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Abstract
The nonlinear Poisson-Boltzmann equation (PBE) governing biomolecular electrostatics neglects
ion size and ion correlation effects and recent research activity has focused on accounting for these
effects to achieve better physical modeling realism. Here attention is focused on the comparatively
simpler challenge of addressing ion size effects within a continuum-based solvent modeling
framework. Prior works by Borukhov 1, 2 have examined the case of uniform ion size in
considerable detail. Generalizations to accommodate different species ion sizes have been carried
out by Li3, 4 and Zhou5 using a variational principle, Chu6 using a lattice gas model and Tresset7
using a generalized Poisson-Fermi distribution. The current work provides an alternative
derivation using simple statistical mechanics principles that place the ion size effects and energy
distributions on a consistent statistical footing. The resulting expressions differ from the prior non-
uniform ion-size developments. However, all treatments reduce to the same form in the cases of
uniform ion-size and zero ion size (the PBE). Because of their importance to molecular modeling
and salt-dependent behavior, expressions for the salt sensitivities and ionic forces are also derived
using the non-uniform ion size description. Emphasis in this article is on formulation and
numerically robust evaluation; results are presented for a simple sphere and a previously
considered DNA structure for comparison and validation. More extensive application to
biomolecular systems is deferred to a subsequent article.
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Introduction
In order to reliably model the behavior of biomolecules and predict their dependence upon
ambient salt conditions and their interactions with other molecules, an accurate and general
treatment of the governing electrostatics is essential. Currently the most widely used
characterization of biomolecular electrostatics that accounts for the presence of mobile ions
in the solvent, is the Poisson-Boltzmann (PB) description. PB methods adopt an implicit
solvent model where the solute is modeled at the atomic level while the solvent is
characterized in terms of its macroscopic properties. Among the currently available suite of
biomolecular electrostatics modeling methods, PB-based formulations realize a useful
compromise between physical modeling fidelity/detail and computational cost. Explicit
solvent models offer superior physical realism but require considerably higher
computational effort to sample the conformational space by either molecular dynamics or
Monte Carlo techniques. Simpler descriptions such as Generalized Borne (GB) 8, 9 or
particle-based Debye-Hückel models10, on the other hand, are less expensive, but do not
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provide the level of detail of the dielectric interface needed for accurate force predictions
and binding sites.

PB-based methods have been successfully applied to characterize counterion distributions
and ion competition effects11–13, predict titration curves and pK-shifts, obtain the salt-
dependent binding affinities and association rates of biomolecular complexes, analyze the
electrostatic fields of biological ion channels 14, simulate molecular recognition events in
nucleic acids and other biopolyelectrolytes and study the effects of salt concentration upon
conformational transitions 15–17. PB-based electrostatics descriptions are also useful in
modeling colloidal stability and electrokinetic effects such as electrophoresis and electro-
osmosis 18, 19 with applications to paper-manufacturing and water purification.

Limitations and cases of failed predictions
Despite such successful applications and widespread use of PB-based electrostatic
simulation software, the PB description is subject to important limitations that can become
pronounced in some contexts. For example, comparisons against more sophisticated solvent
treatments using idealized polyion models20–22 have shown that while the nonlinear PBE
provides good estimates of the ion distributions and electrostatic energies for 1:1 salts at low
and moderate salt concentrations, significant discrepancies arise when considering highly
charged biopolyelectrolytes immersed in high univalent salt concentration or in multivalent
salts. Attraction forces between same-charged molecules in ion channels or close proximity
walls 23 are also poorly predicted using the PBE. Compilations of the biological events that
cannot be captured by the PBE, are given in 24, 25.

These discrepancies can be attributed, at least in part, to the omission of ion size and ion-ion
correlation effects in the PB framework and recent research has sought to account for these
effects 1, 6, 26, 27. Even at modest electrostatic potentials, approximating electrolyte ions as
point charges results in ion concentrations that are much higher than when ion size effects
are taken into account. In the context of mean-field theories the most common means of
accounting for the local excluded volume effects is to insert a charge-free 2–4 Å Stern layer
about the molecular surface. Outside this layer is the usual diffuse Gouy-Chapman layer
governed by the PBE. Further decomposition of the Stern layer into an inner and outer
Helmholtz layer may be made to account for ion adsorption at the surface. However, these
models are inadequate when considering multiple salt solutions with different size ions.

Finite Ion Size Modeling
The effect of finite ion size can also be incorporated directly into the expressions for the ion
distributions. The incorporation of ion size was carried out by Kralj-Iglič 28 and Borukhov1

for the case where the ions have comparable size. A generalization to the non-uniform ion
size case involving two dissimilar size ion species was developed by Chu using a simple
lattice gas representation of the ionic solvent6 and incorporated into the Adaptive Poisson-
Boltzmann Solver (APBS). An extension to an arbitrary number of disparate size ion species
was obtained by Li using variational techniques applied to an ion-size generalization of the
mean-field electrostatic free-energy functional 3, 4. Recently computational results using
their technique have been produced for spherical geometries 5. A similar generalization by
means of a first order linearization about the uniform ion case was obtained by Tresset 7.
The more difficult challenge of addressing ion-ion correlations has also been attempted 27,
but development of efficient numerical treatments to implement these terms remains at an
early stage.

In the present work we derive a non-uniform ion size description compatible with the mean-
field theory using basic statistical mechanics concepts. The effect of ion size is introduced
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by means of a simple and intuitive constraint condition adduced to the number of system
states using a Lagrange multiplier. This constraint replaces an analogous constraint upon the
total number of particles imposed in the derivation of the standard PBE. The number of
system states is maximized for given conditions (fixed internal energy and volume) and the
most probable ion species distributions are found. In addition to deriving the ion
distributions and electrostatic free energies, expressions are also obtained for the salt
sensitivities of these energies and the ionic pressure at the molecular surface necessary to
calculate molecular forces. At low potentials, the linear PBE is recovered and, according to
the theory developed below, the influence of ion size effects becomes negligible. For highly
charged molecules however, such as nucleic acids and its complexes with proteins, surface
potentials become high and ion size plays a prominent role. The well-known previously
established forms are recovered in the limits of uniform ion size and vanishing ion size. The
resulting size-modified PBE (SMPBE) theory is used to calculate ion distributions about
simple spherical geometries containing a central charge for which solutions can be rapidly
obtained using a 1D model 29, and compared against the PB solutions and published data.

Formulation
Numerous important properties of a charged low dielectric biomolecule embedded in an
ionic solvent can be inferred from the electrostatic potential, ϕ, governed by the Poisson
equation

(1)

Here ε is the dielectric constant, ρf is the charge density associated with the fixed charges
comprising the biomolecule and ρion is the charge density associated with the mobile ions in
the solvent. Eq.(1) is solved using an appropriate discretization method (e.g., finite
differencing or application of a finite volume or finite element method); once the potential
solution is known important derivative properties such as the free energy and its dependence
upon salt conditions, electrostatic forces, binding properties and pK-shifts can be obtained.
The mobile ion distribution responds to the electrostatic field and the challenge posed here is
to characterize the mobile charge density, ρion, under the simultaneous consideration of ion
size and electrostatic potential. When ion size is neglected, the classical Boltzmann
distribution is recovered and (1) reverts to the Poisson-Boltzmann equation. Accounting for
finite ion size alters the ionic distributions and imposes physical bounds on the charge
densities that can be obtained. The following development aims at deriving expressions for
the ion concentrations and associated charge distribution accounting for both ion size and
electrostatic potential.

The implicit solvent model accounting for finite ion size is derived in accordance with
familiar statistical mechanics procedures 30 where the ion distributions are inferred from a
sufficiently large ensemble of system arrangements satisfying a specified thermodynamic
state. In what follows a fixed volume of electrolyte with a given energy and electrostatic
potential is considered. Local interactions between the ions and solvent molecules are
neglected. It is also assumed that the electrostatic potential over the volume is essentially
uniform which, in the current context entails considering a sufficiently small volume so that
the distance-dependent variation in the electrostatic potential induced by the molecular
charges is small. To obtain a statistically meaningful ensemble a large collection of
thermodynamically equivalent ion arrangements is taken at different times of the steady
state system.
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To derive a continuous implicit solvent description begin by considering a configuration in
the ensemble where the total number of solvent molecules is n0 and the number of ions of
the i-th species is ni. The total number of particles is then

(2)

where p is the number of ion species. In accordance with elementary statistical mechanics30

one is interested in establishing the most likely or probable arrangement of the particles
subject to imposed system constraints which, here, will be a volume constraint and an
energy constraint. This is tantamount to maximizing the number of combinations

(3)

subject to

(4)

where species, i=0, corresponds to the solvent, Vi are the ion and solvent volumes and Vtot
is a fixed volume. Now it is assumed further that for any ion the energy is given by the
energy to bring the ion from infinity to its actual location, which, if only electrostatic forces
are at play, is the potential energy. Thus:

(5)

with the implicit understanding that for the neutral solvent ions, zi=0. Using Stirling's
approximation formula:

(6)

Using standard statistical mechanics procedures the most probable configuration is obtained
by appending the constraints (4) using Lagrange multipliers and maximizing the resulting
function:

(7)

Here the signs on the Lagrange multipliers, α and β, are arbitrary, but selected here so that
β=1/kBT. This identity is formally shown below. Maximizing (7) with respect to the ni
results in the most probable distribution:

(8)

or,

(9)
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The dependence on Vi is intuitively correct, provided α>0, since one expects to have more
of the small particles and fewer of the large particles. Note that for any potential,

(10)

which implicitly yields α as a function of the other terms. The iterative solution for α is
discussed later below.

By differentiating (10) with respect to the energy, E, and using the definitions (4) it readily
follows that:

(11)

The entropy of the system is given by:

(12)

which, together with (11) and the thermodynamic definition of temperature results in:

(13)

thus confirming the aforementioned identity of the Lagrange multiplier, β.

Using (4) and (9), the concentration in number of ions per unit volume is given by:

(14)

from which it is clear that

(15)

This last result is used to define c0 in terms of the ion concentrations. Also, from (10) and
(14) the average, or most probable ion+solvent volume,

(16)

where,

(17)

At zero potential, the ion bulk concentrations are:
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(18)

Substituting for the μi in (14) results in:

(19a)

where,

(19b,
c)

The last expression can also be written as:

(19d)

which eliminates the explicit dependence on cb0 and has a well defined limit for vanishing
solvent size.

The parameter, h, is fundamentally related to the osmotic pressure and is determined from
the following nonlinear equation for h readily derived from (9), (10) and (18):

(20)

For a given potential, ϕ, the parameter, h, is readily obtained using a simple iterative method
such as Newton-Raphson or repeated bisection. The latter option is guaranteed to converge
provided an initial pair of points, h1 and h2, can be found such that F1=F(h1,ϕ)≤0 and
F2=F(h2,ϕ)≥ 0. The function Fm=F(hm,ϕ) is then evaluated at the mid-value, hm=(h1+h2)/2.
If Fm>0 then one replaces h2←hm and F2←Fm; otherwise h1←hm and F1←Fm. This process
is repeated until either Fm=0 or |h2/h1−1| is within machine round off.

Relation (20) can also be used to show that for fixed bulk concentrations:

(21)

where,

(22)

In the case of a constant ion size, h can be written explicitly and the resulting expressions for
the ion concentration revert to those established previously by Borukhov 1. This reduction is
shown in Appendix A.
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Limiting Value for Small Potential
As the potential approaches zero, α→α0 and so h→0. One can then expand (20) to linear
order in h and ϕ and evaluate the results at h=ϕ=0 and thus infer that:

(23)

Now, from charge neutrality and the expressions for cbi one can show that:

(24)

meaning that h ∝ Cϕn, where n≥2. It then follows from (19a) that

(25)

Thus,

(26)

which corresponds to the standard linear PBE. Hence, the linear PBE is recovered at small
potentials with the term in parentheses on the right hand side of (26) corresponding to the
familiar combination, εκ2 where ε is the dielectric in the solvent region and κ is the Debye-
Hückel parameter. Note that this result differs from the result Eq. (6.1) in 3 where the
presence of different sized ions generally changes the effective screening length.

The development above relates the ion species concentrations to the local electrostatic
potential, ion size and bulk concentrations. In investigations of biomolecular electrostatics
one is generally interested in derived properties such as the system energy and its
sensitivities with respect to salt concentration or atomic position, the latter quantity
corresponding to the atomic force which is of direct relevance to molecular dynamics,
energy minimization and docking applications. In the following development expressions
are derived for the three most commonly required properties: the electrostatic free energy,
the gradient of this energy with respect to salt concentration and the ionic pressure
contribution to the electrostatic force.

Expressions for Energy
The average energy per particle is

(27)

The total energy over the entire space is obtained by converting this result into an energy
density and integrating over the volume. Thus, from (14)
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(28)

where D is given by (16) and relates (ni/N)=(ci/D). Similarly, the total entropy can be
obtained from its fundamental definition (see (12)):

(29)

Consequently, it follows that (using (13) and (15)):

(30)

It is valid to subtract the contribution at zero potential resulting in:

(31)

Adding the fixed charge contribution, defined by charge density ρf, results in the following
expression for the electrostatic free energy:

(32)

This latter form is preferred both on the basis of simplicity and a direct equivalence with the
energy terms commonly referred to in the nonlinear PBE (e.g., RHS of (24) in 31). In
particular, the last term in (32) is equal to the negative of the excess osmotic pressure. Thus,

(33)

where (21) leads to the last equality.

It is straightforward to show that for constant ion size one recovers the same expressions
readily derivable from that in 1. Moreover, from that result the limiting form for zero ion
size corresponding to the nonlinear PBE is easily obtained as shown in Appendix A.

Energy Salt Gradient
The change in energy due to a change in salt concentration is referred to as the salt gradient
and can be derived for each of the ion species as follows. For a variable, u, let the gradient
∂u/∂cbk be denoted by u’. Then from (32) and using integration by parts:

(34)

where the surface integral taken over the infinitely far sphere,
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(35)

For solutions that satisfy the ion-size modified PBE, the term in parentheses in (34) is zero
so that:

(36)

A relationship between h’ and ϕ’ is obtained as follows. First note that it is implicitly
assumed that all other ion concentrations are held fixed. It then follows from (15) evaluated
at zero potential that to conserve volume the change in solvent concentration:

Differentiating (20) with respect to cbk then leads to

(37)

or, when combined with (15), (19) and (22),

(38)

Inserting this result into (36) results in

(39)

This expression is well behaved for vanishing solvent size since:

The surface integral, Sk, generally vanishes for finite salt concentrations. This follows upon
noting that at sufficient distance, r, from the molecule of interest where potentials are small
the electrostatic field behaves as ϕ=Ae−κr/r where A is some (finite) amplitude related to the
residual charge at an appropriate bounding sphere and κ is the inverse Debye screening
length. Inserting this result into (35) then produces a zero result provided ϕ’ is finite. At zero
salt, however, no screening occurs in the solvent, A is equal to the net charge, Qnet, and the
integral asymptotes to:

(40)
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Forces
The forces acting on an atomic site in the molecule correspond to the change in energy when
the atomic site is perturbed by an infinitesimal amount. This force has two components. The
first is simply the electrostatic gradient at the charge site itself. The other force is associated
with the surface pressure arising from the perturbations in the dielectric map and ion
distribution. The electrostatic forces can be obtained using a procedure similar to the one
used to derive the salt sensitivity above. Again, the change of a quantity, u, due to a
perturbation of atom, j, along Cartesian direction, k, is denoted by u’. Following Gilson 32 to
characterize the forces it is convenient to introduce the parameter, λ, to delineate the region
containing the solvent (λ=1) from the rest of the domain (λ=0). Then from (32), the energy:

(41)

and the variations,

(42)

Using the same series of steps used previously to arrive at the expression (36) for the salt
sensitivity (integration by parts and use of the ion size-modified PBE) this reduces to:

(43)

The surface integral Sjk is defined analogously to Sk in (35) and can be readily shown to
vanish at all salt concentrations (including zero salt). Qualitatively, this is because ϕ’ (the
potential perturbation due to a perturbation in an atomic site) vanishes at large distance from
the atom whereas previously ϕ’ (there the perturbation in the potential due to a change in the
bulk solvent concentration) did not vanish for zero salt concentration.

The first term is in the integrand is simply the change in energy due to moving the charge
site with all other parameters, including the molecular geometry unchanged. It is given by
(see also Gilson 32):

(44)

where qj is the atomic charge and êk is the unit vector in the k-th direction. This result is
simply the familiar electrostatic field evaluated at the charge site.

The second term in (43) corresponds to the dielectric pressure and has the exact same form
as encountered in the standard PBE. It only contributes where the dielectric is changing –
i.e., near the surface. For a dielectric function that varies smoothly across the molecular
surface:

(45)

where the derivative ∂ε/∂Rjk will depend on the details of how the dielectric function is
defined. For a sharp jump in dielectric across a surface, elemental considerations show that
ε’dV=(εin−εex)n∙bjkdS where n is the outward pointing unit normal vector, bjk is the surface
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displacement vector due to a unit change in the atomic site, j, in the k-th direction. For the
van der Waals surface, bjk=êk; for the solvent-excluded surface the expression is more
complicated (e.g., see Eqs.(45) and (46) in 33 for simple expressions). With these results one
obtains:

(46)

where the integral is taken over the surface, Sj, affected by perturbations in the position of
atom. This expression agrees with expressions by Zauhar 34 and Gilson 32 and corresponds
to a dielectric pressure integrated over the surface. Note that to obtain the result (46) it is
observed that the electrostatic gradients tangential to the surface are continuous whereas in
the normal direction one has that ε(∂Φ/∂n) is constant. Then for a small increment across the
surface:

(47)

The remaining terms in (43) constitute the ionic pressure. From (21), the first two of these
terms cancel resulting in:

(48)

For a sharp change in λ across the molecular surface λ’dV=−n·bjkdS, so that:

(49)

Combining these terms and assembling contributions for each Cartesian direction results in
the following force vector:

(50)

where the rows of [Bj] are the vectors bjk and the dielectric and ionic pressures at the
surface,

(51a,
b)

With the exception of pion all force terms are the same as in the conventional PBE.

Implementation—The incorporation of the non-uniform ion size model into Poisson-
Boltzmann solver that computes the electrostatic potential, ϕ, from (1) proceeds as follows.
First a subroutine to compute h for a given grid point potential, ϕ, using (20) is developed
and incorporated. The parameter h is then used in conjunction with the known bulk solvent
properties to calculate the local ion concentrations from (19a) and thus the mobile charge,
ρion, from (22). With the right hand side in (1) now fully defined (the fixed charge
distribution, ρf, is a known input) the local potential can be updated using the iterative
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procedure of choice in the Poisson-Boltzmann solver. Upon convergence of the potential
solution post-processing to compute the electrostatic energies, salt sensitivities and forces
can be carried out by evaluating the relevant volume and surface integrals defined in (32),
(39) and (50) respectively.

Results
The non-uniform ion-size model is incorporated into a 1D solver described in 29 and used to
obtain high resolution solutions for a sphere containing a central charge. Two cases are
considered here. The first examines a uniform ion size model whose solution can be
obtained using the current model and Borukhov's formulation 1 (they become identical in the
uniform ion case). The second case compares the non-uniform ion size case against results
developed by Tresset using a generalized Poisson-Fermi distribution for the ion
concentrations. Consideration of true biomolecular systems is reserved for a subsequent
publication.

Sphere with Central Charge and Uniform Ion Size
The first case considers a 20Å sphere with a −50e central charge. The temperature is set to
298.15 K and the interior and exterior dielectrics are εin=4 and εex=78.5. This configuration
is directionally invariant so that the solution depends only on radial distance. It was also
examined in 35 using the uniform ion size model 1 allowing comparison. In the first example
a uniform ion size of 1.5Å is assumed and an environment consisting of a mixture of 1:1 and
2:1 salts is considered. Figure 1 shows the variation of the electrostatic free energy with 1:1
salt concentration for various 2:1 salt concentrations. The curves agree closely with those
reported in 35 and reproduce the gradual flattening of the curves with increasing 2:1 salt.
These results help confirm the proper operation of the software implementation. The same
spherical configuration is also considered to compare the bound ion numbers. Now the ion
radius is 1.4Å and the 1:1 salt concentration is fixed at 0.1M while the 2:1 salt concentration
is varied. The results are depicted in Figure 2 and agree closely with 35.

Comparison between Monodisperse and Polydisperse Solutions
The 1D sphere containing a central charge is again considered to examine how the surface
potential varies with salt concentration for a mixed salt system with non-uniform ion size.
The conditions considered replicate the ones used to produce Fig. 2 of 7. The salt consists of
a 0.01M 1:1 buffer salt with ion volume, V1=4πa3/3=150Å3 to which is added another 1:1
salt of concentration, c2, and ion volume V2=800Å3. In 7 the potential on an infinite plane
surface with charge distribution of −0.2C/m2 was examined. Here a 100Å radius sphere is
used to approximate the infinite plane case and a central charge of −1568.77e is inserted to
produce the same areal charge density. For these cases the solvent size, asolvent=0. The
temperature, T=298.15K and the interior and exterior dielectric constants are ε1=4 and
ε2=78.5 respectively. Figure 3 shows the variation of the surface potential with added salt
concentration for the four cases considered in Fig. 2 of7: (i) the mixed salt described above;
(ii) the same salt mixture, but with V1=V2=150Å3; (iii) the same as (i), but with
V1=V2=800Å3; (iv) the same as (i), but with V1=V2=0. The last case corresponds to the
nonlinear PBE. When compared to Fig. 2 of7, the curves corresponding to salt properties
(ii)–(iv) are in reasonable agreement with the discrepancies being attributable to the use of a
spherically symmetric rather than planar geometry and, in cases (ii) and (iii), assigning a
zero radius to the solvent (recall that the theory developed here reduces to the uniform ion
size model of1 when the ion and solvent sizes are all identical). For the mixed salt case (i)
however, the curve is qualitatively different from 7 in that it increases monotonically with
salt concentration whereas in 7 there is a distinct minimum. The same monotonic behavior is
obtained at higher net charge and increased ion size (Fig. 3 of7 indicates that the minimum
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obtained in their model becomes more pronounced with ion size). A possible explanation of
this difference between models is that the higher order terms neglected in the linearized
treatment of the ion exclusion effect in 7 are significant for the case considered here.

The model can also be used to estimate the ion distributions of counterions with different
valences. To this end, the ion concentrations reported in Fig. 5 of 7 are reproduced here
using the SMPBE and compared to the corresponding distributions obtained with the
standard nonlinear PB equation. The parameters are the same as for the previous case except
for the following: (i) the net charge is doubled to obtain a surface charge of −0.4C/m2; (ii)
the salt mixture contains three electrolytes - 10µM of 3:1 salt, 10mM of 2:1 salt and 0.3M of
1:1 salt; (iii) the counterions have excluded volumes of 1000Å3 and all coions have
excluded volumes of 150Å3. Figure 4a shows the ion concentrations for each of the
counterions revealing the layered structure consisting of the highest valence ions nearest the
surface followed by two lower valence ions further away from the surface. The distributions
agree with those shown in Fig. 5 of7 with the peaks occurring at virtually the same distances
from the surface. The peaks themselves are slightly smaller than those of 7, most likely due
to the differences in formulation and the solution about a spherical rather than planar
geometry. The corresponding distributions obtained with the nonlinear PB solver shown in
Figure 4b are completely different and lack the stratification that occurs when ion size is
accounted for.

The parameter h as a function of potential for this solvent at finite ion size is shown in
Figure 4c and compared against the corresponding curve obtained with the zero ion size
PBE approximation by integrating (21). As expected, for small potentials, |ϕ|<<1, both
curves are in close agreement and reflect the quadratic behavior expected analytically. At
higher potentials while both curves reflect the asymmetric expected from the 2:1 and 3:1 salt
components, they deviate from each other with the SMPBE curve assuming smaller values.
For large potentials, the h~ϕ curve obtained with the SMPBE asymptotes to a linear
relationship. This is expected for all finite ion size models since at high potentials the mobile
ion charge density, ρion, asymptotes to a non-zero constant value. The linear dependence
between h and ϕ in this potential range then follows from (21). For the zero ion size PBE
model, h grows exponentially with ϕ since no constraint on the ion density is imposed.
Analogous observations pertain to the curves in Figure 4d relating the mobile ion charge to
the potential. At very high values of potential the ion densities obtained with the SMPBE
description asymptote to 3e/1000Å3 (at negative potential) and −1e/150Å3 (at positive
potential) reflecting the full packing of the 3:1 salt counterions and the coions respectively.

Ordering of Ion Layers
In the recent article by Zhou, Wang and Li 5 it is proposed that the ordering of the ion
concentration peaks near the surface can be estimated by considering the valence to volume
ratio, zi/Vi. Figure 7 of that article considers a solution consisting of only positive ions
having valences of +3e, +2e and +1e. The volumes of the ions are varied and the resulting
ion distributions due to a 10Å sphere containing a −200e charge calculated. Here the
dependence of ion stratification upon valence to volume ratio is investigated using the
present analysis approach. Because the problem definition in 5 differs somewhat from the
ones addressed here (for example, the far-range ion concentrations approach zero rather than
bulk values; also the valences and volume properties of the negative ions present in an
electrically neutral bulk fluid are not given) direct comparison of the cases is not possible.
Nevertheless, reasonable estimates of the solvent conditions can be made to approximate
their examples as follows.

The exterior dielectric is set to ε2=80.1 to match the Bjerrum length of 7Å (T=298K). The
ion species are enumerated such that zi=+i. The bulk solvent conditions are approximated as
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cbi=ni/V where the volume, V, in 5 is given as L3−4πR3/3 with the domain side length
L=80Å and the sphere radius, R=10Å. The numbers ni are set to 200/(3zi). This leads to bulk
concentrations of: cb1=0.2180 M (+1e ions), cb2=0.1090 M (+2e ions) and cb3=0.0727 M
(+3e ions). The solvent size is fixed at V0=8Å3. All co-ions are assigned a charge of −1e and
sized to 8Å3. The volumes of the counterions are adjusted to produce varying valence to
volume ratios. As in 5 the following four cases are considered.

Case (a): ai={5, 6, 7} Å. α+2 : α+3 : α+1 = 1.157 : 1.093 : 1

Case (b): ai={6, 5, 7} Å. α+2 : α+3 : α+1 = 3.456 : 1.889 : 1

Case (c): ai={4, 6, 7} Å. α+1 : α+2 : α+3 = 1.786 : 1.059 : 1

Case (d): ai={4, 6, 8} Å. α+1 : α+2 : α+3 = 2.667 : 1.580 : 1

Here the ion volumes are given by Vi=ai
3 and the valence to volume ratios are denoted by

α+i=zi/Vi.

The computed ion concentrations are shown in Figure 5 and agree qualitatively with those
in 5 with differences being attributable to the different formulations adopted and necessary
approximations between the cases. However, the same conclusions are reached regarding the
correspondence between α+i and the ordering of the ion concentration peaks. Thus for Cases
(a) and (b) depicted in Figure 5a–b the ordering of the ion concentration peaks from the
surface corresponds to the +2e species followed by the +3e and then +1e species. This is
consistent with the ordering (from large to small) of the ratios α+i listed above. Similarly for
Case (d) the peak ordering from +1e to +2e to +3e predicted by the valence to volume ratios
is reflected in Figure 5d. For Case (c) the same peak ordering is also maintained although
the peak for the +2e species in Figure 5c is smaller than for the +1e species. This is not
unexpected since α+2 and α+1 differ by only 5.9% so that other factors such as the relative
bulk concentrations may become more significant in controlling peak amplitude.

The formulation developed here provides a heuristic basis for this relationship between α+i
and the ion peak ordering. From (19a) it follows that:

where (21) is used to obtain the final right hand term. A peak occurs when this derivative is
zero, i.e., when ρion = zie/Vi = eαi. For the negatively charged surface ρion decreases from a
positive value at the surface to zero when far away from the surface. If this decrease is
monotonic with distance from the surface then it immediately follows that peaks in (Qci)
will be visited in order of decreasing zi/Vi as observed in the computation. Note that the
ordering of the peaks shown for (Qci) does not formally imply the same ordering in ci. Thus
at this point the correlation between α+i and the ion peak ordering, remains suggestive, but
not rigorous.

Nonlinear A/B Junction DNA Structure Associated with Tc3 Transposase Protein
In order to demonstrate application of the non-uniform ion size model to a realistic
biomolecular configuration the model has been incorporated into the adaptive Cartesian grid
(ACG)-based Poisson-Boltzmann solver described in 36. This solver utilizes an octree data
structure to represent the potential solution and provide the variable length scales needed to
accommodate large complex structures. Here this solver is used to revisit the deformed and
nonlinear DNA structure in association with the Tc3 transposase protein (PDBid: 1tc3 with
net charge −37e) previously considered on the basis of the standard PBE in 36 (specifically,
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Figure 8 of that article). Charges and radii are assigned using the AMBER force field37 and
the solute boundary is represented using the solvent excluded molecular surface. The interior
and exterior dielectric constants are εin=2 and εex=80 respectively and the temperature is
298K. The electrostatic solution for this configuration is calculated using the standard PBE
and the SMPBE descriptions. In both cases the same salt mixture employed in the preceding
example (10µM of 3:1 salt, 10mM of 2:1 salt and 0.3M of 1:1 salt) are used again here. For
SMPBE calculation all counterions and coions are assigned excluded volumes of 1000Å3

and 150Å3 respectively; zero ion sizes are used in the PBE calculation. A fine grid spacing
of 0.1Å at the surface is used in all calculations to ensure all features and length scales are
adequately resolved.

Figure 6 compares the surface potential maps obtained using the PBE and SMPBE. The
main difference between the results is a generally more negative potential with the SMPBE
model, particularly inside the groove. The minimum surface potentials in units of kcal/mol/e
are −2.52 (standard PBE) and −4.70 (SMPBE model). The reason for the more negative
potential in the SMPBE is easily explained by noting that finite ion size limits the number of
counterions available to neutralize the negative potential. In the PBE no such limit exists
allowing higher counterion densities. In Figure 6 the orange-yellow region corresponds to
potentials less than −3 kcal/mol/e or −5.07 kBT/e which, from an expanded view of Figure
4d would yield mobile charge densities of 0.0016 e/1000Å3 (SMPBE) and 0.40 e/1000Å3

(PBE) respectively – i.e., an approximately 250-fold difference.

While these differences in the electrostatic potential maps affect the prediction and possible
interpretation of sequence-dependent features and phosphate charge clustering, other
properties for this case such as the total electrostatic energy and its salt sensitivities appear
to be only weakly affected by ion size effects as indicated in Table 1. The area-averaged
ionic and dielectric pressures, pion and pd, for this molecule are also compared showing that
smaller values of pion are obtained using the SMPBE. However, the ionic pressures obtained
with the PBE and SMPBE are both about two orders of magnitude smaller than the dielectric
pressures, pd, and for this case the influence of finite ion size upon surface pressures (and
thus forces) is more strongly reflected in the changes to pd than pion. Forming general
conclusions on the basis of these limited observations is premature and investigation of
biomolecular systems where finite ion size effects may play a more extensive role is
presently underway. The results of this investigation will be reported in a follow-on article.

Conclusions & Future Activity
Utilizing simple statistical mechanics principles, a non-uniform ion size model has been
formulated to provide the ion concentrations and derivative properties such as the
electrostatic free energy and its variation with salt concentration and also the ionic pressure.
The new model has been applied to simple systems involving a sphere containing a central
charge to confirm agreement with existing models for both the uniform and non-uniform ion
size cases. Generally good agreement has been established, thus increasing confidence in the
overall approach. Results suggest that the effects of ion size are most significant when
evaluating electrostatic potentials and ion concentrations at the surface. Volume integrated
properties such as total energies and bound ion numbers appear to be only weakly affected
by ion size. Simulations carried out using the new ion size model corroborate the correlation
between peak ordering in stratified ion distributions and the valence to volume ratio
identified in 5. The present theory also supports this correlation provided that the mobile
charge distribution changes monotonically with distance from the surface.

The model has been incorporated into a 3D SMPBE solver and used to calculate the
electrostatic potential solution for a DNA structure. This solver is currently being used to
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investigate a collection of relevant biomolecules and geometries (e.g., ion channels) where
size effects are believed to play a significant role. Means of incorporating ion-ion correlation
effects in a similarly simple manner with reliance on ensemble-averaged computational
simulations to quantify these effects are also being considered.

Nomenclature

ai ion size such that the ion volume, Vi=ai
3

ci concentration of i-th species in number of ions per unit volume

cib bulk concentrations (at zero electrostatic potential)

D sum of concentrations of all species including solvent defined in (17)

Db sum of bulk concentrations

êk unit vector in the k-th direction

e unit electric charge

Ei potential energy of ion of i-th species defined in (5)

Ē average energy per particle defined in (27)

Ȇ total energy per volume developed from (28)

G Gibbs free energy defined in (32)

G’ derivative of Gibbs free energy with respect to specified parameter

h difference α−α0 of Lagrange coefficient from zero potential value

kB Boltzmann’s constant

n0, ni number of solvent molecules and ions of i-th species

N total number of particles

p number of ion species

pd, pion dielectric and ionic pressures defined in (51)

qi atomic charge of i-th species

Q ratio Db/D

Qnet net charge

Rjk perturbation of atom j along Cartesian direction k

S entropy defined in (12)

Sk surface integral given by Eq. (31)

T temperature

Vi volume of ion of i-th species

Vtot total volume

zi valence of i-th species

Z partition function defined in (3)

α, β Lagrange coefficients

α0 value of Lagrange coefficient at zero potential

α+i valence to volume ratio, α+i=zi/Vi
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λ Gilson parameter used to demarcate the interior and exterior regions

ΔΠ excess osmotic pressure (33)

μi chemical potential of i-th species

ρf, ρion fixed charge and ion charge density, the latter being defined in (22)

φ electrostatic potential
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Appendix A. Limiting Expressions for Uniform Ion Size and Zero Ion Size
The expressions developed in the main article for non-uniform ion size reduce naturally to
previously established results in the limits of uniform ion size and zero ion size (governed
by the standard PBE).

Ion Concentration
In the case of constant ion and solvent size, V,

(52)

and the ion concentrations can be expressed:

(53)

or, using (15) evaluated at zero potential:

(54)

Defining:

(55)

and summing (54) over the ion species shows that

(56)

which when substituting back into (54) shows that:
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(57)

After identifying V=a3 these results agree with the uniform ion size-modified PBE
expressions developed by Borukhov 1. The ion distributions corresponding to the standard
PBE are trivially reproduced from (57) since in the limit of vanishing ion size, V→0, C and
Cb also vanish per (55).

Total Free Electrostatic Energy
For constant ion size (20) leads to:

(58)

which, using (56), leads to:

(59)

and the excess osmotic pressure,

(60)

This in fact agrees with the expression readily derivable from the uniform ion size obtained
from Borukhov1.

This result in turn can be used to develop the results for vanishing ion size (i.e., the
nonlinear PBE) by expanding the natural logarithmic function. Thus,

(61)

which, using (54), recovers the familiar PBE result:

(62)

Energy Salt Gradient
In the case of uniform ion size using (55) and (57) then the expression for the salt gradient
(39) becomes

(63)

Further in the limit of vanishing ion size one recovers the result for the nonlinear PBE:
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(64)

and reproduces the known relationship between the salt gradient and excess osmotic
pressure 31

(65)

Ionic Pressure
Since pion is equal to the integrand of the integral for the excess osmotic pressure (33) the
simplifications developed for uniform ion size and the limit of vanishing ion size are
immediately available (see (59) and (62))

(66a)

(66b)

Vanishing Solvent Size
All of the expressions derived above in the main article are well behaved when the solvent
size, V0, becomes infinitesimally small. While there are terms where the volume V0 appears
as a divisor all such terms are multiplied by the term, exp{−hV0}−1, whose limiting
behavior when divided by V0 is simply h.
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Figure 1.
Variation of total electrostatic energy with NaCl salt concentration at various MgCl2
concentrations for sphere with central charge. The ion radius for all species is 1.5 Å.
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Figure 2.
Variation of numbers of bound ions with MgCl2 salt concentration for a mixed salt solution.
Here [NaCl] is fixed at 0.1 M and the ion radius of all species is 1.4 Å.
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Figure 3.
Variation of surface potential with added (1:1) salt concentration for the cases 7 of: (i)
Mixed salt consisting of a 0.01M (1;1) salt with V=150Å3 and added salt with V=800Å3; (ii)
both salts with V=150Å3; (iii) both salts with V=800Å3; (iv) both salts with V=0Å3.
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Figure 4.
a. Spatial distributions for ions of different valences about a centrally charged sphere using
the same parameters and conditions as for Fig. 5 of 7.
b. Ion distributions for the same case considered in Figure 4a, but using the nonlinear PB
(zero ion size).
c. Variation of h with potential for the case considered in Figure 4a.
d. Variations of mobile charge density, ρion, with potential for cases considered in Figures
4a (finite ion size) and 4b (zero ion size).
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Figure 5.
a. Spatial distributions for +1e, +2e and +3e ions with respective sizes a+1=5Å, a+2=6Å,and
a+3=7Å about a 10Å radius sphere containing a net charge of −200e. This case approximates
the example used to produce Figure 7a in 5.
b. Spatial distributions for +1e, +2e and +3e ions with respective sizes a+1=6Å, a+2=5Å,and
a+3=7Å about a 10Å radius sphere containing a net charge of −200e. This case approximates
the example used to produce Figure 7b in5.
c. Spatial distributions for +1e, +2e and +3e ions with respective sizes a+1=4Å, a+2=6Å,and
a+3=7Å about a 10Å radius sphere containing a net charge of −200e. This case approximates
the example used to produce Figure 7c in 5.
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d. Spatial distributions for +1e, +2e and +3e ions with respective sizes a+1=4Å, a+2=6Å,and
a+3=8Å about a 10Å radius sphere containing a net charge of −200e. This case approximates
the example used to produce Figure 7d in 5.
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Figure 6.
Surface potential for DNA with three salt mixture. The left view is obtained using the
standard PBE whereas the right view is developed using the SMPBE with different ion sizes
resulting in a more strongly negative distribution, particularly in the groove region. The
view and potential map scale for both surface plots are identical. The salt mixture for this
case contains three electrolytes - 10µM of 3:1 salt, 10mM of 2:1 salt and 0.3M of 1:1 salt.
For the SMPB calculation all counterions have excluded volumes of 1000Å3 and all coions
have excluded volumes of 150Å3.
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Table 1

Energies and Salt Sensitivities Obtained with SMBPE and PBE Models.

Property PBE SMPBE

Reaction field energy [kcal / mol] −6936.6 −6925.0

Excess osmotic pressure contributions [kcal / mol]
      3:1 Salt
      2:1 Salt
      1:1 Salt

0.0195
1.856
6.485

0.151
3.438
8.589

Salt sensitivities, ∂G/∂{ln(cb)}×1000 [kcal / mol]
      3:1 Salt
      2:1 Salt
      1:1 Salt

−0.365
−0.138
−5.909

−0.364
−0.470
−5.625

Area-averaged ionic pressure × 1000 [kcal / mol 0/e / Å3] 1.216 0.809

Area-averaged dielectric pressure × 1000 [kcal / mol /e / Å3] 181.1 175.1
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