arXiv:1301.4904v1 [physics.chem-ph] 21 Jan 2013
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The method of Monte Carlo configuration interaction (MCCI)!:2 is applied to the calculation of multipole
moments. We look at the ground and excited state dipole moments in carbon monoxide. We then consider
the dipole of NO, the quadrupole of N9 and of BH. An octupole of methane is also calculated. We consider
experimental geometries and also stretched bonds. We show that these non-variational quantities may be
found to relatively good accuracy when compared with FCI results, yet using only a small fraction of the full
configuration interaction space. MCCI results in the aug-cc-pVDZ basis are seen to generally have reasonably
good agreement with experiment. We also investigate the performance of MCCI when applied to ionisation
energies and electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI results with full
configuration-interaction quantum Monte Carlo®4 and ‘exact’ non-relativistic results.®* We show that MCCI
could be a useful alternative for the calculation of atomic ionisation energies however electron affinities appear
much more challenging for MCCI. Due to the small magnitude of the electron affinities their percentage errors
can be high, but with regards to absolute errors MCCI performs similarly for ionisation energies and electron

affinities.
INTRODUCTION

Monte Carlo configuration interaction (MCCI), cre-
ated by the group of J. C. Greer,*2 attempts to produce
a compact wavefunction that can be close in accuracy
to the full configuration interaction (FCI). This proce-
dure exploits the observation that, in many systems, nu-
merous states in a FCI contribute almost nothing to the
wavefunction. In this general approach it is not alone: a
number of methods have been proposed which often es-
sentially aim to discover the states necessary for a good
description of the system without performing a FCI, see,
e.g., Ref. |3 for a review. MCCI offers the possibility of
recovering much of the static and dynamic correlation
using only a very small fraction of the configurations re-
quired for a FCI with minimal user input and, in princi-
ple, no inherent difficulties when treating excited states
or multireference systems. To achieve this an iterative
process of a CI calculation within a sample of coupled
configurations followed by a stochastic augmentation of
the sample at each step is employed. Here configura-
tions whose coefficient has an absolute value less than a
user-specified value (¢pin) in the MCCI wavefunction are
eventually removed from it.

Previous work by Greer et al has shown that single-
point energies,t and bond dissociation energies® for hy-
drogen fluoride and water, can be satisfactorily computed
using this method. Electronic excitation energies for
atoms have been computed using MCCI,” where it was
found, when using an aug-cc-pVTZ basis with additional
Rydberg functions, that the errors tended to be relatively
small compared with experiment as were the fractions
of states needed compared with a FCI. More recently,
Gyorfly, Bartlett, and Greer® showed that electronic ex-
citation energies for molecules could be calculated with
errors of only around tens of meV for molecules such as
nitrogen and water. Here the MCCI wavefunctions com-

prised from a few thousand to around twelve thousand
configuration state functions (CSFs) compared with FCI
spaces of circa 108. The MCCI method has also been
applied to ground-state potential curves in Ref.|9. There
it was generally found to be able to produce sufficiently
accurate potential energy surfaces for small molecules,
even in multireference situations, using a tiny fraction of
the FCI space.

As this version of MCCI uses the magnitude of a state’s
coefficient in the wavefunction as the criterion for in-
clusion rather than a state’s energy contribution we ex-
pect that properties of the exact wavefunction other than
the energy should also be approximated sufficiently accu-
rately by an MCCI wavefunction using a very small frac-
tion of the states required for a full CI. Here we test this
idea on non-variational properties of the system: multi-
pole moments. We calculate dipole moments for ground
and excited states in carbon monoxide and the ground-
state dipole moment in NO which are compared with
FCI and experimental results. The quadrupole moment
is calculated for Ng and compared with experimental and
FCI results. FCI results for the quadrupole of BH and
an octupole of methane are also compared with MCCI
results. In addition to equilibrium geometries we also
consider structures where the system may be expected to
be multireference and standard methods may not work
well. The possible ability of MCCI to produce accurate
enough multipoles at a range of geometries could be use-
ful for the construction of multipole surfaces. Finally
we also consider the performance of the MCCI algorithm
when applied to ionisation energies and electron affinities
of atoms which we compare with FCI quantum Monte
Carlo (FCIQMC)2# and ‘exact’ non-relativistic results.
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METHODOLOGY

We give a short recap of the MCCI method.22 MCCI
stochastically adds coupled configurations to a wavefunc-
tion |Unocr) = Y, ¢i [¥4) so that the important configu-
rations can eventually be found regardless of their substi-
tution level, in contrast to traditional truncation meth-
ods such as CISD, as there is no fixed reference state for
MCCI. Configuration state functions (CSFs) rather than
Slater determinants (SDs) are used thereby ensuring that
the MCCI wavefunction is an eigenfunction of S2 and
producing a wavefunction with fewer states. However,
the construction of linearly independent CSFs and the
Hamiltonian matrix when using CSF's is more computa-
tionally demanding. An outline of the MCCI algorithm
is below:

1. Randomly augment the current MCCI wavefunc-
tion with single and double substitutions.

2. Construct the Hamiltonian matrix and diagonalize.

3. Remove new states whose coefficient is lower in
magnitude than ¢y, (pruning).

4. Every 10 iterations remove all states with coeffi-
cients lower in magnitude than ¢y, (full pruning).

5. Return to Step 1.

We note that current states with coeflicient greater
than a certain value will always have single or double
substitutions attempted from them while other states
have a 50% chance of this occurring. There is no aug-
mentation or removal of states on the last iteration, but
on the penultimate iteration all states with coefficients
lower in magnitude than ¢y, are removed. Furthermore
the program can run in parallel with newly discovered
and retained states broadcast to all other processors.
The states comprising the current MCCI wavefunction
are stored at each step thereby allowing a calculation to
be restarted using a previous wavefunction as the initial
guess but with a smaller ¢y, if necessary. This means
that if the accuracy is not sufficient at one cpi, then
the calculation can be improved more efficiently than if
it were just run again at a lower cpiy starting from the
Hartree-Fock (HF) reference. We attempt to run the
MCCI calculation for enough time so that the property
of interest appears to have essentially converged over a
number of iterations. We acknowledge that due to the
random nature of the procedure there is always a small
chance that further iterations may produce a change in
the calculated property. The diagonalization using the
Davidson algorithm!? is the rate limiting step when con-
sidering systems whose FCI space is large. The MCCI
wavefunction is thus currently restricted to a maximum
of around 10° CSFs. For the pruning step we use wave-
function normalisation. For the multipole calculations
this uses the coefficients after diagonalization as in the
original program.? For the ionisation energy and electron

affinity calculations we try to give a more balanced treat-
ment of the atom and its ion by using the MCCI pruning
method of Ref. |8 to approximate an orthogonal CSF ba-
sis.

We use a modified version of the MCCI program for the
results in this work. Occupied HF molecular orbitals are
used to construct the initial MCCI wavefunction and, un-
less otherwise stated, all electrons are correlated. For the
multipole moment calculations we generate the molecu-
lar orbital integrals using the program Columbus™! while
we use MOLPRO*2 to calculate the molecular orbital in-
tegrals for the ionisation and electron affinity results. For
the FCI energy and multipole calculations we use PSI3.13

RESULTS
DIPOLE MOMENT RESULTS
Carbon Monoxide

The dipole moment in atomic units of a linear molecule
oriented along the z axis may be calculated as

M=—<‘I’|5|‘I’>+ZziQi- (1)

Here @Q; is the nuclear charge of atom i. The ground-
state dipole moment of carbon monoxide, although fairly
small, when calculated using HF strikingly has the incor-
rect sign compared with experimental results. Previous
work has suggested that the accuracy of the dipole cal-
culation depends on the amount of correlation accounted
for.24 The bond length (2.1316 Bohr) and the experimen-
tal dipole value (0.122 Debye) are taken from Ref. [15.
The positive value for the dipole here signifies a polarity
of C~O™.

With a cc-pVDZ basis, two frozen core orbitals and a
cut-off value of cpuin = 5 x 1073, we see in Fig. [ that
the MCCI method, starting from close to the incorrectly
signed result of the HF single SD, quickly reaches a cor-
rectly signed value which converges at around half of the
FCI value. The non-variational nature can clearly be
seen in Fig. [l as it is initially far below its converged
value then quickly overshoots it. This value used only
833 CSFs compared with a FCI space, with spatial sym-
metry considerations, of around 10° SDs.

We calculated the FCI energy (—113.05583 Hartree)
and dipole moment (0.23 D) using PSI313 for comparison
and the convergence of the MCCI energy towards these
values is displayed in the inset and main part of Fig. [
We note that we have only recovered 88% of the corre-
lation energy when using cpi, = 5 x 1073, When we in-
crease the accuracy of the correlation energy by lowering
Cmin We can achieve 98.1% of the correlation with around
4x10* CSFs when using cyin = 3x 1074 (see Fig.[2). The
periodic behaviour of the MCCI energy at convergence is
apparent in Fig. @ and this is due to the full pruning
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FIG. 1. MCCI results with cmin = 5 x 1072 for the dipole
moment (e Bohr) against iteration number and FCI result
for CO using the cc-pVDZ basis set with two frozen core or-
bitals. Adapted from Ref. 5. Inset: Energy (Hartree) against
iteration number.

step every ten iterations causing a small increase in the
energy when a number of states are removed. New states
are then added and some kept. Although their addition
may have lowered the coeflicients of some of the original
states so that they are now below the threshold for re-
tention, these original states are not checked for removal
until the next full pruning step. Hence as the energy is
variational it lowers as more states are added until ten
iterations later when all states are again considered for
deletion. This periodic behaviour is indicative of the en-
ergy calculation essentially converging.
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FIG. 2. MCCI and FCI energy (Hartree) against iteration
number for CO using the cc-pVDZ basis set with two frozen
core orbitals.

In Fig. Bl we see that the dipole moment is also closer
to the FCI results as the cut-off value is reduced. In these
calculations the wavefunction from a previous, larger cut-
off, computation has been employed as the initial wave-
function and the procedure restarted.

In Fig. Ml we display percentage errors when compar-
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FIG. 3. MCCI results for the dipole moment (e Bohr) against
iteration number for CO using the cc-pVDZ basis set with
two frozen core orbitals. Adapted from Ref. [5.

ing the MCCI results to those of the FCI. The dipole
percentage error is plotted against the correlation energy
percentage error for the three cut-off values considered
(5 x 1073, 5 x 107* and 3 x 107%) where a decreasing
cut-off corresponds to a decrease in the correlation en-
ergy error. Here we see that although the dipole error is
somewhat larger it appears to decrease with decreasing
correlation energy error.
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FIG. 4. MCCI percentage errors when compared with the
FCI. Dipole percentage error plotted against correlation en-
ergy percentage error for CO using the cc-pVDZ basis set
with two frozen core orbitals for three cmin values (5 x 10737
5% 107* and 3 x 10*4). Here decreasing cmin corresponds to
decreasing correlation energy percentage error.

We note that the FCI dipole in cc-pVDZ basis has a
large percentage error compared with the experimental
result although the absolute error is only about 0.1D.
Diffuse functions would be expected to be important for
the correct calculation of multipoles as a better descrip-
tion of the wavefunction further away from the atom may
be needed. Hence we also considered the aug-cc-pVDZ
basis with no frozen orbitals. In this case the calculation



is far beyond a FCI. The results are depicted in Fig.[Bland
we find that a good agreement with experiment is found
as we reduce cmin to 3 x 107 to give a dipole moment
of 0.11 Debye. This used 55,913 CSFs compared with a
FCI space, without spatial symmetry considerations, of
around 10'® SDs.
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FIG. 5. MCCI results for the dipole moment (e Bohr) against
iteration number for CO when using the aug-cc-pVDZ basis
set. Adapted from Ref. |5.

We acknowledge that other methods such as CCSD
will be more efficient to calculate the dipole of this ground
state at an equilibrium geometry. For example the CCSD
non-relaxed dipole can be calculated very quickly for cc-
pVDZ and gives 0.0996 e Bohr. However we now apply
MCCI to a geometry where CCSD performs poorly and
then excited states.

Stretched bond length

Carbon monoxide at a bond length of R = 4 Bohr was
much more challenging for FCI and we note that the RMS
for the error in the CI vector was 3x 1072 in PSI312 when
taken close to the limits possible with our hardware, com-
pared with a default requirement of 10~4. The CCSD
non-relaxed dipole was calculated with MOLPRO!? as
—1.16 e Bohr and we note that numerical derivatives us-
ing central differences and a step size of 107 in field
strength gave —1.17 for CCSD and —1.31 for CCSD(T).
In Fig. [@ we plot the CCSD non-relaxed dipole and the
dipole calculated with FCI and MCCI. We see that the
MCCI calculation rapidly moves towards the FCI result
and the final MCCI wavefunction gives a dipole that is
difficult to distinguish from the FCI result on the scale
of the graph. The final MCCI wavefunction used 12, 669
CSFs compared with the FCI space of around 10° SDs.
The system is strongly multireference here as the largest
nine FCI coefficients have absolute values between 0.24
and 0.30. Methods based on a single-reference would be
expected to struggle here and we indeed observe this for
CCSD and CCSD(T). MCCI in principle has no inher-

ent problems when dealing with multireference systems
and the result here suggests that it can work well for the
calculation of a multipole moment, as well as the energy,
for such a system.
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FIG. 6. MCCI, FCI and CCSD results for the dipole moment
(e Bohr) against iteration number for CO using the cc-pVDZ
basis set with two frozen core orbitals at the stretched geom-
etry of bond length R = 4 Bohr.

Triplet state

We now consider the first triplet state 3II using the
experimental bond length of 2.278 Bohr.l6 We plot the
dipole moment versus iteration in Fig. [ and note that
now the dipole points in the opposite direction to the
ground singlet state and again the non-variational nature
is apparent. The MCCI result, with cpnin = 1073, is in
fairly good agreement with the FCI result and used 5, 447
CSFs compared with a FCI space of 8.6 x 10® SDs.
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FIG. 7. MCCI results for the dipole moment (e Bohr) of the
first triplet state against iteration number for CO at 2.278
Bohr when using the cc-pVDZ basis set with two frozen cores
and cmin = 1073 compared with the FCI result.

The calculated dipole using MCCI with cpi, = 1073



and an aug-cc-pVDZ basis with no frozen cores gives
—1.584 Debye with 7047 CSF's and is in reasonable agree-
ment with experiment (—1.3740 Debye)X” The agree-
ment is better at a cut-off of 5 x 10~% where 14, 771 CSFs
gave —1.49 Debye. The FCI space consists of around 10'°
SDs without symmetry considerations here so again the
MCCIT results are using a very small fraction of the space.

Singlet excited states

For the first excited state 'II (ground-state of By or
By symmetry within Cs,) in CO we consider MCCI
compared with FCI results with the experimental bond
length of 2.334 Bohr as cited in Ref. [18. In Fig. [§ we see
that the MCCI dipole calculation quickly converges to
a value very close to the FCI on the scale of the graph.
Here 10,375 CSFs were required compared with ~ 10°
SDs in the FCI symmetry adapted space.
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FIG. 8. MCCI and FCI results for the dipole moment (e Bohr)
for the first 11 excited state of CO (B1 symmetry within Cay)
against iteration number when using the cc-pVDZ basis set
with two frozen cores at the experimental bond length of 2.334
Bohr.

When using an aug-cc-pVDZ basis with cpin = 1073
and no frozen cores we find a dipole moment of —0.548
Debye at the ground-state geometry using 16,487 CSFs
compared with —0.335 £ 0.013 Debye from Ref. 19 while
an earlier study2? found this to be —0.15 & 0.05 Debye.
Here the signs of the experimental results have been de-
termined by a theoretical study..® The result is closer to
the later experiment when cpi, is lowered to 5 x 10™% to
give —0.418 with 45,274 CSFs.

We now consider the first excited state of A7 symmetry
within Cy, (!X7) in CO and use the experimental bond
length cited in Ref. [18 of 2.116 Bohr. We see in Fig.
that the first excited state of A; symmetry dipole cal-
culation with the cc-pVDZ basis quickly approaches its
converged value after starting with a too high but same
signed value. The stable value is close to the FCI result.
We note that the calculation of this excited state is not as

stable in that oscillations occasionally occur. The energy
sometimes rises sharply after a full pruning step here and
this is accompanied by an increase then decrease in the
dipole before it returns to essentially its almost converged
value. It seems that sometimes states that are important
for this system are removed during a full prune. The en-
ergy appears to recover almost to its previous value in one
iteration, but it appears to take at least two iterations
for the dipole moment and its non-variational nature is
apparent. This more sensitive behaviour to the removal
of states may be connected to the level of cut-off and the
use of the second eigenvalue from the MCCI diagonaliza-
tion routine. This used 8,988 CSF's for the final MCCI
wavefunction compared with the symmetry adapted FCI
space of circa 10° SDs.
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FIG. 9. MCCI and FCI results for the dipole moment (e
Bohr) for the first (*X7) excited state of CO at 2.116 Bohr
(A1 symmetry within C2,) against iteration number when
using the cc-pVDZ basis set with two frozen cores .

An experimental study2? found this dipole to be 1.60+
0.15 Debye while a later work:? found it to be 1.95+0.03
Debye. The sign was not determined in these experi-
ments but Ref. [18 found the dipole of this excited state
to be around —2.79 Debye at the ground-state geometry
using MCSCF and CIS with about 27,000 CSFs, while
that of the ground-state was calculated as 0.32 Debye.
When using an aug-cc-pVDZ basis we seem to find an
essentially converged value of 1.762 Debye with 22,198
CSFS when using cmin = 1073, A value of 1.69 Debye
with 71,857 CSFs was found using ¢min = 5 x 1074 but
here the last value was an oscillation so we used the sec-
ond last iteration where all states were considered for re-
moval. However there were fewer oscillations when using
this basis. The values are reasonably near to the earlier
experimental work and become more similar as ¢y, is de-
creased but the non-variational nature and aug-cc-pVDZ
basis could be responsible for this. However, the sign is
different to that of the computational study of Ref. |18 as
we find that the dipole is in the same direction as that
of the ground state, but we note that EOM-CCSD cal-
culations using MOLPRO? are in agreement with the



sign and magnitude of the MCCI results as it gives a
dipole of about 1.60 Debye for cc-pVDZ and 1.72 Debye
for aug-cc-pVDZ both with two frozen cores.

NO

The dipole of NO in its doublet ground-state has been
measured as 0.157 Debye2! and its sign verified as pos-
itive in Ref. 22 corresponding to N~OF. We use the
experimental bond length of 1.1508 angstroms cited in
Ref. 23 and, in addition to MCCI together with FCI
results, we calculate the UCCSD dipole moment using
the numerical derivative of the energy with respect to
the electric field in MOLPRO.22 To achieve this we use
central differences and a step size of 10™* in the field
strength.

Fig. M0 shows that with a 6-31G basis MCCI quickly re-
covers the correct sign after starting with a value close to
the incorrect Hartree-Fock dipole, and gives a reasonable
dipole moment (0.0048 e Bohr), at this level of cut-off, in
comparison with the FCI result (0.0079 e Bohr) where it
is more accurate than UCCSD (0.0016 e Bohr) but the
absolute differences in accuracy are very small.
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FIG. 10. MCCI, UCCSD and FCI results for the dipole mo-
ment (e Bohr) against iteration number for NO when using
the 6-31G basis set.

Here there are around 3 x 10® SDs in the FCI space
when considering symmetry compared with 3,274 CSFs
for MCCI with no cores frozen in both cases.

In Fig. [Tl we see that with an aug-cc-pVDZ basis the
MCCIT result with the larger cut-off is close to that of
experiment while UCCSD is just a little lower. However
when the accuracy of MCCI is increased by lowering cmin
to 5 x 10~* the calculated dipole is below that of UCCSD
suggesting that perhaps the most accurate result in this
basis would be below experiment, but the non-variational
nature means this prediction is not certain. The dipole
of around 0.12 Debye at the highest accuracy MCCI con-
sidered is still in fairly good agreement with experiment
and we note that this used 17,188 CSFs compared with a

Full CI space, without symmetry considerations, of circa
106 Slater determinants.
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FIG. 11. MCCI and UCCSD results for the dipole moment (e
Bohr) against iteration number for NO when using the aug-
cc-pVDZ basis set compared with experiment.

QUADRUPOLE MOMENTS

Nitrogen molecule

The Buckingham traceless quadrupole moment
tensor2? is defined as
1

Qap = 5 > 4iBriaris — Sagri) (2)

where r = (z,y,z). For a diatomic molecule, aligned
along the z axis, with its centre of mass at the origin this
becomes for @,

1 A N
sz = §(<\P|I2+y2—222 |\Ij>+2ZARz240+2ZBR(2)B)' (3)

Here Z; is the charge of nucleus ¢ and R; is the distance
between nucleus ¢ and the origin.

For N the traceless quadrupole moment with respect
to the centre of mass at the origin has been measured??
as (—4.6540.08) x 10749 Cm? and revised in a theoretical
work?® using an improved value for the correction term
to give (—5.01 £ 0.08) x 107%° Cm?2. We use the latter
value and the experimental bond length of 2.07432 Bohr
cited in Ref. [26.

With a cc-pVDZ basis and two frozen cores the cutoff
of 1073 gives reasonable agreement with the FCI results
(see Fig.[I2). FCI results were calculated with a modified
version of PSI3.43 The MCCI result used 5761 CSFs com-
pared with the SD space, when considering symmetries,
of 5.4 x 108

With the aug-cc-pVDZ basis the results using 5 x 1073
were within the experimental bounds with the MCCI re-
sult a little lower than that of CCSD (see Fig. [[3]). The
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FIG. 12. MCCI and FCI results for the traceless quadrupole
moment Q.. (e Bohr?) against iteration number for Ng when
using the cc-pVDZ basis set with two frozen cores.

FCI space would consist of around 10'® Slater determi-
nants if spatial symmetries are neglected while the MCCI
wavefunction comprised about 22,000 CSF's.
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FIG. 13. MCCI and CCSD results for the traceless
quadrupole moment Q.. (e Bohr2) against iteration number

for No when using the aug-cc-pVDZ basis set. Adapted from
Ref. |5.

The MCCI result of —1.105 e Bohr? also compares
favourably with CCSD(T) results calculated in Ref. 126
where an aug-cc-pVDZ basis with only valence electrons
correlated gave —1.1116 e Bohr? and an aug-cc-pCVQZ
with all electrons correlated resulted in —1.1159 e Bohr?.

BH

A smaller calculation for which published FCI mul-
tipole results are available is the quadrupole of BH in
an aug-cc-pCVDZ basis. We compare the MCCI results
with those of FCI and coupled cluster in Ref. 27. Here
we use the experimental bond length cited in the latter

paper (2.3289 angstroms) and the mass of the most com-
mon isotope of boron (11B) is used to calculate the centre
of mass.

We see in Fig. [[4] that the quadrupole calculated using
MCCI rapidly reaches a value closer to the FCI result
than CCSD and is of comparable accuracy to that of
CCSD(T) and FCI on the scale of the plot. We note that
the final MCCI wavefunction used 4,276 CSFs compared
with a FCI space of around 5x107 SDs without symmetry
considerations.
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FIG. 14. FCI and coupled cluster results from Ref. 27 and
MCCI results for the traceless quadrupole moment Q.. (e

Bohr?) against iteration number for BH when using the aug-
cc-pCVDZ basis set.

OCTUPOLE OF METHANE

We calculate the octupole moment of methane at
a tetrahedral geometry with an equilibrium C'H bond
length?® of 2.052 Bohr using a cc-pVDZ basis with one
frozen core. Here we place the carbon atom at the ori-
gin and use the co-ordinates of (zx,0, zg), (—zH,0,25),
(0,2, —zp) and (0,2, —zg) for the hydrogen atoms
where zy = 1.18486 Bohr and zy = 1.67565 Bohr.
We use the traceless octupole moment of Buckingham?24
where, for our co-ordinates we have, for example,

Quae = = (U] — 48°2 + 922 + 2 |U) + 102%,25) . (4)

N =

We compare the MCCI value for the 2,,. component
with FCI and CISD results from a modified version of
PSI3!2 and with coupled cluster results from the program
Dalton.2? Fig. [[5] shows how the octupole converges rel-
atively quickly with MCCI using ¢pin = 1072, The value
is an improvement on that of CISD but, unsurprisingly,
at this equilibrium geometry CCSD is closer to the FCI
result. The MCCI wavefunction consisted of 3,330 CSFs
while the FCI space comprised of circa 4 x 10® SDs.
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FIG.'15. MCCI, CISD, CCSD and FCI results for Q.. (e
Bohr®) of methane against iteration number when using the
cc-pVDZ basis set with one frozen core.

Stretched bond length

We now consider a geometry away from equilibrium
of R = 5 Bohr for all CH bonds. This results in zg =
4.08248 and zy = 2.88675. Here the system is more likely
to be multireference and we see from the results in Fig.
that CISD and CCSD perform poorly giving an octupole
over six times that of the FCI. MCCI, even with a cut-
off as large as 103, does much better, but, although the
absolute difference is about 0.6 e Bohr®, the MCCI value
is about 1.6 times smaller compared with FCI.
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FIG.'16. MCCI, CISD, CCSD and FCI results for Q.. (e
Bohr?) of methane with R = 5 Bohr against iteration number
when using the cc-pVDZ basis set with one frozen core.

MULTIPOLE SUMMARY

We summarise the comparison of the MCCI with the
FCI multipole results calculated in this work in table
[ Here the smallest cut-off MCCI results are presented

and we see that over a range of states and geometries
the MCCI multipoles are generally very close to the FCI
results and the MCCI CSFs used are just a very small
percentage of the FCI SD space.

The largest percentage errors are for the dipole of NO
and the octupole of methane at a stretched geometry. In
the former case this is due to the dipole being very small
while in the latter case the strong multireference charac-
ter, suggested by the very poor performance of CCSD,
may be responsible. With the exception of these two
systems the errors of the property tend to be similar to
those of the correlation energy. This and the behaviour
of the errors of dipole and correlation energy for CO with
decreasing ¢uin (Fig. E)) hints that it may be possible to
use the scheme of Ref. 30 to approximate the value of a
property, rather than the correlation energy, for ¢y, — 0
through repeated MCCI calculations for various fixed
numbers of CSFs. However the non-variational nature
of the properties and the large difference in correlation
energy error and property error seen for stretched CHy
suggest that caution should be used if this approach is
employed in future work.

IONISATION ENERGIES

We now use MCCI to calculate ionisation ener-
gies for atoms and compare the MCCI results with
full configuration-interaction quantum Monte Carlo
(FCIQMC) results? and the ‘exact’ non-relativistic re-
sults listed in Ref. |3 which they extracted from Ref. |31.
FCIQMC uses projector or diffusion Monte Carlo in a
Slater determinant basis to approach the FCI solution
without needing to diagonalise the Hamiltonian matrix.
The computational difficulty for FCIQMC can be linked
to the number of walkers required for convergence in the
diffusion Monte Carlo calculation.

Using an aug-cc-pVQZ basis we see in Table. [T that
values all within 7 milliHartree of the FCIQMC are
achieved with always fewer than an average of 4,000
CSFs. Here we used cmin = 5 x 10~% and 500 iterations
on 12 processors with the exception of the lithium cation
which was still the Hartree-Fock reference after 500 iter-
ations so was run for 3,000 iterations. In this case the
calculation takes less than two minutes and gave a final
state of 54 CSFs.

The sodium atom used only about 2,000 walkers and
a few minutes in Ref. |3 compared with a FCI space
of around 10'® and we find here that it requires 907
CSF's and 142 seconds with MCCI when using 12 proces-
sors. We can see in Table. [I] that the MCCI calculation
for sodium gives almost the same ionisation energy as
FCIQMC. We found that the fluorine atom required the
largest number of CSF's at 4,189 compared with a FCI
space of around 10'3 Slater determinants and a calcula-
tion time of just over an hour using 12 processors.

We note that magnesium was not calculated in an aug-
cc-pVQZ basis in Ref. 13 due to CPU time constraints us-



Property MCCI| FCI |% FCI space|Ecorr Error |Property Error
CO u 0.0850 | 0.0905 | 3.63 x 1073 1.89% 6.05%
COR=4upu -0.328 | -0.323 | 1.17 x 1073 3.79% 1.70%
CO °M -0.551 | -0.511 | 6.33 x 10~* 4.31% 7.73%
CO I u -0.138 | -0.135 | 9.59 x 10™* - 2.22%
CO Excited '27% 1| 0.614 | 0.558 | 8.31 x 107* - 9.97%
NO u 0.004750.00794| 9.55 x 10™* 1.35% 40.2%
No Q.. -1.342 | -1.356 | 1.07 x 1073 1.06% 1.02%
CHy Qe 2.056 | 2.0049 | 7.95 x 1074 4.98% 2.54%
CHy R=5 Qus. | 1.000 | 1.631 | 3.24 x 1073 1.25% 38.7%

TABLE I. Table showing MCCI and FCI multipole results in atomic units, the fraction of CSF's used in MCCI when compared
with the symmetry adapted FCI space using SDs, the percentage error of the correlation energy and the percentage error of
the property compared with the FCI. The cc-pVDZ basis is used except for NO which has 6-31G. No orbitals are frozen for
NO, while one is frozen for CHy and the other results use two frozen orbitals. Experimental geometries as presented earlier in

the paper are used unless otherwise stated.

Atom|MCCI mean CSFs|MCCI|FCIQMC?
Li 101 197.46 |  197.35
Be 270 341.02 | 341.89
B 869 302.66 | 304.02
C 1,572 411.89 | 413.10
N 2,174 531.42 | 535.85
0 2,851 491.38 | 497.35
F 3,536 631.46 | 638.61
Ne 3,376 786.14 | 792.48
Na, 707 184.93 | 184.32
Mg 1,064 275.75 -

TABLE II. MCCI with cmin = 5 x 107% average CSF's for
atom and cation. Ionisation energies in milli Hartree using
aug-cc-pVQZ from MCCI and FCIQMC.2

ing FCIQMC while here we note it required about 1,000
CSF's compared with having the largest full CI space of
10'7 and the calculation required around five minutes for
the cation and less for the atom. The MCCI result gave
an error of about 1.7% compared with the ‘exact’ result of
280.65 milliHartree. The oxygen atom was found to be
particularly challenging for FCIQMC where it required
100 million walkers and around 48 hours on 32 proces-
sors. The MCCI value used 3,541 CSFs for the atom
( 2,162 for the cation) and required almost an hour on
12 processors, but here the MCCI result at this level of
cut-off is 8 mHartree below that of FCIQMC although
the percentage error is just 1.2. We see in Fig. 7] that
this was the largest percentage error when compared with
FCIQMC. This error could be brought lower but to the
detriment of calculation size and time by reducing the
MCCI cut-off. It is interesting that the error rises then
peaks at oxygen when compared with FCIQMC but the
error with the ‘exact’ gives the impression of an overall
trend for a rising error. Although oxygen now has the
second largest error with sodium the largest. We note

that all the MCCI errors are under 2% when compared
with the ‘exact’ results.

We also consider approximating the MCCI ionisation
energy in the complete basis set (CBS) limit. While
the MCCI ionisation energy is not variational and would
not be expected to behave monotonically with increas-
ing basis size, the underlying energies should smoothly
approach the CBS limit. We use the scheme of Ref. [32,
given by F, = Es + A(z + 1)6’9\/57 to approximate the
CBS limit for the Hartree Fock energy. For the MCCI
correlation energy we use Ecorro = Ecorr,oo + Bz~ from
Ref. 133 to approximate the CBS limit. Here z = 2 for
aug-cc-pVDZ, ©z = 3 for aug-cc-pVTZ and so on. We
fit the schemes to the results at aug-cc-pVTZ and aug-
cc-pVQZ. We note that we neglect aug-cc-pVDZ as it is
often considered better to fit to two points rather than
three if the third is thought to be too far from the CBS
limit. Furthermore the use of aug-cc-pVTZ and aug-cc-
pVQZ for the HF extrapolation was found to not work so
well in Ref. |32, but we note that, when using the schemes
here, the change in the HF energy is much smaller than
the change in the correlation energies. In Fig. [I7] we dis-
play the error of the MCCI approximate CBS when com-
pared with the ‘exact’ ionisation energies. We see that
the approximation to the MCCI CBS at ¢min = 5 x 1074
has a lower percentage error except in the case of the
result for magnesium. In general, the approximate CBS
percentage errors tend not to be substantially lower but
the results for lithium and oxygen are noticeably more
accurate.

We see in Fig. [[§ that for a given percentage error in
the ionisation energy the percentage errors in the corre-
lation energy are fairly similar for the atom and cation
when comparing MCCI and FCIQMC results. We note
that the cation usually, but not always, has a slightly
lower error for the correlation energy. The general trend
is for the ionisation energy error to increase with increas-
ing correlation energy error with the former generally
smaller than the latter. There appears to be a much
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FIG. 17. MCCI error with cmin = 5 X 10~* when compared
with FCIQMC?2 both using an aug-cc-pVQZ basis and ‘ex-
act’ non-relativistic (NR) ionisation energies2* MCCI CBS
approximation error with cmin = 5 X 1074 compared with
‘exact’ non-relativistic (NR) ionisation energies.

stronger linear relationship in the percentage errors for
the atoms than for the cations: the statistical correlation
between the results is 0.91 for the atoms and 0.51 for the
cations.

10

bound. We ran the calculation for 3000 iterations for
Cmin = 5 x 10™* but with the exception of sodium the
percentage errors were not much different to the values
at 500 iterations. The largest FCI space was sodium at
around 10'7 for which the MCCI calculation of the an-
ion required 864 CSF's and less than ten minutes. The
largest number of CSFs at ¢pin = 5 x 107 was 6, 054 for
the oxygen anion compared with a FCI space of around
10'3. This calculation at 3,000 iterations needed around
19 hours on twelve processors but we note that the results
were not much different to 500 iterations which required
less than 3 hours.

We see in Table. [IIl that the MCCI values are reason-
ably close to the i-FCIQMC results with the difference
always less than 10 milliHartree and the number of mean
CSF's always fewer than 5,000. However due to the elec-
tron affinities being much smaller than the ionisation val-
ues the percentage errors seen in Fig. [[9 are much higher
than the ionisation errors when using cpin = 5 x 1074
Particularly we see in Table. [TIl that the absolute error
in boron is actually quite low, but the very small elec-
tron affinity means the percentage error is large, while
oxygen has the largest absolute and largest percentage
error when compared with the i-FCIQMC results.
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FIG. 18. Percentage error in the ionisation energy plotted
against the percentage error in the correlation energy of the
atom (circles) or cation (crosses). All results are for MCCI
at Cmin = 5 X 1074 compared with FCIQMC3 both using an
aug-cc-pVQZ basis.

ELECTRON AFFINITIES

We finally compare electron affinities calculated with
MCCI with those of initiator FCIQMC (i-FCIQMC)# and
‘exact’ non-relativistic results from Ref. 4 which are again
extracted from Ref.31. Electron affinities are considered
computationally difficult, partly due to the requirement
of achieving a balanced error in the atom and anion cal-
culations with the latter’s extra electron often weakly

Atom|MCCI mean CSFs|MCCI|FCIQMC2
Li 295 22.34 22.60
B 2,362 8.18 9.67
C 3,055 43.20 46.10
0 4, 869 43.93 52.15
F 4,538 118.95 | 124.29
Na 909 18.87 20.03

TABLE III. MCCI with cmin = 5 x 1072 average CSF's for
atom and anion. Electron affinities in milliHartree using aug-
ce-pVQZ from MCCI and i-FCIQMC 2

In Fig. 03 with cmin = 5 x 107 the largest MCCI
error is now around 20% when compared with the ‘exact’
results and 15% when compared with i-FCIQMC. The
two most difficult systems are boron and oxygen, which,
by reducing cmin to 107 we can get their errors with
MCCI to around 3% and 8% respectively when compared
with i-FCIQMC. However this comes at a computational
cost: for this cut-off the boron anion needed 13, 734 CSFs
while the oxygen anion calculation required 37,225 CSFs
and a calculation time of 28 hours on 8 processors when
the reference state was the MCCI wavefunction from the
Cmin = 5 X 107 calculation.

We also approximate the CBS limit of the MCCI elec-
tron affinities using the same procedure as for the MCCI
ionisation energies. With cpi, = 5 X 10~* we see in
Fig. that the MCCI electron affinities when approxi-
mating the CBS have an error that is similar to the re-
sults using an aug-cc-pVQZ basis when compared with
the ‘exact’ results, but, in contrast to the behaviour seen
for the ionisation energy error, the approximate CBS



MCCI value is more likely to have a greater error than
the aug-cc-pVQZ results.
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FIG. 19. MCCI error with cmin = 5 x 10™% when compared
with i-FCIQMC? both using an aug-cc-pVQZ basis and ‘ex-
act’ non-relativistic (NR) electron affinities** MCCI CBS
aprroximation error with cmin = 5 X 10~% when compared
with ‘exact’ (NR) electron affinities.

Figure 20 shows that the percentage errors in the cor-
relation energy are actually fairly similar for the atom
and anion with a fixed value of electron affinity error,
i.e., within a given system. It appears that the small dif-
ferences between the energy of the atom and anion often
amplifies the errors for the electron affinity here. This
is in contrast to the ionisation errors where the errors
in correlation energies tended to be larger than those of
the ionisation energy (Fig. 20). The large errors in the
affinity for boron means that there appears to be less
of a linear relationship here compared with the previous
results for the ionisation energy: now the statistical cor-
relation for the atom results 0.33 and the value for the
anion results is 0.50.

CONCLUSIONS

In this work we have demonstrated that not only is
MCCT useful for energy calculations but that other prop-
erties, in the form of multipole moments, may generally
be calculated to sufficiently high accuracy with it when
compared with FCI results yet using a very small fraction
of the FCI space (see table[l). By using an aug-cc-pVDZ
basis, resulting in a full configuration space far beyond
current FCI, MCCI results could also be seen to gener-
ally give a fairly good agreement with experiment. For
the calculations of ground-state multipole moments at
equilibrium geometries, methods based on coupled clus-
ter would be expected to be one of the most efficient
choices. However we note that MCCI can perform sub-
stantially better when the system moves away from equi-
librium and is multireference. In addition the use of dif-
ferent spin states and excited states present no problems,
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FIG. 20. Percentage error in the electron affinity plotted
against the percentage error in the correlation energy of the
atom (circles) or anion (squares). All results are for MCCI
at Cmin = 5 x 1074 compared with i—FCIQMC4 both using an
aug-cc-pVQZ basis.

in theory, for MCCI. However we note that the results
for excited states appeared to be more sensitive to the
removal of states for the dipole of the first excited state
of Ay symmetry within C5y for carbon monoxide. Inves-
tigations into the use of state-averaging to prevent these
oscillations are planned.

We saw that ionisation energies for atoms can be cal-
culated using MCCI with an aug-cc-pVQZ basis to an er-
ror of less than 1.2% compared with FCIQMC? and less
than 2% compared with ‘exact’ non-relativistic results.
We note that the largest FCI space was for magnesium
with 1017 SDs and this was not calculated in Ref. |3 using
FCIQMC due to time constraints, but here only required
about 1,000 CSFs. Similarly to the results of FCIQMC24
we found that the system rather than just the size of the
FCI space was a factor in the cost and accuracy of the a
calculation: oxygen had the largest percentage error com-
pared with FCIQMC here and required 3,541 CSF's com-
pared with a FCI space of ‘only’ 10'3. Electron affinity
calculations were more challenging for MCCI. Although
the absolute errors with i-FCIQMC? were fairly similar
to the ionisation energies at less than 10 milliHartree
when using cmin = 5 x 107%, the percentage error was
much higher, partly due to the much smaller energies in-
volved: the largest MCCI error is now around 20% when
compared with the exact and 15% when compared with
i-FCIQMC. The highest error with respect to i-FCIQMC
was oxygen and this could be reduced to around 8% by
lowering cmin to 107* but now 37, 225 CSFs were required
for the anion compared with the FCI space of around
10'3. We note that the percentage error in the MCCI
correlation energy at cmin = 5 x 10™* was fairly similar
for a given atom, its cation and its anion. It was also
always lower than 7%. This suggests that MCCI per-
forms similarly for the calculation of ionisation energies
and electron affinities but the smaller values of the latter



means it has larger percentage errors.

MCCIT appears to possibly be a useful alternative for
the calculation of ionisation energies of atoms using a
very compact wavefunction, however for electron affini-
ties the larger fraction of the FCI space that appears nec-
essary to be explored for a balanced description of the an-
ion at higher accuracy suggests that other methods may
be more appropriate here if consistently small percentage
errors are required. It would appear that for situations
where more standard methods have difficulties, such as
excited states, then MCCI could be a useful tool for the
calculation of properties such as multipoles. The results
for multipoles at geometries away from equilibrium were
seen to be substantially better at approximating the FCI
result when using MCCI than when employing methods
based on a single reference suggesting that MCCI could
also be useful for the calculation of multipole surfaces.
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