chosen coor-
dinates.

1- AND 2-DIMENSIONAL MODEL POTENTIAL

The first test case for our approach is a particle con-
fined in a one-dimensional well defined potential

V (x) = ǫ

[

(x

σ

)4

− 10
(x

σ

)2
]

(15)

where ǫ is the unit thermal energy kBT and the length
unit is given by σ. We performed a Monte Carlo sim-
ulation with the Metropolis criterion [65] consisting of
106 timesteps where every 500−th step a potential en-
ergy with height ω = 0.25ǫ has been set. The grid points
were separated by a grid constant σ

G
= 0.1σ. The cut-

off radius for the construction of potential function has
been chosen to xc = 0.2σ = 2σ

G
and xc = σ

G
for the

evaluation of the biasing potential. Having constructed
the biasing energy landscape, we performed four simula-
tions with 106 timesteps to derive the biased probability
distribution functions which have been reweighted by the
WHAM equations (Eqns. (6) and (7)). Fig. 2 presents
the numerical results for the potential of Eqn. (15). The
numerical values are in good agreement to the theoretical
results of the test potential except for |x| > 3.0σ. The
reason for this misbehaviour can be related to the low sta-
tistical accuracy of the probability distribution [66] which
is caused by the rapid increase of the model potential at
these points. The constant potential VB(x) of Eqn. (5) as
well as the corresponding discrete potential energy values
of the grid points of Eqn. (4), which have been used for
the biased simulations are shown in the lower panel of
Fig. 2. Nevertheless the results of this simple model po-
tential have shown that our method works and produces
accurate results in one dimension.
Another 2-dimensional test potential is given by

V (x, y) = ǫ

[

(x

σ

)4

+
( y

σ

)4

− 10

(

(x

σ

)2

+
( y

σ

)2
)

+ 50

]

(16)
which represents four energetic minima. We performed
a couple of Langevin Dynamics simulations [67] obeying
the Langevin equation which is given by

~Fi = −ζ~vi + ~ηi (17)

where the force ~Fi on a particle depends on the fric-
tion coefficient ζ, the velocity of the particle ~vi and the
stochastic force ~ηi. The stochastic force represents the
thermal brownian motion of the particle with the follow-
ing properties

< ~ηi(t) >= 0 (18)

and

< ηiα(t)ηjβ(t
′) >= 2ζkBTδijδαβδ(t− t′) (19)

which ensures the presence of the fluctuation dissipation
relation. Thus the stochastic force is delta-correlated
white noise which ensures a canonical ensemble at ther-
mal equilibrium. We chose ζ = 1

√
mǫ/σ with the mass

m, the temperature T = 1 and ran a simulation of 107

timesteps, where every 1000-th step a gaussian function
has been set. We chose as values for the parameters
σ

G
= 0.25σ, xc = 0.5σ, ω = 0.1ǫ and we used a timestep

of δt = 0.01σ/
√
mǫ. The final values for VT (xG,i) of
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FIG. 2: Top: Shifted energy landscape for the test poten-
tial of Eqn. (15). The circles correspond to the values de-
rived by the Histogram reweighted Metadynamincs approach
whereas the black line corresponds to Eqn. (15). The data
points are in good agreement to Eqn. (15) except for values
|x| > 3.0σ. This is due to the error of the statistical accuracy
of the probability distribution which is caused by the rapid
increase of the test potential. Bottom: Continous biasing
potential VB(x) (solid line) which is used for the calculation
of the biasing probabilities and the corresponding values of
the potential energy VT (xG,i

) (points) evaluated at the grid
points.

Eqn. (4) are shown in Fig. 3. These values have been used
for the evaluation of the biasing potential of Eqn. (5). We
performed four simulation runs with 2.5 · 106 timesteps
where again every 1000-th step the position of the par-
ticle has been stored for the sampling of the underlying
free energy landscape. The resulting reweighted energy
profile is presented in Fig. 4. The good agreement to the
energy profile of Eqn. (16) is obvious. Larger deviations
only occur at positions x, y > 3.5σ above 60 kBT due to
poor statistical accuracy. The standard deviation to the
correct profile is around 5% per value.
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simulations for the 2-dimensional test potential of Eqn. (16).
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FIG. 4: Top: Energy profile of Eqn. (16). Bottom: Result-
ing reweighted energy profile. The solid lines correspond to
energy differences of 5kBT .

NUMERICAL DETAILS

All our Molecular Dynamics simulations have been
performed by the software package GROMACS [58–
60] in which our in-house written code for the His-
togram reweighted Metadynamics method has been im-
plemented. The source code is available on request by
contacting one of the authors.
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FIG. 5: Schematic representation of the alanine dipeptide
with dihedral angles Φ and Ψ. The numbered Cα carbon
atoms have been used for the eigenvector analysis.

Alanine dipeptide

We performed our Molecular Dynamics simulations by
using the GROMACS ports of the AMBER94 force field
[68, 69]. The simulation box contains 313 TIP3P water
molecules [70] within a dimension of 2.005×2.194×2.192
nm. The time step was 1 fs. The temperature T =
300 K was kept constant by a Nose-Hoover thermostat.
Electrostatics have been calculated by the PME (Particle
Mesh Ewald) method. All bonds have been constrained
by the SHAKE algorithm [71].
After a short equilibration run of 350 ps we performed
a 500 ps unbiased simulation to analyze the eigenvec-
tors of the system constructed by the numbered Cα car-
bon atoms of Fig. 5. The corresponding potential energy
landscape has been constructed in the phase space of the
first two eigenvectors within a 2 ns simulation run. The
grid constant has been chosen to σ

G
= 0.01 nm, the

height of the potential function has been set to ω = 0.2
kJ/mol and the relaxation time was τ = 1 ps. The cut-
off radius xc was 0.02 nm for hill setting and 0.01 nm
for the evaluation of the biasing forces. The final biased
probability distributions have been derived by four sev-
eral independent 2 ns simulations with different temper-
atures 300, 310, 320 and 330 K whose additional kinetic
energy allows to explore the phase space more efficiently.
Nevertheless the WHAM equations allow to combine the
results for the different temperatures and give the results
for a specific temperature if not too large deviations exist
[39].
For a comparison of the eigenvector free energy land-
scape we further applied a conventional metadynamics
scheme as described as in [63, 64]. The simulation time
was 2 ns where every picosecond a gaussian hill of width
0.01 nm with height 0.2 kJ/mol has been set. Addition-
ally we used the software plug-in PLUMED [50, 51] for a
conventional metadynamics simulation to directly calcu-

late the free energy landscape of the Ramachandran plot.
All parameters are identical to the histogram reweighted
metadynamics scheme.

Met-Enkephalin

The molecule consists of five residues TYR-GLY-GLY-
PHE-MET and its molecular structure has been taken
from the PDB entry 1PLW [72]. The force field was
GROMOS96 [73]. The box size has been chosen to
3.214×3.214×3.214 nm with 1058 SPC water molecules.
The time step was 2 fs and the temperature was kept
constant by a Nose-Hoover thermostat. As mentioned
above, all bonds have been constrained by the SHAKE
algorithm [71]. Electrostatics have been again calculated
by the PME (Particle Mesh Ewald) method.
After a warm up phase of 350 ps we perfomed a 400
ps simulation run for the analysis of the corresponding
eigenvectors of all atoms at temperature T = 400 K.
We chose this high temperature to capture all necessary
transitions in the essential first eigenvectors. The corre-
sponding potential energy grid has been constructed in
a 1 ns simulation run where the grid constant has been
chosen to σ

G
= 0.01 nm and the height of the potential

function has been set to ω = 0.2 kJ/mol with relaxation
times of τ = 2 ps. The cut-off radius xc has been cho-
sen to 0.2 nm respectively xc = 0.1 nm as mentioned
above. The biased simulations consist of three indepen-
dent runs of T = 300 K and T = 305 K with 4 ns and
T = 310 K with 1 ns simulation time. The corresponding
timestep was δt = 2 fs. All energy landscapes have been
reweighted for a temperature T = 300 K.

NUMERICAL RESULTS

Alanine Dipeptide

A well suited model system to test our approach is the
alanine dipeptide (Fig. 5). Alanine dipeptide is one of the
most studied model systems over the last years [44, 74–
80]. The corresponding eigenvalues and the cumulative
positional fluctuations are shown in Fig. 6. It is obvious
that nearly 80% of the overall positional fluctuation can
be described by the first two eigenvectors. Thus it can be
assumed that all important structural transitions should
be captured by using these variables as reaction coordi-
nates [62].
The corresponding positions for the 300 K biased sim-

ulations are presented in the top (orange triangles) of
Fig. 7 in contrast to an unperturbed simulation run (blue
stars) for the same parameter sets. The bottom figure il-
lustrates the values for the dihedral angles Φ and Ψ in
the Ramachandran plot. It is obvious that the biasing
potential energy landscape drives the system into more
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FIG. 6: Fluctuation and cumulative relative positional fluc-
tuation (inset) of the eigenvectors. Nearly 80% of the overall
motion of the alanine dipeptide can be described by the first
two eigenvectors.
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kcal/mol. Bottom: Corresponding free energy landscape de-
rived by a direct metadynamics simulation in the phase space
of the corresponding dihedral angles Φ and Ψ.

unlikely minima to accelerate the rare events of these
structural transitions.
The final free energy landscapes at T = 300 K are

shown in Figs. 8 and 9. Fig. 8 presents the free energy
landscape in the space of eigenvectors whereas Fig. 9 is
the corresponding Ramachandran plot in the space of the
dihedral angles which has been derived by the proposed
projection scheme and a direct conventional metadynam-
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FIG. 10: Free energy landscape for the first two eigenvectors
in the conventional metadynamics scheme (top) and in the
histogram reweighted metadynamics scheme (bottom). The
lines denote energy differences of 0.5 kcal/mol.

ics simulation run in the phase space of the dihedral an-
gles. Both figures illustrate the corresponding conforma-
tions of the alanine dipeptide and their relative energy
difference from the most stable configuration αR to two
further minima C7eq and C5. The relative energy differ-
ence betweeen the αR and the C7eq and C5 minima is
given by ∆F ≈ 1.9 kcal/mol, respectively 2.2 kcal/mol
which is in good agreement to the results reported in
Ref. [63, 64] with ≈ 1.74 kcal/mol, respectively ≈ 2.10
kcal/mol. The good agreement in the location and the
acceptable values of the free energy minima in compari-
son to a direct biasing between the plots shown in Fig. 9
are remarkable which validates the proposed projection
scheme. Finally we compare the results of the histogram
reweighted metadynamics simulation in the phase space
of the eigenvectors to a conventional metadynamics sim-
ulation with 2000 hills. As the landscapes are nearly
identical, it can be concluded that our method is valid.
Only slight deviations can be observed for the specific
shape of the minina due to the statistical error inherent
in the original metadynamics variant [27].

Met-Enkephalin

The Met-Enkephalin has attracted broad interest in its
stable conformations [81–84] due to its biological impor-
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FIG. 11: Free energy landscape for the eigenvectors 1 and
2 of the Met-Enkephalin. The lines correspond to energy
differences of 0.5 kcal/mol.

tance. Previous studies have shown that the main shape
of the free energy landscape is given by a funnel [83–85]
with a couple of stable conformations which are sepa-
rated by low energy barriers. Regarding the biological
function of the Met-Enkephalin, which is an opioid pep-
tide that inhibits neurotransmitter release from the ap-
propriate opioid receptor, several receptors have to bind
on the molecule which all require different stable confor-
mations [86, 87].
The corresponding eigenvector analysis of the Met-
Enkephalin illustrates that over 73% of the atomic po-
sitional fluctuation have been captured by the first two
eigenvectors. Thus nearly all relevant structural transi-
tions can be described by eigenvectors 1 and 2.
The corresponding free energy landscape at T = 300 K
is shown in Fig. 11. A couple of stable minima and con-
figurations can be found in the funnel-like landscape in
agreement to other publications [83–85]. The lines corre-
spond to energy differences of 0.5 kcal/mol. It is obvious
that all energetic barriers are lower than 1.5 kcal/mol.
Hence the transitions between the stable configurations
are not drastically hindered. Regarding the conforma-
tions shown in Fig. 11, differences in their form and shape
can be observed reflecting the biological function of the
Met-Enkephalin [87]. The energetic flexibility in the il-
lustrated conformations finally explains the lack of a poor
experimental convergence to a single structure [88].
Another interesting quantity is the solvent accessible sur-
face area which allows the investigation of the importance
of the solvent interactions for the Met-Enkephalin. The
influence of the hydrophilic solvent accessible surface area
A+

s , which represents the influence of hydration effects
on the stability of the peptide can be investigated by the
ratio to the total solvent accessible surface area At

s which
is illustrated in Fig. 12.
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A large minimum can be found at a ratio of A+
s /A

t
s ≈

0.49. It can be shown that nearly all stable configura-
tions presented in Fig. 11 obey this characteristic value
for the ratio. Hence the formation of different stable
conformations can be partly explained by hydration ef-
fects due to the chemical structure and solubility of the
Met-Enkephalin. The rapid increase in the free energy
of 4 kcal/mol for fluctuations δ(A+

s /A
t
s) ≈ 0.1 avoids the

appearance of drastic structure transitions around this
minimum.
The rigidity and flexibility of the Met-Enkephalin and its
residues is finally illustrated in Fig. 13 by a Ramachan-
dran plot. Here the residues GLY-2, GLY-3 and PHE-4
are investigated concerning their mechanical flexibility.
All residues are able to form β-sheets while especially
the dihedral angles of PHE-4 prefer to visit the α-helical
conformations [83, 89, 90]. Left-handed helical confor-
mations can be found in GLY-2 and GLY-3.

COMPUTATIONAL COST

We finally have investigated the computational cost of
the histogram reweighted metadynamics scheme in com-
parison to the ordinary metadynamics technique studied
by the two dimensional test case of Eqn. (16). Thus
we simulated the two dimensional test case by a conven-
tional metadynamics scheme [27] where every hundredth
step a gaussian hill of height 0.1ǫ with a width of 0.25σ
has been set. The same values have also been used in
the grid scheme. We compared the times needed for the
construction of the potential energy landscape using the
x and y direction as reaction coordinates and normalized
them.
To analyze the influence of the number of collective vari-
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FIG. 13: Free energy landscape in the Ramachandran plot
for three residues. The lines correspond to energy differences
of 1.0 kcal/mol.

ables d we conducted simulations with 1, 2, 3, 5 and 10
collective variables. It is obvious that the grid meta-
dynamics scheme scales as O(dt) whereas conventional
metadynamics obeys a O(dt2) behaviour (Fig. 14). Al-
though the program is not computationally optimized
due to output-input data flow, it becomes clear that the
overall time needed for the conventional metadynamics
algorithm is increasing with the second power of simula-
tion steps, respectively present hills. Hence it is evident
that the number of hills is the dominating factor. This
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leads us to the conclusion that our method can be used
for a larger number of dimensions as well with a better
scaling behaviour than the conventional scheme.
The ratio of the time used for the calculation of the meta-
dynamics algorithm T

MTD
compared to the time used for

all interactions T
AI

for an increasing number of appar-
ent hills n

H
is shown in Fig. 15. All data points have

been derived by the simulation of the alanine dipeptide.
It is evident that after 250 hills the calculational cost
increases drastically in the ordinary metadynamics algo-
rithm whereas for the grid technique the required time
remains constant. Thus the grid variant of the meta-
dynamics algorithm accelerates the computation of free
energy landscapes in contrast to ordinary metadynamics
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FIG. 16: Time needed for computation of the ordinary meta-
dynamics forces τ
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tide in comparison to the time for unbiased simulations τ
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for
a varying number of hills n

H
and number of relaxation steps

Nr. All values follow a linear relation with slope c ∼ 0.13 and
the number of collective variables was d = 2.

considerably.
Nevertheless it can be assumed that the total time needed
for the evaluation of the biasing forces in one timestep is
negligible compared to the number of interactions espe-
cially for systems with many degrees of freedom. Thus for
a system with a large number of interactions, the cost for
the evaluation of the metadynamics forces may decrease
in comparison to the total time.
To investigate this situation and to derive an empiri-
cal formula, we studied the computational cost for the
Met-Enkephalin and the alanine dipeptide. Hence we
compared the total time which is required for the com-
putation of the conventional metadynamics forces with-
out a grid τ

MTD
to the total time of an unbiased run

τ
ub
. It can be assumed that the time for the calcula-

tion of the metadynamics forces depends on the number
of present hills n

H
, the number of collective variables d

and the number of relaxation steps Nr after that a new
hill is deposited. In addition, the contributing number
of atoms in the collective variable may also influence the
computation time. For reasons of simplicity we assume
that this time is mainly determined by the evaluation of
G(x − x

G,i
) (Eqn. (2)) where all other effects are neg-

ligible. Thus for much larger systems this factor may
become size-dependent.
In summary the total time needed for the evaluation of
the ordinary metadynamics forces in a simulation can
be written as τ

MTD
∼ dNr

∑n
H

j=1 j ∼ dNrnH
n

H
(n

H
+

1)δt
MTD

/2 where δt
MTD

denotes the time needed for the
evaluation of a single hill. Additionally it is further as-
sumed that the simulation has finished after n

H
hills have

been set which is given by the relation n
H
= N

s
/N

r
.

Furthermore the total time for an unbiased simulation τ
ub
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is nearly proportional to the number of atoms in the sys-
tem N

atom
[65] and the number of simulation timesteps

N
s
which yields τ

ub
∼ N

atom
N

s
δt

ub
with the average time

δt
ub

needed for the calculation of a single unbiased force.
This gives the ratio

τ
MTD

τ
ub

∼ dNrnH
(n

H
+ 1)

2N
s
N

atom

δt
MTD

δt
ub

∼ dn
H

2N
atom

δt
MTD

δt
ub

(20)

where δt
MTD

/δt
ub

can be empirically determined. It has
to be mentioned that the ratio is strongly dependent on
the algorithms which are used for the evaluation of the
forces but not on the processor speed.
We have used varying relaxation timesteps of Nr =
1 − 1000, different numbers of hills n

H
= 50 − 10000

and the number of atoms was N
atom

= 3231 for the Met-
Enkephalin with water and N

atom
= 961 for the alanine

dipeptide plus water whereas Ns varies between 100 and
100000.
The values for different ordinary metadynamics runs in
comparison to unbiased runs for the Met-Enkephalin and
the alanine dipeptide are shown in Fig. 16. It is evident
that all values follow Eqn. (20) with a proportionality
factor of c = 0.13 ± 0.01. Hence for a large number of
present hills, the ordinary metadynamics method drasti-
cally increases computation time. Thus as a general re-
mark, the original method becomes computationally very
expensive if the number of hills is larger than the number
of atoms. This is often given for systems with implicit
solvent models or complex and large energy landscapes.
As we have shown before, the grid based technique obeys
a linear O(dt) behaviour, such that the ratio between the
time needed for an ordinary metadynamics algorithm in
comparison to the grid technique also grows in accor-
dance to Eqn. (20). Especially for ordinary metadynam-
ics simulations where the free energy landscape is not
refined by histogram reweighting procedures the amount
of settled hills often increases the number of atoms which
strongly suggests the use of grid based techniques. This is
mostly important for classical Molecular Dynamics simu-
lations for which our method is more intended in contrast
to ab-intio methods. The evaluation of the electronic mo-
tion is here the main factor [92] dominating most of the
computation time such that the evaluation of the meta-
dynamics potential can be neglected.

SUMMARY AND CONCLUSION

We have presented an efficient and simple method for
the calculation of free energy landscapes. The technique
is applicable for a broad range of different systems. The
basic principles are the construction of a potential land-
scape on a predefined grid in an initial simulation run
which is used as a biasing potential in the final simula-
tions. The corresponding probability distributions of the

biased simulations are reweighted by the WHAM proce-
dure whose usage avoids specific drawbacks of the ordi-
nary metadynamics algorithm like large error tolerances
[46].
Another advantage is the easy implementation due to
its simple methodology in software packages like GRO-
MACS. In addition we have presented the application of
a projection scheme which allows to transform the energy
landscape of certain collective variables to further reac-
tion coordinates without any additional simulation effort.
The specific choice of biasing the first eigenvectors of the
system achieves a good activation of the whole system.
The history-dependent potential is short-ranged in con-
trast to the ordinary Metadynamics scheme [26, 27] and
serves as a pure biasing potential. The fine resolution
of the free energy landscape is achieved by histogram
reweighting techniques of the corresponding probability
distributions. A further advantage of the method is the
opportunity to tune the resolution of the landscape even
after the simulations were finished.
Furthermore we have explicitly shown that a grid-based
technique scales with O(dt) in contrast to the conven-
tional metadynamics scheme (O(dt2)), where t denotes
the simulation time and d the number of applied collec-
tive variables. Hence, compared to the ordinary metady-
namics algorithm a grid technique is more preferable due
to a decreased simulation time. This has been shown by
the computational cost for the alanine dipeptide and the
Met-Enkephalin. Via a linear relation we were able to
show that the computational cost of the ordinary meta-
dynamics method in comparison to the grid technique
can be predicted by an empirical formula. Thus the grid
method is preferable for systems where the number of
settled hills exceeds the number of all atoms in the sys-
tem. As we have discussed, this fact is given for implicit
solvation models as well as very large energy landscapes.
In addition our method has been tested for the peptides
alanine dipeptide and Met-Enkephalin. The results are
in good agreement to the literature. We have further
shown that the energy landscape of the Met-Enkephalin
is funnel-like with many different conformations at sev-
eral energetic minima. The similarity between these con-
formations can be illustrated by a characteristic ratio of
the hydrophilic solvent accessible surface area in compar-
ison to the total solvent accessible area which results in a
characteristic minimum around A+

s /A
t
s ≈ 0.49. The flex-

ibility of the Met-Enkephalin is illustrated by plotting
the dihedral angles of each residue in a Ramachandran
plot.
Additionally we have shown that the method allows to
identify the stable conformations of the alanine dipep-
tide with good accuracy of the free energy landscape.
Following [27, 46], where it was recognized that the func-
tionality of a biasing potential does not depend on its
specific shape, we have further validated our technique
by the explicit calculation of two well-defined test cases
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such that it can be used as an additional variation of the
existing metadynamics methods.
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