Vol. 00 no. 00 2010
Pages 1-7

Entropy-accelerated exact clustering of protein decoys

Francois Berenger, Yong Zhou, Rojan Shrestha and Kam Y. J. Zhang*
Zhang Initiative Research Unit, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama

351-0198, Japan
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Motivation: Clustering is commonly used to identify the best decoy
among many generated in protein structure prediction when using
energy alone is insufficient. Calculation of the pairwise distance
matrix for a large decoy set is computationally expensive. Typically,
only a reduced set of decoys using energy filtering is subjected to
clustering analysis. A fast clustering method for a large decoy set
would be beneficial to protein structure prediction and this still poses
a challenge.

Results: We propose a method using propagation of geometric
constraints to accelerate exact clustering, without compromising the
distance measure. Our method can be used with any metric distance.
Metrics that are expensive to compute and have known cheap lower
and upper bounds will benefit most from the method. We compared
our method’s accuracy against published results from the SPICKER
clustering software on forty large decoy sets from the I-TASSER
protein folding engine. We also performed some additional speed
comparisons on six targets from the “semfold” decoy set. In our tests,
our method chose a better decoy than the energy criterion in 25
out of 40 cases versus 20 for SPICKER. Our method also shown
to be consistently faster than another fast software performing exact
clustering named Calibur. In some cases, our approach can even
outperform the speed of an approximate method.

Availability: Our C++ software is released under the GNU General
Public License. It can be downloaded from http://www.riken.
jp/zhangiru/software/durandal_released.tgz.

Contact: kamzhang@riken.jp

1 INTRODUCTION

Protein structure prediction from amino acid sequence generally
involves the search for the lowest energy conformation. This is
based on Anfinsen’s hypothesis that the native state of a protein is at
the global minimum in free energy (Anfinsen, 1973). Sometimes,
the predicted structure with the lowest energy might not be the
closest to the native structure due to imperfections in the free energy
function used. It has been shown that clustering can be used to
identify the best structure among many decoys (Shortle ez al., 1998;
Zhang and Skolnick, 2004a). This is based on the hypothesis that
there are a greater number of low-energy conformations surrounding
the correct fold than there are surrounding low-energy incorrect
folds. In order to fold efficiently and retain robustness to changes in
amino acid sequence as well as tolerance to structural perturbations,

*to whom correspondence should be addressed

proteins may have evolved a native structure situated within a broad
basin of low-energy conformations (Shortle et al., 1998).

The exact clustering algorithm can be described briefly as two
repeating steps. First, the cluster containing the structure with the
maximum number of neighbors within a predefined cutoff value is
found. Second, this cluster is removed from the set remaining to
be clustered. Subsequent clusters are found by iterating these steps
until the remaining set is empty. Two of the most successful ab
initio protein folding engines, Rosetta (Das and Baker, 2008) and
I-TASSER (Wu et al., 2007) use exact clustering in their protocol
(Bonneau et al., 2001; Raman et al., 2009; Zhang and Skolnick,
2004a,b; Zhang et al., 2005; Skolnick, 2006). In the context of
protein folding, exact clustering is used to reduce the population
of in silico generated models (also called “decoys”) at the end of
a folding simulation. As there is an imperfect correlation between
energy functions used during the folding process and distance to the
native structure, clustering can choose structures that are closer to
native better than selecting the lowest energy decoy (Shortle et al.,
1998). For a good introduction to clustering, the reader is referred
to Jain et al. (1999) and Hastie et al. (2009).

The earliest publication concerning clustering in the context of
protein folding decoy identification seems to be from Shortle et al.
(1998). Clustering after energy filtering identified conformations
close to the native structure better than when using energy as the
sole selection criterion.

By using clustering and a variant of RMSD' less sensitive to
protein length in the SCAR software, Betancourt and Skolnick
could decide if a protein folding simulation need more sampling
of the conformational space (Betancourt and Skolnick, 2001). If
sampling was enough, they could create representative structures
of the different fold families that were discovered.

In the ABLE folding engine, Ishida et al. used URMSD?
and Kohonen’s self-organizing maps (Kohonen, 1998) in the
clustering step of their folding protocol (Ishida et al., 2003). Some
improvements over results obtained by Rosetta were reported.

To identify the best decoys from protein folding simulations,
Zhang and Skolnick tested their SPICKER program on 1489
protein targets (Zhang and Skolnick, 2004a). Because of the limited
computer memory, SPICKER first shrinks the decoy set to 13k

! Tn the rest of this paper and unless otherwise mentioned, RMSD always
means Root-Mean-Square Distance after optimal superposition. Co RMSD
stands for RMSD considering only C,, atoms.

2 URMSD stands for unit-vector RMSD, it is a non protein-length biased
version of the popular C, RMSD (Kedem e al., 1999).

© Oxford University Press 2010.

Francois Berenger et al.

members prior to clustering. A good correlation between the cluster
density of the biggest cluster and RMSD to native of the cluster
representative is shown. The construction of a representative decoy
for a given cluster in SPICKER is quite unique: it is an average of all
the cluster members (called a “centroid”). This procedure is reported
to improve RMSD to native as opposed to simply choosing the
cluster center among cluster members, albeit it can create a structure
that needs some corrections prior to refinement. In 90% of the cases,
if the highest cluster density (a measure of cluster compactness) was
greater than 0.1, one of the top five cluster centroids had an RMSD
to native below 6A. In SPICKER, the cluster cutoff value is refined
automatically based on decoys distribution. Its value is fixed once
the first cluster size has reached a given percentage of the whole
decoy set or once a stop value is reached.

Faster clustering of decoys was investigated by Li and Zhou with
SCUD (Li and Zhou, 2005). Computing a distance matrix takes
considerable time (O(n?) complexity), so Li and Zhou used an
upper bound of RMSD called reference RMSD (tRMSD) to avoid
computing the optimal superposition of many decoy pairs. A nine
fold increase in speed over brute force RMSD-based methods was
reported. The obtained clusters still had a high similarity to the ones
obtained when using RMSD. A strong correlation between RMSD
and rRMSD was shown. SCUD uses an automatic threshold finding
technique that increases the cluster cutoff until the three biggest
clusters are statistically meaningful.

Most researchers working on decoy identification are using exact
clustering but Gront and Kolinski used hierarchical clustering. With
the Hierarchical Clustering of Protein Models software® (HCPM)
partitioning of the conformational space that was sampled during
folding is possible. HCPM can act as a data reduction filter and
create libraries of decoys with a variety of low energy conformations
(Gront and Kolinski, 2005; Gront et al., 2005). HCPM was also
used to identify structures with a native-like topology in the study
of folding pathway by multiscale modeling (Kmiecik and Kolinski,
2008). HCPM incorporates a heuristic to automatically choose a
clustering threshold to obtain clusters of reasonable sizes.

A model that can predict the number of decoys necessary to
obtain a given low RMSD value from native was proposed by Li
(2006). The model can also be trained on a few decoys to predict the
minimum RMSD that would be present in a larger set of decoys. It
can also reliably estimate the fraction of decoys in the largest cluster
as a function of cutoff value.

Handling large amounts of decoys should allow us to find higher
quality models, compared to doing data reduction prior to clustering
(Zhang and Skolnick, 2004a). In Calibur*, Li and N g try to handle
quickly large datasets (Li and Ng, 2010). Experiments with several
tens of thousands of decoys are reported. As soon as the decoy
set is larger than 4k decoys, Calibur is faster than SPICKER. The
quality of Calibur results seems to be better or at least equal to that
of SPICKER. Calibur’s algorithm is a rather intricate assembly of
three strategies. First, outlier decoys detected by a statistical test are
filtered out. Second, cheap to compute lower and upper bounds of
RMSD are used as much as possible. Third, the metric property of
RMSD (Steipe, 2002) is used to avoid many distance computations.

3 nttp://biocomp.chem.uw.edu.pl/HCPM/
4 nttp://sourceforge.net/projects/calibur/

Calibur’s default strategy for threshold finding is x-percentile based
and deduced from statistics on the dataset.

We present here the fastest method (to the best of our knowledge)
to implement exact clustering. Our method focus on efficient
distance matrix initialization, the most time-consuming part of
exact clustering. This initialization step is mandatory in order to
enumerate clusters. We have implemented our method in a software
called Durandal, in reference to a mighty sword from medieval
French legends.

2 METHODS
2.1 Overview

Our approach to accelerate exact clustering is based on one basic
idea. By taking advantage of the metric property of RMSD
(Steipe, 2002), measuring all decoys versus a few references
allows to have a coarse idea of how decoys are distributed in
the conformational space. It allows to prune out superfluous
computations by discovering which distances are not necessary to
measure exactly. In the case of exact clustering, knowing only a
range the distance will fall into is enough in many cases. This
range can be approximated and narrowed down using only addition
or subtraction, which is several orders of magnitude faster than
computing a RMSD.

In exact clustering (algorithm 1), a cutoff value® is needed as an
input parameter. The algorithm computes for each pair of decoys
if it has a RMSD less-than-or-equal-to the cutoff value or over the
cutoff value. This is for the distance matrix initialization part of the
algorithm, which computes all neighborhood relations (definition
1). This is the most time-consuming part of the algorithm. Next,
the clusters are enumerated. The first cluster is the one containing
the structure with the maximum number of neighbors (definition
2) given the cutoff value. This structure is called the cluster center
(definition 3). This cluster is then removed from the initial set to be
clustered, creating the remaining set. Subsequent clusters are found
by iterating the procedure until the remaining set is empty. Exact
clustering is an unsupervised clustering algorithm.

The distance matrix used during exact clustering can be initialized
naively by computing RMSD for each distinct decoy pair (algorithm
2). For n decoys, it will require the computation of n(n — 1)/2
RMSDs.

Initializing the distance matrix in an efficient manner is the key
part of our approach. Knowing if two decoys are neighbors at
a given cutoff is referred to as “decidability” (definition 4). For
each decoy pair, the algorithm does not always need the exact
RMSD. In many cases, knowing either the lower or the upper
bound of the distance range is enough to satisfy “decidability”. We
borrowed the lower and upper bounds of CoRMSD from Calibur
(Li and Ng, 2010) and SCUD (Li and Zhou, 2005) respectively.
We call “insertion” of information into the distance matrix as the
action of measuring all decoys against a new, randomly-chosen
reference decoy. We refer to “propagation” as the use of geometric
constraints to propagate the newly acquired information from the
previous insertion step into the distance matrix. Only once the
distance matrix is fully decided, the algorithm can continue to the
cluster enumeration step. We define entropy of the distance matrix

5 Sometimes referred to as “clustering threshold” or even “cluster cutoff”.

Entropy-accelerated exact clustering

___ Information insertion (expensive)
- - -» Information propagation (cheap)

Fig. 1. Generalization of the insert then propagate procedures to four
decoys. A is the reference decoy. The distances AB, AC and AD are exactly
measured while BC, CD and BD are easily approximated using ranges.

as the number of decoy pairs that are still undecided (definition 5).
When we refer to the speed of insertion or propagation (speed;,
speedp), it means the decrease of entropy during insertion or
propagation (dentropy;> Oentropy,) divided by the time elapsed
during the corresponding step (¢, 6¢,,).

Entropy decrease speeds during the insertion and propagation
steps are therefore defined as: speed; =

entropy;

; speed, =
5ent'r'opyp

St

A crucial part of our algorithm is the propagation of distances
which is as follows:

e given three decoys A, B and C (assuming A was randomly
chosen to be the new reference decoy)

e we measure AB and AC exactly

e we subsequently sort these distances in increasing order (let’s
assume AB < AC)

e finally, we can deduce an approximation geometrically for BC,
whichis: AC — AB < BC < AC + AB

In our approach, this propagation procedure is generalized to any
number of decoys (figure 1). There are also some optimizations to
cut into the O(n?) complexity of propagation: once distances to the
last chosen reference are sorted, it is possible to detect early that
processing more distances will not introduce further information
into the distance matrix. In this way, all the information that
could be exploited from the previous insertion step is used and no
time is lost in over-exploitation. To guarantee our initialization is
faster than the naive method, we monitor at run-time the entropy
decrease speed during insertion and propagation steps. Once entropy
decrease during insertion become faster than during propagation,
our algorithm falls back to a “lazy” version of the naive distance
matrix initialization. For each yet undecided pair, this “lazy”
completion of the distance matrix initialization sequentially tries
lower bound, then upper bound and finally resolves to RMSD in case
none of the previous trials removed undecidability. Our approach to
accelerate initialization of the distance matrix could be used by any
other algorithm using a metric distance.

Hereafter, the formal definitions and algorithms previously
introduced in prose are given.

2.2 Definitions and algorithms

Definition 1. Neighborhood relation between decoys x and y at
distance d: (z,y) € {decoys},d € Rsg
neighbor(z,y,d) = T < rmsd(z,y) <=d

Definition 2. Number of neighbors for decoy = from cluster c at
distance d: d € R0, ¢ € {clusters({decoys},d)},z € c
nb_neighbors(x,c,d) = |[{Vy € ¢ | y # x A neighbor(z,y,d)}|

Definition 3. Cluster center property for decoy = from cluster c:
¢ € {clusters({decoys},d)}, (z,y) € ¢

center(c,x) =T <Py | (yAxA

nb_neighbors(y, ¢, d) > nb_neighbors(z, ¢, d))

Definition 4. Decidability criterion for the decoy pair (z,y) at
distance d: (z,y) € {decoys},d € R>g

(rmsd(z,y) € [Tmin; Tmaz]) A (0 <= rmin <= maz)
decidable(z,y,d) < (Tmin > d) V (Pmaz <= d)

Definition 5. Entropy for a set of decoys at distance d:
(2,y) € {decoys}, s # y,d € Rog
entropy(d, {decoys}) = |(z,y) | ~decidable(x,y, d)|

It is interesting to note from definition 3 that there can be several
cluster center candidates, if they have an equal number of neighbors
at cutoft distance d. The policy to choose the cluster center out of
several equally ranked candidates is responsible for the instability of
the algorithm. We refer to these equally possible cluster centers as
“pole position centers”. Our implementation has a “stable” option.
It allows to display the pole position centers for the biggest cluster.
Note that a cluster center in our definition is not a centroid (i.e.
not an average of all the cluster members as is usually understood
in the clustering literature). A cluster center in our approach is
an actual cluster member (sometimes referred to as a “clustroid”),
contrary to SPICKER which builds cluster representative structures
by averaging all cluster members.

Our software implementation offers two ways to choose a cutoff
value. The first method is directly via a user-specified value. The
second method is semi-automatic. We used the latter during our

Francois Berenger et al.

experiments as it adapts automatically the threshold value to the
spread of the decoy set, using a percentage parameter p provided by
the user. In semi-automatic mode, Durandal will randomly sample
pairwise RMSDs, and use the top p% sampled one as the cutoff
value. The sample is grown iteratively by adding groups of 100
randomly chosen pairwise RMSDs out of the decoy set, to an
initially empty set until the median of this set is stabilized.

Algorithm 1 Exact clustering at cutoff d

s < {decoys}
dm < init_distance-matriz(s, d)
while s # () do
be < biggest_cluster(s,dm)
output(bc)
s+ s\ bc
end while

Algorithm 2 Naive distance matrix initialization

s1 + {decoys}
S9 < S1
n <« |s1|
dm < distance_matriz(n* (n —1)/2, s1)
for = in 51 do
S2 ¢ s2\
for y in s> do
dm[index(z)][index(y)] + rmsd(z,y)
end for
end for

3 RESULTS
3.1 Accuracy

To test the usefulness of our approach, we compared it against
published results of SPICKER on I-TASSER decoys (Wu et al.,
2007). We selected out of the full set forty different protein targets.
To be included in our study, a decoy set need to contain at least
one good quality decoy (i.e. less than 4A C,RMSD to native).
Each time, our software was run using semi-automatic threshold
finding with p = 5% on the full decoy set (no shrinking applied).
Results are shown in figure 2. In each histogram, the first bar is
the biggest cluster center discovered by Durandal while the second
bar is the decoy nearest to the biggest cluster centroid computed by
SPICKER (“closc” files in the decoy set from Wu er al. (2007)).
The best energy decoy as well as the nearest to native decoy from
each set are shown as reference lines; clustering is useful only if
it can pick decoys better than energy. We also tried p = 3% and
p = 10% as the semi-automatic threshold finding parameter to
verify the stability of our method. The maximal variation observed
when using these different p values in terms of average Co,RMSD
to native was around 1.2% only.

In our tests, in 25 out of 40 cases the biggest cluster center found
by Durandal was nearer to native compared to the best energy decoy
(20 out of 40 cases for SPICKER). On average, when comparing the

Algorithm 3 Durandal distance matrix initialization at cutoff d
(comments are enclosed between braces).
s1 < {decoys}
n <+ |s1]
dm <+ distance_matriz(n x (n —1)/2, s1)
Ul < 1]
repeat
ref < random_choice(s1)
s1 4 s1\ref
speed; < insert(ref,dm) {insert new information}
speedy, < propagate(ref,dm) {propagate it}
u1 < undecided_pairs(dm)
until (speed; > speedp) V (u1 = 0)
U2 < U1
for x in u; do
{lazy completion of the initialization}
Uz < u2 \
for y in uz do
Tmin $— lower_bound_rmsd(x,y)
7 4 [Pmin; 0]
if —decidable(r, d) then
Tmaz < upper_bound_rmsd(z,y)
7 4 [Pmin; Tmaz)
if ~decidable(r, d) then
rms < rmsd(x,y)
r < [rms;rms]
end if
end if
dmlindex(z)][index(y)] + T
end for
end for

chosen decoy from each method to the native structure, Durandal
and SPICKER perform almost identically (3.35A C,RMSD and
3.37A C,RMSD respectively).

3.2 Efficiency

Using geometric constraints propagation, our method allows to
exploit efficiently the few CoRMSD that are computed during
the insert-propagate phase (figure 3). Also, the speed of entropy
decrease criterion allows to fall back to lazy-completion at the
optimal moment (figure 4).

In order to evaluate the speed gained with our method, we
measured its execution times on some I-TASSER decoys while
varying set size. We also tested our method on the “semfold” decoy
set (Samudrala and Levitt, 2002)°. We compared elapsed times to
that of Calibur, which is the fastest software we know of capable of
performing the same task. We also compared elapsed times to that
of SCUD which is an approximate method. Calibur was extensively
tested against SPICKER and shown to be significantly faster when
working on large decoy sets (Li and Ng, 2010). Hence, we did not
redo a comparison in speed with SPICKER.

All software were compiled using the highest optimization level
(-03) of their needed compiler. Durandal and Calibur are using
the same routines to compute C,RMSD. All experiments were

6 Downloaded from http://dd.compbio.washington.edu/

Entropy-accelerated exact clustering

10
Durandal s
SPICKER
9 best energy ------- -
closest to native
8 - -
7 - -
<
) 6 T
2
g
s °r |
o
2 4l :
«]
3+ / .
o b / -
1 - -
0

—_—_

BE2E

Fig. 2. Clustering g@)@@ 1

$2EEEDEEBSES
used in I-TASSER wRich®s% GombmatidniePPBIScods axa(?cﬁa@'\?’e%gf%ﬂe

best energy decoy and the closest to native decoy in each set fLe %1\06’}/0 & lines.

performed using exactly uniform computer cluster nodes. The PAR
(Berenger et al., 2010) software’ was used to parallelize preparation
of some input data, experiments, results analysis and obtain a
shorter experiment turnaround with all software. On each data set,
every software was run five times with the same parameters. The
averaged real time elapsed as reported by the Linux ‘time’ command
was retained. SCUD’s run-time does not vary as a function of the
clustering threshold. However the Calibur and Durandal run-times
vary in a difficult to predict manner as a function of the clustering
threshold and the distribution of decoys in the set. Durandal’s run-
time is also influenced by which references are used. All methods’
speeds are influenced by the number of decoys in the set and the
number of residues. Calibur was run without outlier filtering (to
ensure exact clustering of the whole set is performed, as Durandal
does). During Durandal runs, random reference selection was used
to avoid input order bias. If references being used don’t differ much
from each other because they are chosen sequentially from the input
files list and this list is somewhat ordered, it would penalize our
algorithm. Results of comparison in speed with Calibur and SCUD
while varying the decoy set size are shown in figure 5. Accelerations
observed on the “semfold” decoy set are shown in table 1. As a
test to verify that both Calibur and Durandal implement correctly
the exact clustering algorithm, some output files were randomly
chosen and compared, showing a consistent 100% cluster similarity
among the 3 biggest clusters (smaller clusters were not saved during
experiments as Calibur outputs only top three by default).

218

7 http://download.savannah.gnu.org/releases/par/
par.tgz

Bhe z axis is the protein sequence identifier
R’s choices are shown as histogram bars. The

In figure 5, the bump in Calibur run-times observed for set sizes
larger than 13k decoys is due to a change of storage data structure
at run-time (a default Calibur behavior the user has no control over).
In figure 5, the average acceleration rate obtained by Durandal
compared to Calibur is 2.53 and 1.74 compared to SCUD. In table
1, our method is shown to be consistently faster than Calibur and
can even outperform SCUD in some cases.

4 DISCUSSION

Distance matrix computation is the most time-consuming part of
exact clustering. It is interesting to look at how the same problem
was approached in two different ways by Calibur and Durandal.
Calibur’s algorithm grows clusters stepwise, in an online manner.
Calibur’s focus is targeted at grouping together proximate decoys
so the problem is looked from a spatial organization viewpoint.
Durandal computes clusters offline, once enough information is
known regarding distances of all decoy pairs. Distance information
are inserted into the distance matrix using methods to maximize
the speed of the procedure. Durandal attacks the problem using
an information-centered approach. One of the consequences of
these different strategies is that Calibur does not exploit fully some
of the expensive to compute information it collects. In Calibur,
some previously computed distances or their bounds are used to
avoid computing some more distances, but this information doesn’t
percolate through all clusters. Whereas in Durandal, as long as
inserting then propagating new distance information is the fastest
strategy, information is exploited to the maximum.

Francois Berenger et al.

Table 1. Acceleration rate obtained by Durandal compared to SCUD and
Calibur on the “semfold” decoy set. The lower clustering threshold for
each target was chosen so that the first cluster is statistically significant.
Calibur and Durandal are exact methods while SCUD is approximate.
The acceleration rates labeled “SCUD” or “Calibur” in the table are the
total run-time of “SCUD” or “Calibur” divided by the total run-time of
“Durandal”.

Target Cutoff (A) SCUD Calibur
(decoys, residues)
1pgb 5 1.21 1.69
(11280, 56) 6 0.9 1.49
7 0.75 1.61
8 0.8 1.71
1e68 4 2.08 1.75
(11361, 70) 5 1.54 1.44
6 1.15 1.38
7 0.95 1.61
lctf 4 1.43 1.61
(11400, 68) 5 1.38 1.57
6 1.08 1.47
7 0.86 1.52
leh2 6 1.43 1.35
(11440, 95) 7 1.01 1.06
8 0.85 1.28
9 0.84 1.63
Inkl 5 1.73 1.42
(11660, 78) 6 1.23 1.17
7 0.95 1.3
8 0.81 1.51
1khm: 5 1.99 3.22
(21080, 73) 6 1.39 2.74
7 1.01 2.84
8 0.85 34

Both SPICKER and Durandal implement the same clustering
algorithm. However, some slight differences remain. Both methods
use different automatic threshold-finding strategies, decoy selection
technique and energy filtering. Concerning threshold-finding
strategy, SPICKER follows a cutoff refinement algorithm (Zhang
and Skolnick, 2004a) while Durandal picks a value after some quick
sampling of the decoy set. Durandal’s way is close to Calibur’s
default threshold-finding strategy. For decoy selection, SPICKER
selects the decoy nearest to the cluster centroid while Durandal
selects the cluster center as understood in definition 3. Moreover,
Durandal clusters full decoy sets without applying additional energy
filtering, whereas SPICKER reduces the decoy set to 13k decoys
maximum using an energy criterion. When the energy function is
inaccurate, Durandal may benefit more from the averaging effect of
clustering.

We have addressed the problem of clustering speed to a large
extent with Durandal. However, the memory requirement issue has
not been dealt with. The memory requirement grows in the same
order as that of the naive algorithm. This is an important problem.
Clustering acceleration can be tackled using geometric constraints
as we did. If the distance measure being used is not a metric, our
approach cannot be applied to speed up the process by reducing the
number of calls to the distance function. The memory problem is

not easy to address; if the distance matrix were stored on disk, the
overall clustering procedure would become an order of magnitude
slower due to the higher disk access latency compared to memory.
Algorithms avoiding the memory size problem should work under
the following constraint: being able to cluster without requiring
that the full distance matrix is available in memory. In this aspect,
despite Calibur’s speed may be far from optimal, it is worthwhile
noticing that it is quite thrifty regarding memory consumption.

Concerning the optimum choice of reference decoys in Durandal,
previous work employing a metric distance in the problem of best-
match search showed that there is an optimal heuristic to choose
reference points (Shapiro, 1977). Reference points should be away
from cluster centers. However, the exact distance away, as well as
the number of reference points to use is unclear. Concerning the
number of references to consider, our algorithm uses an entropy
decrease speed criterion to detect if we are starting to use too many
of them in order to trigger a fallback from the insert-propagate step
to the lazy-completion one. Durandal uses chance in its reference
point choice policy. Based on our experience using Durandal, the
speed criterion combined with random reference selection creates
an efficient and simple heuristic.

Some distributed algorithm could push even further the scalability
of clustering large decoy sets, both in terms of speed and memory

Entropy-accelerated exact clustering

requirements. In the distributed case, the problem would probably
be no longer just about fast clustering where our algorithm could be
used. The challenge may become how to efficiently merge and store
intermediate clustering results from partitions of a whole decoy set.
Possibly, some small overlapping in the partitions could accelerate
the procedure by merging first reference structures from both sets.
Afterwards, many distance measures would be avoided. If the user is
not interested in parallelizing computations, the parallel version of
the program could still be used to overcome the memory barrier by
running it sequentially on a single computer. Partitioning the initial
set, then clustering each subset before incrementally merging results
seems a feasible approach.

We hope the method we proposed will help the protein folding
community in the decoy identification step of their protocols.
The acceleration technique we detailed may be of interest to
other scientific or engineering fields and may be adapted to other
clustering algorithms.

ACKNOWLEDGMENTS

We wish to thank RIKEN, Japan, for an allocation of computing
resources on the RIKEN Integrated Cluster of Clusters (RICC)
system. We are largely indebted to protein folding researchers who
make publicly available full decoy sets.

FUNDING

This work was supported by the Initiative Research Unit program
from RIKEN, Japan.

REFERENCES

Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science,
181(96), 223-230.

Berenger, F., Coti, C., and Zhang, K. Y. J. (2010). PAR: a PARallel and distributed job
crusher. Bioinformatics, 26(22), 2918-2919.

Betancourt, M. R. and Skolnick, J. (2001). Finding the needle in a haystack: educing
native folds from ambiguous ab initio protein structure predictions. Journal of
Computational Chemistry, 22(3), 339-353.

Bonneau, R., Tsai, J., Ruczinski, 1., Chivian, D., Rohl, C., Strauss, C. E. M., and
Baker, D. (2001). Rosetta in casp4: Progress in ab initio protein structure prediction.
Proteins: Structure, Function, and Bioinformatics, 45(S5), 119-126.

Das, R. and Baker, D. (2008). Macromolecular modeling with rosetta. Annual Review
of Biochemistry, 77(1), 363-382.

Gront, D. and Kolinski, A. (2005). Hcpm—program for hierarchical clustering of protein
models. Bioinformatics, 21(14), 3179-3180.

Gront, D., Hansmann, U. H. E., and Kolinski, A. (2005). Exploring protein
energy landscapes with hierarchical clustering. International Journal of Quantum
Chemistry, 105(6), 826-830.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series
in Statistics. Springer, 2nd ed. 2009. corr. 3rd printing edition.

Ishida, T., Nishimura, T., Nozaki, M., Inoue, T., Terada, T., Nakamura, S., and Shimizu,
K. (2003). Development of an ab initio protein structure prediction system able.
Genome Informatics, 14, 228-237.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: A review. ACM
Computing Surveys, 31(3), 264-323.

Kedem, K., Chew, L. P, and Elber, R. (1999). Unit-vector rms (urms) as a tool to
analyze molecular dynamics trajectories. Proteins, 37(4), 554-64.

Kmiecik, S. and Kolinski, A. (2008). Folding pathway of the bl domain of protein g
explored by multiscale modeling. Biophysical Journal, 94(3), 726 — 736.

Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1-3), 1-6.

Li, H. (2006). A model of local-minima distribution on conformational space and
its application to protein structure prediction. Proteins: Structure, Function, and
Bioinformatics, 64(4), 985-991.

Li, H. and Zhou, Y. (2005). Scud: Fast structure clustering of decoys using reference
state to remove overall rotation. Journal of Computational Chemistry, 26(11), 1189—
1192.

Li, S. and Ng, Y. (2010). Calibur: a tool for clustering large numbers of protein decoys.
BMC Bioinformatics, 11(1), 25.

Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D., Kellogg,
E., , DiMaio, F., Lange, O., Kinch, L., Sheffler, W., Kim, B.-H., Das, R., Grishin,
N. V., and Baker, D. (2009). Structure prediction for casp8 with all-atom refinement
using rosetta. Proteins: Structure, Function, and Bioinformatics, 77, 89-99.

Samudrala, R. and Levitt, M. (2002). A comprehensive analysis of 40 blind protein
structure predictions. BMC Structural Biology, 2(1), 3.

Shapiro, M. (1977). The choice of reference points in best-match file searching.
Commun. ACM, 20(5), 339-343.

Shortle, D., Simons, K. T., and Baker, D. (1998). Clustering of low-energy
conformations near the native structures of small proteins. Proceedings of the
National Academy of Sciences of the United States of America, 95(19), 11158-
11162.

Skolnick, J. (2006). In quest of an empirical potential for protein structure prediction.
Current Opinion in Structural Biology, 16(2), 166—171.

Steipe, B. (2002). A revised proof of the metric properties of optimally superimposed
vector sets. Acta Crystallographica Section A, 58(5), 506.

Wau, S., Skolnick, J., and Zhang, Y. (2007). Ab initio modeling of small proteins by
iterative tasser simulations. BMC Biology, 5(1), 17.

Zhang, Y. and Skolnick, J. (2004a). Spicker: A clustering approach to identify near-
native protein folds. Journal of Computational Chemistry, 25(6), 865-871.

Zhang, Y. and Skolnick, J. (2004b). Tertiary structure predictions on a comprehensive
benchmark of medium to large size proteins. Biophysical Journal, 87(4), 2647 —
2655.

Zhang, Y., Arakaki, A. K., and Skolnick, J. (2005). Tasser: An automated method for
the prediction of protein tertiary structures in casp6. Proteins: Structure, Function,
and Bioinformatics, 61(S7), 91-98.

Decoy index

2000

1800

1600

1400

1200 |

1000

800

600

400

200

Francois Berenger et al.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Decoy index

Fig. 3. Colorized snapshot of the distance matrix after 3 insertion and 3
propagation steps (algorithm 3). While having measured only 0.35% of all
the possible Co RMSD pairs, our method completed 34.25% of the distance
matrix initialization. White points are yet undecided decoy pairs. Green
points are decided pairs that were estimated during propagation steps. Each
black line is composed of decided pairs sharing the same reference decoy,
exactly measured using CoRMSD during an insertion step. As the black
lines from the 3 insertion steps plus their 3 symmetry mates are very thin,
their positions are indicated by arrows at the upper and right sides of the
picture. The black diagonal is the symmetry axis and also the not computed
zero distance to self of each decoy. Decoys are sorted in order of increasing
CoRMSD to the decoy at index 0 for display purpose. The cutoff was 0.75A
for 2k decoys of protein target 1aoy.

Entropy (kilo undecided decoy pairs)

Elapsed time (s)

2000
1800
1600
1400
1200
1000
800
600
400
200

900
800
700
600
500
400
300
200
100

Entropy-accelerated exact clustering

T
naive
propagate
Durandal --------

Fig. 4. . Diff@rf,nt alggrithms iniiiéilfifﬁ‘g’tflledistz%pge mirix at cutoff 0.75A
gn 2k Sf:foysa% profein targes 1aoyI hntr(ﬂy reaf_thmg 780 is the terminating
condition of the dié ance drﬁ‘%tri)(migitialization (a mandatory step prior to
enumerating clusters).pf)n t] eei)urandal plot, the arrow labeled s indicates
a switch in distance matrix initialization strategy from insert-propagate to

lazy-completion (algorithm 3).

Calibur
i SCUD -
L Durandal -------- i

Fr) L L L L L

o . 9 mo o o o o o. o o o
FigS. Sgped @mpdgisonBetw@n C8iburgSCUD an@Durandal on 1shfA

decSys (154 ciitofh) For @arity?only%ne sfice iRithe D landscape created
by varying the cu?%fm %on}) Tod% Ctg §A by 0.5A increment is shown. When
considering the full cuto% range, iSurandal is faster than Calibur in 98% of
all cases. SCUD results were computed only for this slice.

