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Abstract
Parallelization is an effective way to reduce the computational time needed for molecular
dynamics simulations. We describe a new parallelization method, the distributed-diagonal force
decomposition method, with which we extend and improve the existing force decomposition
methods. Our new method requires less data communication during molecular dynamics
simulations than replicated data and current force decomposition methods, increasing the parallel
efficiency. It also dynamically load-balances the processors' computational load throughout the
simulation. The method is readily implemented in existing molecular dynamics codes and it has
been incorporated into the CHARMM program, allowing its immediate use in conjunction with
the many molecular dynamics simulation techniques that are already present in the program. We
also present the design of the Force Decomposition Machine, a cluster of personal computers and
networks that is tailored to running molecular dynamics simulations using the distributed diagonal
force decomposition method. The design is expandable and provides various degrees of fault
resilience. This approach is easily adaptable to computers with Graphics Processing Units because
it is independent of the processor type being used.
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1 Introduction
Molecular dynamics (MD) simulations are an important tool in studying large
macromolecular systems on an atomic level.1,2 To allow the study of increasingly longer
simulations of ever larger molecular systems, programs have been developed that use many
processors in parallel to decrease the time that is required to perform an MD simulation.3,4

In parallel MD simulations, the calculation of the simulation is distributed among multiple
processors of a computer. While the processors perform their calculations independently,
they must exchange data at every simulation time step. Updated coordinates are needed to
calculate forces or energies and updated forces are needed to update the new positions.5
Since there are two data transfers per time step, the communication time should be
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minimized. Any time spent waiting for the updated data to be communicated before starting
the next calculation leads to a decrease of the parallel efficiency Ep, which is defined as the
ratio

(1)

where Ts is the execution time of a program on a single processor and Tp is the execution
time of the program running on P processors. The speedup S

(2)

expresses how much faster the program runs on P processors than on one. Efficiency and
speedup are related

(3)

The ideal parallel programs has a speedup of P on P processors. In this case the maximum
parallel efficiency is 1 (100%). In practice the overall efficiency tends to decrease when
increasing the number of processors; however, in some applications a superlinear speedup
has been observed with a greater number of processors due to the smaller data sizes present
on individual processors.6

The most computationally demanding part of an MD simulation is the calculation of non-
bonding forces. There are O(N2) non-bonding atomic pairs in a system of N atoms.
Excluding self-interactions results in at most N(N – 1)/2 distinct atomic interactions. In
many commonly used force fields,7 the atoms of these atomic pairs mutually exert both van
der Waals and electrostatic forces. Parallel methods therefore focus on effectively
parallelizing the force computation of these non-bonded interactions so that the required
communication time is minimized. Such methods are often used in conjunction with other
techniques to decrease the computational complexity of force calculations from O(N2) to a
lower order of O(N logN) or even O(N)8,9 Often, MD simulations employ an energy cutoff
distance beyond which the interaction of two atoms is defined to be zero10 so that only a
small fraction of the N2/2 forces need to be calculated. However, when combined with
parallelization, the use of a cutoff distance may give rise to processor load imbalance.11

Since all processors must wait for the most loaded processor to finish its calculations before
exchanging data, any load imbalance reduces the parallel efficiency. The possibilities for
load balancing when using a cutoff distance is an important differentiating factor among the
methods.3,12

Several parallel methods for MD simulations have been developed. They vary primarily in
their data distribution among processors, which correspondingly dictates the data exchange
patterns used for communication during an MD simulation. The simplest approach is the
replicated data method,13,14 in which every processor has a copy (replica) of the coordinates
for all atoms. The energy and force calculations are divided among the processors and occur
in parallel, but the results are continuously replicated among all of the processors. The
replicated data method is the easiest to implement, but has the largest communication cost
because all of the processors must exchange forces and coordinates for all atoms.
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By contrast, the spatial decomposition method distributes the simulation space into segments
and assigns a processor to every such segment.11,15 The processor calculates all of the
interactions among the atoms present in that segment. In addition, the interactions among
atoms that are within the cutoff distance but are present in different segments must be
computed. Thus the spatial decomposition method is best suited to simulations in which a
short distance-based cutoff distance is applied since it limits the communication only to
neighboring or nearby processors. Load balancing is non-trivial due to edge effects and
inhomogeneities in the system density throughout the simulation space.12,16

The force decomposition method distributes the calculation of interactions by partitioning
the set of all atoms into disjoint sets called blocks. Processors are assigned to calculate the
interactions among the pairs of blocks.17,18 A processor exchanges data only with a limited
set of other processors assigned to the same two blocks, and the data is limited to only one
block of atoms. The communication requirement of the force decomposition method scales
with the inverse of the square root of the number of processors regardless of whether a
cutoff distance is employed. For larger numbers of processors, the communication
requirement is thus less than that of the replicated data model.

A new class of neutral-territory methods have recently been developed.12,15,16,19–22 They
combine the communication advantages of both force decomposition and spatial
decomposition. Most retain a communication bound that scales with the square root of the
number of processors, yet they also take advantage of a cutoff distance if it is used to reduce
communication to neighboring cells.

Besides better algorithms and improved parallelization strategies, an often complementary
approach to increasing parallel efficiency is to use hardware that is tailored to the
algorithms. One such way is to decrease communication time by using faster communication
hardware23–26 or even specialized hardware for the problem domain, such as the MD-
GRAPE chip and computer27 or the Anton machine.26 Increasing the coupling between the
parallelization method and the underlying parallel computer is an effective way to increase
parallel efficiency.28 However, even clusters of PCs are flexible enough to allow adapting
the parallel computer to the parallel method being utilized.29–31 An example of this is the
recent use of Graphics Processing Units (GPUs) to speed up MD.32 However, taking full
advantage of GPUs can require adapting the necessary algorithms to the hardware being
utilized.33 Therefore, adapting hardware and software to one another is becoming
increasingly important to driving performance improvements for MD simulations.

The current trend in parallel computing architecture is a two-tier parallelism of shared and
distributed memory. Nodes have many processor cores that share node-local memory.
Parallelism within a node can be expressed using either shared-memory or distributed-
memory programming techniques. The nodes are then interconnected into a distributed-
memory parallel computer.

In this article we introduce the distributed diagonal force decomposition (DDFD) method.34

The method, which is an improvement over the conventional Force Decomposition method,
is explained in section 2. Its implementation in the CHARMM program35 is described,
demonstrating its ease of integration into an existing MD code and the performance
improvements it provides when used to parallelize the MD simulation techniques already
present. In section 3 the force decomposition machine (FDM) is introduced and its
expandability and fault tolerance described. It should be noted that the FDM does not
depend on any particular hardware architecture, and individual nodes can be built with any
type of processor, including GPUs. In section 4 the performance of the DDFD method is
compared to the replicated data method on standard clusters.
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2 The Force Decomposition Method
The DDFD method achieves high parallel efficiency by assigning individual parallel
processors to calculate the forces among limited subsets of all atoms. The method is derived
from the basic force decomposition method.11,17,18

The force decomposition method relies on the decomposition of the force matrix of an
atomic system into disjoint subsets and assigning processors to calculate the forces in these
subsets. A force matrix represents the interactions (forces) among atomic pairs, as shown in

Figs. 1a and 1b. A pair of atoms ai, aj has an interaction force  and an equal but opposite

force . The total force  acting on an atom ai is the sum of the forces acting upon
it due to interactions with all other atoms:

(4)

which is illustrated in Figs. 1c and 1d, which also show the equal but opposite forces
between atomic pairs.

The set of all N atoms is divided into B disjoint sets , , …,  referred to as blocks.
Assuming that the atoms are evenly distributed into blocks, each block contains
approximately N/B atoms. The N ×N force matrix of all N2 pairwise interactions is thus
divided into a B×B grid of block products , , …, . Each of these B2

block products contains the interactions among the atoms that are members of the two
blocks. A unique processor is assigned to each of the block products. It is responsible for
calculating the interactions in its block product .

The processor needs only to have the atomic data for the atoms in the two blocks  and ,
i.e., for only 2N/B atoms. Processors need only a limited data set, which limits the
communication requirements. All of the processors in any single row share the same row
block and similarly all of the processors in any one column share the same column block. A
processor therefore needs to communicate only with the other processors sharing its two
blocks and the communication is limited only to the atomic data of the N/B atoms in a block.

Since P = B2, the volume of data that must be transferred is limited to the order of .

The force matrix is antisymmetrical, so half of it need not be calculated. Various methods
for avoiding double calculation in the force decomposition method have been
described.6,17,36–38 The originally published method uses permutation of the atomic order in
the force matrix to reduce communication and calculates half of the interactions in a
checkerboard pattern of the force matrix17,18 and the Under Triangle Force Block
Decomposition36,38 calculates only the interactions below and on the diagonal of the force
matrix.

We have focused on the Under Triangle Force Block Decomposition38 that was previously
implemented in the CHARMM program.36 Its force matrix is shown in Fig. 2a. The
distribution of atoms into blocks is the same for both the rows and columns. The upper
triangle is implicitly calculated from the lower triangle and processors are therefore not
assigned to the block products in the upper triangle. Therefore every block product is now
assigned a unique set of interactions; however, the block products are not of the same size:
while the off-diagonal block products in the lower triangle all contain (N/B)2 interactions,
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the diagonal block products contain only (N/B)2/2 interactions. Processors assigned to the
latter products therefore have only half as many calculations to perform as the the processors
assigned to the former block products, which leads to load imbalance. In the new
Distributed-Diagonal Force Decomposition method, which is based on the Under Triangle
Force Block Decomposition method, we do not assign processors to the diagonal block
products, but instead distribute the force calculations in these block products to other
processors.

Distributed-Diagonal Force Decomposition Method
Examining the block products of the Under Triangle Force Block Decomposition in Fig. 2a
reveals that the diagonal block products, , 1 ≤ i ≤ B, differ from the off-diagonal ones
in the lower triangle, , 1 ≤ j < i ≤ B, in that the former block products contain only
interactions among the atoms belonging to a single block while the off diagonal block
products contain interactions among atoms belonging to two different blocks. Each of the B
blocks  has one 1 diagonal block product, , and B−1 full block products , j
≠ i with the other B−1 blocks. For example, Fig. 2a shows the 4 block products for block :
the diagonal block product  (number 6), and the off-diagonal block products

, , , and  (numbers 4, 5, and 9). Since a processor assigned to
any of these B – 1 full block products by definition contains the atomic data for all atoms in
block , the calculation of interactions from  can be moved to any of the B−1
processors assigned to the B – 1 off-diagonal full block products. This assignment can be
done statically at the beginning of simulation, or can be used to load balance the calculation
with no communication costs during a simulation, as is explained in a later section. Each
atom is therefore assigned to one processor that calculates its interactions with the other
atoms in the block. The assigned processor is called the home processor and is used to
parallelize O(N) per-atom calculations, such as integration.

Fig. 2b shows how the interactions from block product  (number 6) are distributed
among the the other block products (numbers 4, 5, and 9). This distribution of the
interactions from the  diagonal block product is performed for each of the B blocks;
its effect is illustrated in Fig. 2c. Finally, processors are assigned only to the block products
that are fully in the lower triangle, as shown by assignment of block products to 6 processors
in the final step, Fig. 2d. Every processor p has the coordinates of the atoms in two different
blocks (  and , ) and calculates all of the forces for the interactions among the
atoms of the two different blocks ( ), as well as a part of the interactions among the
atoms from the first block (a subset of ) and a part of the interactions among the
atoms from the second block (a subset of ).

Collective Operations
In standard MD, every time step requires two collective operations: summation and
distribution of forces after the force calculation, as well as the broadcast of updated
coordinates after the integration step.5,14 In the DDFD method the two collective operations
are implemented as B separate operations on blocks of atoms. Since the blocks are disjoint,
they can performed simultaneously. Because the operations are block-based, a processor
communicates only with 2×(B−2) processors sharing its two blocks.

During the calculation of the nonbonded energies and forces in standard MD, only data
within a block must be exchanged. Communication is therefore limited to processors sharing
the same block; however, for some parts of an existing program that is not fully parallelized,
all data must be replicated among all processors. To achieve this, two classes of collective
operations are defined:
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intra-block mode—The standard DDFD operation in which data exchange is limited to
single blocks. It replicates only the block data within that block or sums atomic data only
within one block, respectively.

inter-block mode—The operation needed to supplement an intra-block collective
operation to achieve an equivalent global, all-to-all collective operation among all
processors. It provides full replication of all atomic data among all processors or the sum of
atomic data from all processors. It is equivalent to the global collective operations seen in
the replicated data method.

The inter-block operation uses the same communication pattern used for the intra-block
operation but they differ in the data that is being communicated at each step. As a result, the
subset of processors communicating with each other remains limited: only processors
sharing a block communicate. The shared communication pattern between the two modes of
operation is exploited by the topology of the force decomposition machine as described in
section 3.

To fully replicate data, an inter-block operation is performed following the intra-block
operation. The result of combining these two operations in sequence is the same as an
equivalent all-to-all broadcast or summation among all processors in the replicated data
parallelization approach. The benefit of defining the inter-block mode is that it only
supplements the data transfer already achieved by an intra-block operation. Instead of
invoking a global all-to-all collective operation involving all processors, the inter-block
mode is used to achieve the equivalent result.

We have implemented the intra-block and inter-block collective sum and broadcast
operations using the MPI point-to-point message transfer primitives. The collective
operations of standard MPI message-passing libraries are blocking, which limits their ability
to be used concurrently,39 even though individual collective operations may be implemented
efficiently for a given hardware platform. In order to keep our approach as general as
possible, we have chosen to implement the collective operations by using non-blocking
point-to-point message transfers among processors belonging to the same block.

Performance Analysis
The DDFD method inherits the general performance characteristics of the force

decomposition method. As such, its communication scales with  on a parallel
computer with P processors. More specifically, given a parallel computer with P processors
(selected from the set of triangular numbers 1, 3, 6, 10, 15, …) and a molecular system with
N atoms, the atoms are evenly split into B blocks of size N/B atoms, such that

(5)

Each of the B blocks is assigned to a subset of B–1 processors and every processor belongs
to exactly 2 blocks.

Data exchange occurs only within blocks during the intra-block collective operations that is
used to sum forces and broadcast coordinates in every MD time step. For every one of the B
blocks, only its B−1 processors perform an intra-block collective operation (sum or
broadcast) for only its subset of N/B atoms. Therefore a processor communicates twice with
B−2 other processors, exchanging a volume of N/B data each time. Due to the independence
of the blocks, the data exchanges can occur simultaneously. Including the assumption that a
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processor can only participate in one collective operation at once, the communication time
on any processor is therefore proportional to 2N/B = O(N/ ).

Compared to other approaches, the DDFD method has lower communication requirements
due to its higher ratio of blocks-per-processor ratio. For the same number of blocks B, the
Under Triangle Force Block Decomposition method requires P = B(B+1)/2 processors38 and
the original force decomposition method requires P = B2 processors,18 while our approach
needs only B(B−1)/2 processors. In the DDFD method only B−1 processors are involved in
intra-block communication while in other methods B processors are involved.

Assuming a full force matrix with no cutoff distance, then each processor calculates cd = (N/
B)2 +2(N/B)2/(2(B−1)) = (N/B)2 + (N/B)2/(B−1) interactions in the DDFD method. The first
term is one full block product and the second term is the diagonal block product distributed
among the B−1 processors in the block. Not distributing the diagonal means that B−1 blocks
would have to be used for the same number of processors. Off-diagonal processors would
then calculate cn = (N/(B−1))2 interactions while diagonal processors would calculate (N/(B
−1))2/2 interactions. There is a load imbalance between off-diagonal and diagonal
processors. More importantly, compared to the DDFD method with the same number of
processors, the computational load is greater by a factor of cn/cd = B/(B−1) if a perfect
distribution is assumed in both cases. The limit of the ratio is 1 with increasing processor
counts but is non-negligible for practical processor counts. For example, even using 45
processors when B = 10 for the DDFD, not distributing the diagonal would lead to a 10%
greater computational time.

Load Balancing
The force calculation can be optimally balanced when forces are calculated for every
interacting pair of atoms; however, when a distance-based cutoff is employed for force
calculations, the force of any interaction between two atoms that are separated by a distance
greater than the cutoff is defined to be zero.5,10 The calculation of these forces is skipped.
Since the number of non-zero interactions differs among the block products, the processors
have different computational loads, which creates a load imbalance.

In the DDFD method, the act of distributing the diagonal moves interactions from diagonal
block products  to full, non-diagonal, block products , j ≠ i. Nominally, they
are distributed equally among the B−1 processors belonging to block ; however, the
distribution need not be equal among the processors. By changing the placement of these
interactions from the diagonal block products, it is possible to balance the processors' load.
More interactions are moved to the block products having a smaller number of non-zero
interactions, while block products with a higher number of non-zero interactions are
avoided. By appropriately adjusting the diagonal redistribution, the load among the
processors is evened out, thus negating the load imbalance. Load balancing in this way is
possible only because there is a choice as to which processors the interactions from the
diagonal block products can be distributed.

As the atoms move during an MD simulation, the distances between atomic pairs vary.
When the atoms cross the cutoff distance boundary, the force matrix changes depending on
whether the atoms moved apart or closer together. Due to these changes in the force matrix,
a load imbalance may arise. The DDFD method allows dynamical load balancing to keep the
computational load equal among processors.

In our implementation the load of a processor is modeled as the number of interactions
calculated on a processor. All processors within a block count the load of all processors in
the block. The placement of diagonal interaction calculations is then changed to balance the
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load. Diagonal interaction calculations are moved from processors with greater loads to
those with lesser loads. No communication is required in this implementation since all
processors within a block perform the same operations. To change the processor that
calculates an interaction is a matter of updating an array value that is replicated among all
processors in a block.

The load balancing may be performed occasionally and not at every time step since the load
imbalance does not change drastically within a few MD time steps. Since it inherently
depends on the movement of atoms, we have coupled the load balancing to other non-
bonding updates, the frequency of which is definable in the simulation input file.

Non-Triangular Processor Counts
The DDFD method uses a number of processors from the set of triangular numbers 1, 3, 6,
10, 15, …, but computers often have a different number of processors. By varying the
distribution of the diagonal block products, the DDFD method can be made to work with
any number of processors, though with some loss of efficiency.

Instead of every processor belonging to two blocks, we allow a small number of processors
to belong to just one block. For any number of available processors P, we find the largest P'
that is from the triangular set and is smaller or equal to P, i.e., for which P ≥ P' = B(B−1)/2.
The first P' processors are assigned to the product of two blocks, according to the DDFD
definition. The remaining P−P' processors are only assigned to one block as shown in Fig. 3.
These diagonal processors calculate intra-block interactions from their own blocks.

The load balancing techniques described in the preceeding section are used to delegate
computations onto the P−P' diagonal processors. Since the processor belong to only one
block, they can only be assigned intra-block interactions. For simulations with a large cutoff
in comparison to the simulation cell volume, the newly assigned diagonal processors have
fewer calculations than the nondiagonal processors. This may lead to a load imbalance
similar to the case when the diagonal is not distributed.

Multi-Atom Interactions
The parallelization of the 2-D force matrix by the force decomposition method is based on,
and optimized for, interactions between atomic pairs (pairwise interactions). A general MD
program must also correctly handle other interaction types; for example the CHARMM
force field also includes interactions among sets of three or more atoms35 such as the
bending potential of an angle formed by three atoms.

The dominance of the electrostatic and van der Waals pairwise interactions over the bonded
interactions in the workload justifies the parallelization focus on atomic pairs. The relatively
small number of other interaction types allows the data transfers for these interactions to be
treated differently from the default data transfers.26

To correctly compute any type of interaction in the force field, the parallelization method
must be able to map any interaction onto the force matrix in such a way that all of the atomic
data needed to calculate the interaction is present together on a single processor. In the
DDFD method, we select two atoms ai, aj from the n, n > 2, atoms of a multi-atom
interaction and select these to be the primary pair. The primary pair defines two base blocks

, , which are not necessarily distinct. The block product  defines the
processor p responsible for the interaction calculation. The remaining n−2 atoms (orphan
atoms) ak, ak + 1, …an are not necessarily members of either of the two base blocks  or
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. Their coordinates must be transferred to processor p and later the calculated forces must
be summed with their corresponding home blocks.

To enable these supplementary data transfers, an orphan atom ak ∈  (and  is distinct
from  and ) is temporarily assigned to either of the two base blocks, e.g., . The
processor q, assigned to block product , adds the atomic coordinates of atom ak to the
set of coordinates of other atoms in block . They are then propagated along to processor p
during the regular intra-block data exchange for block . Processor p can therefore
calculate the interaction among the atoms ai, aj, ak, … After the force calculation, the forces
acting on atom ak are then summed back onto processor q in the atom's home block in the
reverse manner. Fig. 4 depicts the required data transfers for correctly treating orphan atoms.

The number of interactions that must be handled in this manner remains low and incurs only
two additional transfers of O(N/P) size in every MD time step. One is the transfer of the
coordinates of the orphan atoms and occurs before the general coordinate distribution. The
other is the transfer of calculated forces after the force calculation and before the general
global force summation.

3 The Force Decomposition Machine
The force decomposition machine (FDM) is conceived as a network topology that would
complement the distributed diagonal forces decomposition (DDFD) method. It uses the
property of the DDFD method that all communication is local to a block. Processors
communicate only with a limited subset of other processors sharing a block.

In general, for any switching interconnect technology, several switches with fewer ports are
more affordable than a bigger switch with an equivalent number of ports, or the bandwidth
available per unit price is greater. The network architecture of the FDM therefore uses a
number of smaller switches to connect subsets of the processors. Any technology could be
used, such as Ethernet or InfiniBand. One switch is used for each of the B blocks and the B
−1 processors of the block are connected to the switch. Every processor is connected to two
switches. A total of 2P ports are necessary among all the switches. This is twice the P ports
that would be needed for directly connecting each processor to one bigger switch, but the
advantage of the FDM is that it uses only B smaller switches that each have at least B − 1
ports and the B is on the order of the square root of P since P = B(B−1)/2.

The topology of the FDM thus complements the data transfer characteristics of the DDFD
method in which communication is block-based. All of the data transfers needed for an
intra-block collective operation pass solely through the block's assigned switch. The
topology of a 5-block, 10-processor FDM is illustrated in Fig. 5. This figure also highlights
the switches and processors that take part in intra-block collective communication.

In this particular topology, there are only a specific number of processors that can be used,
depending on the target number of atomic blocks. For B blocks, the number of processors P

in the FDM is . The smallest practical number of processors is 3 (when 3 blocks
are used). Other possible numbers of processors are 6, 10, 15, …. Particularly interesting are
FDMs with 10 and 36 processors (5 and 9 blocks, respectively) because in these the number
of processors in a block is a power of two. Having 2n number of processors in a block
simplifies the intra-block collective communication and allows for useful implementations
using multi-CPU and multi-core computers.
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The basic FDM uses only the B switches, each with B−1 connections; however, it is useful
for a FDM to also use an additional larger common switch (or several bridged switches) to
which all of the P processors are connected. The purpose of this switch is to provide default
connectivity from external computers and to ease the administration of the computers. Its
presence or performance does not affect the performance of MD simulations using the
DDFD method.

Cluster expandability and fault tolerance
The FDM uses many smaller switches instead of relying on a single larger multiport switch.
This confers several unique advantages to the cluster, including expandability, a degree of
fault-tolerance, and greater affordability.

Smaller Ethernet networking switches usually have 8, 12, or 16 ports. The number of ports
ultimately limits the number of processors that can be used with them in the FDM. For
example, if 8-port switches are used, then at most 9 blocks can be used, which yields a
cluster of 36 processors; 12-port switches limit the cluster size to 78 processors and 16-port
switches limit it to 136 processors. If larger switches are used than required by the initial
block sizes, then expanding the FDM cluster entails merely adding another switch, an
appropriate number of computers, new connections connecting the new computers to the
new switch, and one connection from each new computer to one existing switch. A 36-
processor cluster that was built with 12-port switches is expanded to 45 processors by
adding 9 processors and another switch. It can be expanded up to 78 processors in this
manner. When the number of ports on a single switch limits expandability, a multilevel
scheme may be used for each block.30

In addition to expansion, the FDM provides a measure of fault tolerance. The chances that
any one processor fails increases with an increased level of parallelism. While currently a
program using the DDFD method can not survive hardware failures during code execution,
the ability to quickly recover the FDM from a failure without swapping any hardware is
welcome. With advances in fault-tolerant software, such as checkpointing with fault-tolerant
MPI or application-level support, such recovery while maintaining performance will prove
essential.40,41

Additional standby processors must be available to enable failover operation. If a larger
common networking switch is available, then the standby processors are also connected to
the common networking switch along with all of the other FDM processors. When a
processor fails, a standby processor is assigned to replace it. Then the processors that share
the failed processor's two blocks update their networking routes to the failed processor's
replacement via the external switch. More than one standby processor can be supported in
this manner, but the communication contention in the common switch impacts the
communication times and reduces parallel efficiency.

Another option to enable failover is to use an additional small standby switch. In this case a
common switch is not needed. The standby processors (and only these) are all connected to
the additional standby switch, which is in turn connected to every one of the per-block
switches. If a processor fails, then a standby processor replaces it. It is reachable from all
other processors, but all messages must now traverse through an additional switch, which
imposes a slight latency penalty for communication. Additional standby processors are
possible, but each additional failure leads to increasing contention on the standby switch.

Implementation of the Force Decomposition Machine
For the pupose of testing the DDFD method, we have developed a force decomposition
machine based on a cluster of personal computers (PCs).
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The FDM is implemented as a 55-processor cluster based on 11 blocks. It is comprised of 55
3.06 GHz Intel Xeon CPUs, each in a separate computer, and connected with 1 Gb/s
Ethernet technology. The 11 per-block switches are Linksys SRW2024 models and 55 Intel
82546GB dual-port PCI-X network cards are used to connect the computers to the switches.
The operating system is the CentOS 4.3 Final Release, using the 2.6.9–42.0.2.ELsmp Linux
kernel.

The FDM processor numbering order follows the scheme from Fig. 5 and the appropriate
networking routes are defined in every computer to allow intra-block processor
communication. Care must be taken to match the parallel library's processor ordering to the
actual processor numbering order, otherwise the advantage of the FDM network topology is
lost. For example, most MPI implementations have a way of specifying processor ordering
when starting a parallel program. All of the computers are also connected to a multiport non-
blocking gigabit Ethernet switch for administrative purposes.

4 Results and Discussion
The Distributed Diagonal Force Decomposition (DDFD) method as implemented in the
CHARMM program35 was compared to the performance of the replicated data (RD) method
in the same program. The comparison of the DDFD and RD methods was performed on a
standard PC cluster consisting of 64 nodes, each with dual Intel Xeon 3.06 GHz processors
with 2 GB of RAM and connected via gigabit Ethernet. One processor per node was used for
these benchmarks.

Two molecular systems were used to compare the different methods and clusters. The
smaller system (system A) consists of a solvated carboxymyoglobin protein with 14,026
atoms total and the larger system (system B) consists of a solvated HIV-1 protease enzyme42

with 54,212 atoms total. For both systems, 1000 steps of molecular dynamics simulation
were run, preceeded by a standard CHARMM setup procedure for electrostatic and van der
Waals computation and a short five step dynamics run. Timings given include the time taken
by the setup procedure. Simulations of both systems used switching nonbonded interactions
starting at 10Å with interaction and list cutoffs at 12Å and 14Å respectively.

MD simulations of the two systems A and B on the standard cluster were used to compare
the DDFD and the RD methods. In this comparison of the methods, CHARMM version
c33b2 and its internal CMPI hypercube-based communication13 were used for the RD
method simulations. For the DDFD simulations, the block-based DDFD communication was
used in a custom version of CHARMM c32a2 and collective communication of non-atomic
data was performed with the MPI implementation's collective communication routines. The
MPICH 1.2.743 library was used in both codes. Fig. 6a shows the speed up and Fig. 6b
shows the communication time of the simulations performed.

In both cases the new DDFD method, as implemented in CHARMM, required less
communication time than the replicated data method. The communication time for the
DDFD method increased much slower than for replicated data, and in the case of the larger
system generally even decreased. As would be expected based on the lower communication
time, the DDFD method yielded a higher speedup. This demonstrates the advantages of this
method.

Since the DDFD method has lower communication times than the RD method, the DDFD is
expected to have a higher parallel efficiency and speedup compared to the RD method. The
data in Figure 6a clearly shows that for any number of processors the DDFD method's
efficiency and speedup is higher. However, since communication is only part of the total
simulation time, the differences in efficiency and speedup between DDFD and RD for the

Boršnik et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2012 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



whole simulation performance is not as drastic as for the communication time. For example,
the DDFD communication times for system B are approximately 5–10% of the total running
time for 6 or more processors. In addition, not all parts of the CHARMM program are fully
parallel and there is no overlap between computation and communication. Although the
efficiency of the DDFD method decreases with an increasing number of processors, the
speedup continues to increase for all processor numbers tested, except for one drop when
moving from 36 to 45 processors on the smaller system (A). A drop in the speedup marks
the point where it is counterproductive to add more processors. For the target cluster sizes
ranging up to 64 processors, the DDFD method provides a measurable speedup compared to
the existing RD method.

5 Conclusions
Parallelization is an important tool in achieving faster molecular dynamics simulations. The
newly described DDFD (distributed diagonal force decomposition) method is an efficient
method that extends the standard force decomposition method. The DDFD method has a
lower communication cost than the replicated data approach and allows dynamic load
balancing throughout the MD simulation. As with all force decomposition methods, its best
use is for simulations of atomic systems with inhomogeneous density or when a very large
force cutoff distance, or none, is employed; very large atomic systems with short force
evaluation cutoff distances might be better served using other parallelization methods.

The DDFD method can be easily implemented in existing codes for MD simulation and we
have described its implementation in the CHARMM program. Thus, the existing MD
methods and tools implemented in the CHARMM program are immediately usable in
combination with the new DDFD method.

The force decomposition machine (FDM) is designed after the communication patterns of
the DDFD method. The FDM uses standard, widely available components. It is easily
expandable to a certain limit and offers several options to plan for quickly recovering from
failed PCs in the cluster. The FDM is independent of processor architecture and can be
constructed out of heterogenous nodes that include GPUs or other types of co-processors.
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Figure 1.
Origin of the force matrix for an example system of 3 molecules with a total of 6 atoms. (a)
The bonding interactions are shown with thick, solid lines and the non-bonding interactions
with thin, dashed lines; the non-bonding interaction between atoms 1 and 3 is differentiated
in red. (b) The force matrix corresponding to all of these interactions. The row and column
labels correspond to atoms and every matrix element corresponds to an interaction between
the atoms; for example, the interactions between atoms 1 and 3 are shown in red, f13 being
the force exerted by atom 3 on atom 1, while f31 is the force atom 1 exerts on atom 3. (c)
The total force acting on an atom is the sum of all partial forces due to individual
interactions. The total force f1 acting on the first atom is the sum of forces f12+ f13+⋯+ f16,
shown in red. (d) Because every interaction has two equal but opposite forces, only one of
them needs to be calculated. Force f3 can be calculated as f31+ f32− f43− f53− f63.
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Figure 2.
Distribution of the diagonal in the Distributed-Diagonal Force Decomposition Method.
Processor 6 has been assigned to calculate the intra-block interactions among the atoms of
block 3 (a). However, any of the other processors 4, 5, 9 that share the same block 3, has all
of the necessary data to calculate any of these intra-block interactions. The calculations of
these interactions are therefore assigned to the three processors 4, 5, 9 (b), and processor 6
becomes superfluous. A similar distribution of interactions from the intra-block diagonal
block products is performed (c), leaving the assignment of interactions to processors as
shown in (d), where processors are assigned only to off-diagonal block products.
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Figure 3.
Support for arbitrary processor counts. Extra processors that can not be assigned to two
blocks, such as processors 7 and 8, are assigned to just one block. The load balancing
algorithm assigns computations from the diagonal block product onto the extra processors.
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Figure 4.
The copying of data for multi-atom interactions. An interaction among three atoms in three
distinct blocks, 2, 3, and 4, is depicted in (a). There is no block that holds all three atoms.
Processor 3, assigned to the block product between blocks 2 and 3 is chosen to calculate the
interaction. The two atoms in blocks 2 and 3 are colored red (as is their interaction), while
the orphan atom in block 4 is colored blue (as is its interaction with the first two atoms) (b).
Processor 3 has the coordinates for the two atoms from blocks 2 and 3, but it also needs the
coordinates of the orphan atom from block 4. A processor (here processor 5) that is both in
the orphan atom's block (block 4) and in either block 2 or 3 (here block 2) is selected. It
sends the coordinates to processor 3 (c), in effect merging this interaction calculation onto
processor 3. After the force calculation, the partial force acting on the orphan atom is copied
back to processor 5 (d) so that the force contribution from the interaction on the orphan atom
is appropriately added to the total force acting upon it.
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Figure 5.
A 5-block FDM. It has 10 processors (represented with squares) connected to 5 switches
(represented with circles). Every one of the 5 blocks is assigned one of the 5 switches, to
which 4 processors are connected. For example, processors 1, 2, 4, and 7, which belong to
the first block, are connected to switch 1 (colored blue). Every processor is connected to two
switches; e.g., processor 2, which calculates interactions among the atoms in blocks 1 and 3,
is connected to the two appropriate switches, switches 1 and 3. A processor communicates
only with the other processors in its two blocks: processor 2 (colored purple), for example,
communicates only with the 6 other processors sharing its two blocks. It communicates with
processors 1, 4, and 7, sharing block 1, using switch 1 (blue colors). It communicates with
processors 3, 6, and 9, sharing block 3, using switch 3 (red colors).
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Figure 6.
Speedups (a) and communication times (b) for the standard cluster using CHARMM's
replicated data method (REPD, blue lines with circles) and the DDFD method (DDFD, red
lines with triangles) for systems A (dashed lines) and B (solid lines). The speedup for N
processors was determined by dividing the wall time for one processor by the wall time for
N processors.
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