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Abstract

Scoring functions are a critically important component of computer-aided screening methods for

the identification of lead compounds during early stages of drug discovery. Here, we present a

new multi-grid implementation of the footprint similarity (FPS) scoring function that was recently

developed in our laboratory which has proven useful for identification of compounds which bind

to a protein on a per-residue basis in a way that resembles a known reference. The grid-based FPS

method is much faster than its Cartesian-space counterpart which makes it computationally

tractable for on-the-fly docking, virtual screening, or de novo design. In this work, we establish

that: (i) relatively few grids can be used to accurately approximate Cartesian space footprint

similarity, (ii) the method yields improved success over the standard DOCK energy function for

pose identification across a large test set of experimental co-crystal structures, for crossdocking,

and for database enrichment, and (iii) grid-based FPS scoring can be used to tailor construction of

new molecules to have specific properties, as demonstrated in a series of test cases targeting the

viral protein HIVgp41. The method will be made available in the program DOCK6.
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Introduction

Virtual screening[1-3] and de novo design[4-9] are computational methods that can be used to

identify lead compounds in the early stages of drug discovery. Despite the numerous
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successes of these two methods, they are both limited by a common factor: inaccuracies in

the scoring function used to rank-order and prioritize compounds. Classical scoring

functions typically employ molecular-mechanics principles with van der Waals (VDW) and

electrostatic (ES) terms to predict non-bonded interaction energies between a ligand (e.g.

small molecule drug) and receptor (e.g. protein drug target). However, such functions can

bias towards ligands with large molecular weight and neglect prior knowledge of important

conserved interactions.

In an attempt to address these scoring limitations, we recently designed and reported a new

scoring function to be used as a post-docking rescoring tool, termed molecular footprint

similarity (FPS).[10] The FPS method was rigorously validated[10] using a large database

consisting of 780 experimental co-crystal structures (SB2010 test set).[11] In this context, a

footprint is the non-bonded interaction energy pattern (signature) between a ligand and

individual receptor residues. The FPS scoring function computes footprints for both a

candidate ligand and a reference ligand, then quantifies their similarity using straightforward

metrics such as Euclidian distance or Pearson correlation. Candidate ligands are typically

compounds under consideration for purchase or synthesis, and the reference is usually a

substrate or inhibitor which is known to bind a receptor in a specific binding geometry

(pose). To illustrate this concept, two footprints in the hydrophobic binding site on the

important drug target HIVgp41 are shown in Figure 1. Here, the reference footprints (solid

lines) are derived from four key C-helix sidechains which natively interact in the gp41

pocket (as observed in the crystal structure 1AIK),[12] and the candidate footprints (dashed

lines) are made by a ligand identified using computational methods. Compounds which

produce footprints with high similarity to the reference footprint (favorable FPS scores) are

hypothesized to interact favorably in the binding site. The FPS scoring function has been

implemented into the program DOCK6,[11,13-17] and used by us and our collaborators to

identify lead compounds with experimentally verified activity to the hydrophobic pocket of

HIVgp41.[18] Inhibitors targeting fatty acid binding protein (FABP) have also been

identified using the footprint methodology.[19]

In the original implementation, the FPS scoring function was restricted to application as a

post-docking rescoring tool because footprint calculations themselves were performed in

Cartesian space, thus requiring O(M*N) time for a receptor of size M and a ligand of size N.

Here, we report an extension of the method in DOCK6 that employs grids[20] to speed up the

footprint calculations to O(G*N) time, where G is the number of grids, enabling its

application in on-the-fly docking or design experiments.

We envision that the grid-based extension of the FPS scoring function can be applied to

improve docking calculations in areas of (i) pose identification, (ii) virtual screening, and

(iii) de novo design. In this work, we describe a generalization of the FPS scoring function

that utilizes grids and we establish that this new functionality facilitates fast footprint

calculations. Finally, we demonstrate the utility of the new implementation for pose

identification with the SB2010 test set,[11] for crossdocking to a family of thermolysin

proteins, for enrichment using three systems from the Directory of Useful Decoys (DUD)

database,[21] and for an example de novo design application targeting the hydrophobic

pocket of HIVgp41.[22,23]
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Theoretical Methods

DOCK Cartesian energy function generalized to a single grid

The non-bonded interactions between a ligand and receptor using the standard DOCK

Cartesian energy (DCE) scoring function can be written as follows (Eq. 1):

(1)

Here, DCE is the overall non-bonded sum and i and j are, respectively, atom indices for the

ligand (L) and receptor (R); Ai and Bi are, respectively, attractive and repulsive VDW

parameters for atom i; a and b are, respectively, attractive and repulsive VDW exponents

(typically 6-9 or 6-12); qi is the partial charge on atom i; ri,j is the distance between atoms i

and j; D is a dielectric screening function (typically D=4r); and the constant value 332

converts the ES term into units of kcal/mol.[20,24]

The above DCE calculation in Cartesian space can be approximated by pre-computing the

interactions between probes and receptor atoms which are stored at individual points on a

cubic grid.[20,25] Every point (p) on the grid ( ) comprises three terms: attractive VDW

(ga_vdw), repulsive VDW (gr_vdw), and ES (ges), as shown in Eq. 2:

(2)

The overall non-bonded interactions between a ligand with the receptor can then be

calculated by interpolating grid point values onto ligand atoms (li) with known coordinates

(Eq. 3) which, when using a single grid, is termed single grid energy (SGE).

(3)

Here, TLI is a function that performs a tri-linear interpolation of the set of values stored at

the eight closest grid points in grid  to the coordinates of atom li. While the accuracy in

SGE increases with finer grid resolution (although at the expense of grid-generation time

and grid size),[24] grids on the order of 0.3 - 0.4 Å resolution are typically used for most

docking and virtual screening purposes.

Multi-grid implementation for footprint calculations

Importantly, the DCE and SGE scoring functions are pair-wise additive and non-bonded

interactions can be decomposed on a per-residue basis. Thus, grid-based footprints can be

obtained by simply generating a separate grid for each residue (Eq. 4), as is illustrated for

the grid ES term (Eq. 2) at a single grid point (p):
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(4)

Here, k is the residue index in the receptor (R), which contains M total residues, and Sk is the

set of all atoms in a single residue. Here, ges,Sk (p) represents the contribution to the grid ES

term at point p by the set of all atoms from a single residue (Sk), and the union of the residue

atom sets is the set of all receptor atoms (Eq. 5):

(5)

Following this derivation, the grid energy for interaction between the ligand and a single

residue ( ) can be calculated by a modification of Eq. 3 to yield Eq. 6:

(6)

Moreover, by Eq. 4-5, the sum of these components (Eq. 7), termed here multi-grid energy

(MGE), is equivalent to the single grid energy (SGE) provided that the grids are overlapped

in Cartesian space (i.e. identical origin and x-, y-, z-dimensions).

(7)

In summary, the potential energy of a receptor can be stored on a single grid (SGE) or

decomposed into multiple grids (MGE) which are numerically equivalent. And, through the

use of multiple grids, footprints can be generated in grid-space enabling on-the-fly footprint

similarity (FPS) score calculations.

Computational Details

Scoring method details and distinctions

The various scoring methods discussed in this manuscript (DCE, SGE, MGE, FPS, FPS

+MGE) can be used in one of two primary ways: (i) they can be used to “guide” growth,

meaning that the scoring function controls molecule pruning, clustering, and energy

minimization during docking, or (ii) they can be used to “rescore” results, meaning that an

ensemble of docked molecules is rank-ordered by the value of the score. In practice, one

scoring function may serve both of these purposes in any one docking experiment.

Alternatively, one scoring function may be used to guide sampling, and another may be used

to rescore the resulting ensemble.

Further, the different scoring methods may be used alone, or in combination. Standard MGE

docking, FPS docking, and FPS+MGE docking – the three scoring ensembles which are the

focus of this manuscript – all follow Eq. 8:
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(8)

As shown in Eq. 8, the scoring functions can be decomposed into VDW and ES

components. In the case of MGE docking, coefficients C3 and C4 are equal to 0; in FPS

docking, C1 and C2 are equal to 0; and in FPS+MGE docking, all coefficients are non-0

values as summarized in Table 1. Also listed are the pruning cutoff values employed, which

were chosen based on the range of possible scores[10] for each experiment. The pruning

cutoff is responsible for eliminating molecules from the ensemble which exceed a pre-

defined energy cutoff score. It is additionally important to note that when footprints are

employed, the overlap between the reference and candidate ligand can be quantified using

standard Euclidean distance (d), normalized Euclidean distance (dnorm), or standard Pearson

correlation (r) methods as previously described.[10]

Threshold-based residue selection for grid generation

In practice, only a subset of the most important binding site residues are stored as individual

grids which reduces the total number of grids required (including memory and storage

requirements) and makes the footprints calculations tractable. Residue selection in this work

was based on consideration of the standard DCE non-bonded interactions using optimized

ligand crystallographic poses (see Balius et al.[10] for optimization protocol). Residues with

absolute interactions exceeding 1.0 kcal/mol VDW energy or 0.5 kcal/mol ES energy were

identified and constitute a “primary” set used for generation of individual docking grids. All

remaining residues were grouped together and used to generate a “remainder” docking grid.

Together, the “primary” and “remainder” grids comprise all protein residues and the sum is

the multi-grid energy (MGE). The DOCK grid accessory program was used to generate the

individual grids with a 0.4 Å resolution and 6-9 VDW exponents to crudely mimic receptor

flexibility through a softening of the overall intermolecular landscape.[26]

Docking and rescoring

Docking experiments used the same flexible ligand (FLX) or fixed-anchor-docking (FAD)

protocols described in Mukherjee et al.,[11] with the exception that the final clustering cutoff

parameter was changed from 2.0 Å to 0.5 Å. DOCK uses a best-first clustering method, thus

this modification will slightly affect sampling and rescoring of the ensembles. To facilitate

comparisons between scores computed on the grid (SGE, MGE, and FPS) or in Cartesian

space (DCE and FPS), all rescoring experiments employed 6-9 VDW exponents to match

the exponents used in grid generation. In FAD, the initial anchor placement starts at the

crystallographic coordinates and all torsions are sequentially grown out until the complete

molecule is restored. Here, all rigid ligand segments with five or more heavy atoms were

treated as anchors and harmonically restrained with a spring constant of k = 10 kcal/(mol

Å2) during minimization. DOCK calculations were performed on a DELL PowerEdge

C6100 cluster consisting of Intel x5660 2.8GHz hex-core Nehalem-based processors.

Pose reproduction

As in our previous footprint work,[10] the SB2010[11] dataset (N = 780 systems) was used

for pose reproduction experiments which compares docking predictions with their
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crystallographic observed binding geometry (pose). Six runs were performed using different

random seeds to better gauge noise and reproducibility with regards to docking success rates

and failures. As previously discussed,[11] docking experiments may have one of three

outcomes: (i) success occurs when the program selects a correct pose (within 2 Å rmsd of

native pose), (ii) scoring failure occurs when the correct pose is sampled but is not selected

as the best pose, and (iii) sampling failure occurs when the correct pose is not sampled. For

any given experiment, the sum (successes + scoring failures + sampling failures) will equal

100%. All results employed symmetry-corrected rmsds using the Hungarian algorithm[27,28]

recently implemented into DOCK as discussed in Brozell et al.[17]

Crossdocking

To evaluate how the different scoring functions would affect crossdocking performance, 26

ligand-bound structures of thermolysin were aligned into a common reference frame.[11]

Each ligand was iteratively docked into each receptor which, for the 26x26 matrix, required

676 independent docking experiments. For each cell of the matrix the rmsd reference was

either the cognate ligand from the crystal structure (on the diagonal) or the superimposed

position of the ligand from another crystal structure (off diagonal). The footprint reference

for each receptor was always derived from the cognate ligand. As before, docking outcomes

were classified as a success, scoring failure, or sampling failure. Matrix rows were arranged

using the MATLAB (R2010b, MathWorks) dendrogram hierarchical clustering algorithm

which facilitates visual interpretation of results. The prepared and aligned protein-ligand

complex structures for thermolysin as well as other protein families are freely available

online at http://rizzolab.org under Downloads.

Database enrichment

The DUD database[21] was used to evaluate the different scoring functions for performing

enrichment on three representative systems. Receiver operating characteristic (ROC) curves

were used to measure the strength of the overall enrichment, and early enrichment was also

evaluated, as described in Brozell et al.,[17] using area-under-the-curve (AUC) and

examination of the number of actives and decoys recovered as a function of percent of

database screened. Differences between the enrichment and pose reproduction docking

protocols are summarized in Table 2.

De novo design

Preliminary results employing a first-stage de novo design version of DOCK (currently

being developed) are also presented in which construction of new HIVgp41 inhibitors from

scratch is performed with and without grid-based footprints using a modified anchor-and-

grow[14-16] algorithm. For clarity, we employ the phrase “de novo design” for all related

experiments in which new compounds are assembled from fragments whether or not

existing data (i.e. footprints derived from a reference molecule) was used to guide growth.

The reference in the present case was four key amino acid sidechains (see Figure 1) from the

known peptide inhibitor C34 which interact favorably within a highly conserved pocket

region on HIVgp41.[12,29] In our de novo design protocol, molecules were constructed from

scratch through the rational combination of fragments derived from a library of pre-existing
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“drug-like” molecules (13.3M total) that were obtained from the ZINC database[30] of

purchasable compounds. In these experiments, several steps were taken to constrain growth.

Particularly, following anchor selection, (i) fragments with only one or two attachment

points were used during growth to prevent branching, (ii) two fragments were only

combined if the bonded environment had previously been observed in an existing molecule,

and (iii) growth was constrained to limit the maximum molecular weight (<1000 g/mol) and

number of rotatable bonds (<15) of candidate molecules. Chemical space was also pruned

using a new DOCK implementation of 2D fingerprints, inspired by the MOLPRINT

2D[31,32] procedure, to increase diversity in the resultant ensembles. The de novo

implementation will be made available in a future release of DOCK (http://

dock.compbio.ucsf.edu) pending additional development and testing.

Results and Discussion

Multi-Grid Energy Evaluation

All residues vs. a threshold-based subset—As described above, Cartesian energy

can be closely approximated using a single grid, and through the use of multiple grids a per-

residue energy footprint can be derived. To evaluate the multi-grid implementation in

DOCK we examined several factors including footprints derived from individual proteins,

for which Figure 2 shows a representative example. Here, the energy-minimized

crystallographic position for the ligand epsilon-aminocaproic acid with plasminogen

kringle-4 protein (PDB code 2PK4),[33] an important protein in blood clotting, is used to

generate VDW and ES footprints. This system was chosen because the relatively small size

(N = 80 residues) enabled individual grids to be computed separately for all protein residues.

As expected, Cartesian vs. grid-based footprints from 2PK4 show close correspondence

across all 80 residues (Figure 2a,c) and for a reduced set of 7 primary residues plus the

remainder (Figure 2b,d). The small differences that are observed arise from the fact that the

ligand was first energy-minimized in Cartesian space prior to both sets of footprint

calculations. Although the receptors in both cases (Cartesian or grid space) are in fact

identical and remain fixed, ligand minimization in one space can lead to minor energy

differences in the other (Figure 2 black vs. green lines). Notably, the MGE sum across all 80

grids (VDW = −15.646042 kcal/mol, ES = −10.522523 kcal/mol) is identical to that for the

7 primary grids + remainder (VDW = −15.646046 kcal/mol, ES = −10.522522 kcal/mol) to

within numerical precision, and in this case, seven significant figures. This agreement is

important because for most protein systems it is not feasible to assign each residue

separately to a grid as the run time and memory needed to perform docking calculations

becomes prohibitive as more grids are used.

Grid vs. Cartesian energies—As a large-scale confirmation of grid accuracy we

examined DCE vs. SGE scores for all 780 minimized crystallographic poses (decomposed

into VDW and ES components) from the SB2010[11] test set (Figure 3a). Analogous to the

2PK4 example (Figure 2), DCE scores across the entire test set are effectively approximated

by SGE scores using a 0.4 Å grid resolution (VDW r = 0.99, ES r = 1.00). As before, the

slightly more favorable intermolecular VDW energies in Cartesian vs. grid space arise from

the fact the ligands were initially minimized in Cartesian space prior to the footprint
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calculations. In expanding to multiple grids, Figure 3b demonstrates the exact

correspondence (r = 1.00) between single (SGE) and multiple grid (MGE) energies (VDW

and ES) across the test set. It is important to note that the inclusion of the remainder grid in

the MGE results is required to maintain this exact correlation. The results in Figure 3c

confirm that the energies across grids representing individual residues (MGEk) or the

remainder grid also have high correlation with their Cartesian-space (DCEk) counterparts

(VDW r = 0.99, ES r = 1.00, N = 18,876 data points each).

The results in Figure 3b,c in multi-grid space employed a primary set + remainder set of

residues. To determine how many grids would be required to effectively define a footprint

we earlier had enumerated the protein residues which interacted with each ligand in the test

set (Figure 3d) above pre-defined threshold levels (VDW = 1.0 kcal/mol, ES = 0.5 kcal/

mol). On average, 20 grids (representing 19 discrete residues and 1 remainder grid) meet

these criteria and based on the results in Figure 3b,c should be sufficient to approximate all

key ligand-protein interaction energies. Importantly, 20 is a much more tractable number of

grids in terms of run time (and memory) required for docking than 322, which is the average

number of protein residues across all 780 systems in the test set. Overall the experiments in

this section indicate the following: (i) grid energies are an acceptable approximation of

Cartesian energy at a 0.4 Å grid resolution, (ii) energy is conserved when decomposing a

single grid into multiple grids, and (iii) a threshold-based method can be used to identify a

“primary” plus a “remainder” set which, when approximated as grids, sufficiently encodes

the key features of a Cartesian-space footprint (as further demonstrated in the Pose

Reproduction section below).

Pose Reproduction

Outcome statistics of docking experiments—To evaluate how grid-based FPS

scoring affects docking outcomes, multiple pose-reproduction experiments using the

SB2010[11] test set were performed as shown in Table 3. Here, docking statistics (success,

scoring failure, or sampling failure) and corresponding run times are shown when using the

standard DOCK SGE scoring function alone (row a), SGE:FPS rescored results (rows b-d),

the MGE scoring function alone (row e), the grid-based FPS scoring function alone (rows f-

h), or the combination (FPS+MGE) of the grid-based FPS scoring function plus the MGE

scoring function (rows i-k). For each experiment employing FPS, results are reported for the

three different similarity metrics that can be applied (standard Euclidean d, normalized

Euclidean dnorm, and Pearson correlation r). Moreover, each row of data represents the

average outcome of six randomly-seeded docking experiments.

Consistent with our earlier work,[10,11,17] the flexible (FLX) ligand docking protocol with

standard SGE scoring function alone is able to successfully predict the crystallographic

ligand pose to within 2 Å for 68.5% of the systems in the test set (Table 3 row a, column A).

And as before, most failures are a result of inaccuracies in scoring (22.7% row a, column B)

rather than sampling (8.8% row a, column C). Similar to results reported by Balius et al.[10]

in which a rescoring of SGE ensembles with Cartesian-based footprints improved overall

success, use of the new grid-based FPS function to rescore SGE-derived poses (Table 3 rows

b-d) yields greater accuracy (82.4 - 83.6%) depending on the comparison method used (d,

Balius et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2014 May 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



dnorm, or r). As no new conformations are sampled during rescoring, the number of

sampling failure remains constant at 8.8%, thus the theoretical maximum success rate for

these experiments are 91.2% (100% - 8.8%). Under the present conditions, SGE docking

requires on average 5.89 minutes per ligand followed by 0.20 to 0.29 minutes per ligand for

footprint-based rescoring with one of the grid-based FPS methods.

Conceptually, the MGE scoring function should return the same docking outcome statistics

as the standard SGE scoring function given the derivation presented in Theoretical Methods

and the good correspondence seen in the large-scale energy validation tests (Figure 3). In

practice, that conservation holds true (Table 3 rows e vs. a) with observed success rates for

MGE = 69.8% vs. SGE = 68.5% being essentially equivalent. Importantly, both the scoring

(22.3 vs. 22.7%) and the sampling (7.9 vs. 8.8%) failures are the same within the noise

limits of the calculations, thus confirming that multi-grid and single-grid approaches are

comparable. A stark difference, however, is that MGE calculations take ca. 5 - 6 times

longer per ligand than does SGE (row a, column D) because each system comprises, on

average, 20 grids instead of 1 grid. Nevertheless, such added expense could be warranted

depending on the modeling application (see De novo Design section below).

Subsequent experiments using the grid-based FPS function alone (Table 3 rows f-h) require

roughly the same amount of time as using MGE alone which is to be expected, however,

there is a dramatic difference in docking outcomes. While FPS success using the standard

Euclidean metric (82.3% row f) is equivalent to SGE:FPS rescoring (83.6% row b), the use

of normalized Euclidean or Pearson correlation metrics perform significantly worse with

success rates only in the range of 24.4 - 34.6%, dominated heavily by sampling failures

(50.9 - 61.7% rows g,h; see Comparison of similarity metrics section below for further

discussion). Interestingly, the observed scoring failures using FPS alone with standard

Euclidean are actually the lowest of any of the experiments (7.0% row f) although sampling

failures show a slight increase (10.7% row f) relative to standard SGE docking (8.8% row

a).

On the other hand, use of the combined scoring function (FPS+MGE) consisting of grid-

based footprints plus multi-grid energy for all three similarity metrics yields good success

rates (Table 3 rows i-k, 77.8 - 84.4%) effectively ameliorating the poor results observed

when using FPS alone with normalized Euclidian or Pearson correlation metrics.

Interestingly, the FPS+MGE experiments (rows i-k) yield fewer sampling failures (6.6 -

8.0% rows i-k) than standard SGE docking (8.8% row a) although scoring failures are

slightly increased over the SGE:FPS rescores (rows b-d). Results for FPS+MGE with

standard Euclidean (84.0% row i) or normalized Euclidean (84.4% row j) yield the overall

highest success rates. Analogous to MGE, docking using FPS+MGE requires ca. 5 - 6 times

increase in calculation time over a single grid. Figure 4 graphically demonstrates the

accuracy of the eight different docking methods examined in this study and further

illustrates the relative robustness (reproducibility) of the results over six random seeds.

In summary, the results in Table 3 and Figure 4 suggest that the FPS method with Euclidian

distance (d), or the FPS+MGE method with standard (d) or normalized Euclidean distance

(dnorm) yields improved pose identification results when a known reference can be
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employed. Importantly, as described below, the incorporation of FPS scoring function to

guide ligand growth during docking provides sampling advantages over the standard SGE

scoring function which can be a key benefit, especially when applied to techniques such as

de novo design.

Comparison of similarity metrics—The standard Euclidean similarity metric

consistently yields good pose reproduction results with SGE:FPS rescoring (Table 3 row b),

FPS (row f), and FPS+MGE docking (row i) all resulting in greater than 80% success. This

consistency most likely involve the fact that the form of the standard Euclidean algorithm

matches both magnitude and shape of the footprint signatures as previously noted.[10] On the

other hand, when magnitude information is lacking, FPS results using normalized Euclidean

(row g) or Pearson correlation (row h) show a poor success rate (24.4 - 34.6%). Under these

conditions, as ligand growth proceeds without an explicit non-bonded interaction energy

sum term, poses scored favorably by the FPS function may in fact be energetically less

favorable in the binding site, which can be problematic. An interesting observation is that a

lack of magnitude information appears to be tolerable (rows c,d) when rescoring,

presumably because the ensemble already contains low-energy conformers (in this case

derived by SGE docking). In any event, when sampling is used to help drive ligand

ensembles toward a more favorable footprint similar to that of the reference, then either the

combined function (FPS+MGE) with any similarity metric (d, dnorm, r), or the FPS function

with the standard Euclidan metric (d), would be recommended.

Growth Tree Footprint Scores

To more closely evaluate the performance of FPS scoring during molecule growth (Figure

5), we carried out fixed-anchor docking (FAD) experiments (see Computational Details)

guided by: (i) SGE score and rescored with FPS (SGE:FPS), (ii) FPS score alone, or (iii) the

combination of FPS+MGE. For these experiments, a subset of the SB2010 test set which

only contained ligands with exactly 10 rotatable bonds was used (N = 59). At each stage of

ligand growth, every conformer sampled by DOCK was rescored with the FPS score using

the standard Euclidean similarity metric. It is important to note that the results in Figure 5

are based on single point calculations of partially grown conformers derived from the final

set of successfully-grown conformers stored as DOCK growth trees. Thus, the number of

vertical data points in each of the eleven growth tree steps will be identical in any individual

experiment (SGE:FPS = 15,638, FPS = 12,824, or FPS+MGE = 12,378). The rough

agreement in the total number of final conformers obtained in each case is primarily a

function of the clustering cutoff which, for the present case, is 100 conformers. A quick

calculation using the total number of systems (59), multiplied by the clustering cutoff

parameter (100), multiplied by the average number of anchors per ligand (2.58), equals

15,222 which is approximately the number of conformers (ca. 12 - 16K) plotted in Figure 5

at each growth step.

As shown in Figure 5, docking begins with an anchor A (initiated from the crystallographic

position) which is then incrementally grown out in layers (A → 10) until the complete

starting molecule is restored. Interestingly, even without an FPS function, use of the SGE

function to drive sampling (Figure 5a) shows a downward trend towards lower (more
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favorable) FPS scores as ligand segments are added. This can be explained by the use of

crystallographic anchor positions as starting coordinates which helps steer a relatively large

percentage of the ensembles towards native-like poses (thus reasonable FPS scores) as more

and more contacts are created between ligand and the receptor during growth. However, the

initial downward trend seen in the SGE:FPS results begins to level off, and around steps 8 -

9 there are slight increases relative to the previous growth step. The final ensemble of

structures converges to a median FPS score of 15.30 (Figure 5a). In contrast, growth guided

using FPS (Figure 5b) or FPS+MGE (Figure 5c) continually trends downward resulting in

lower overall scores (FPS = 11.16, FPS+MGE = 9.76; Figure 5 b,c) and tighter final

distributions at step 10. Of the three methods tested FPS+MGE yields the overall lowest

final FPS scores.

As a graphical view of convergence during growth, Figure 6 plots a representative growth

tree which was guided by the FPS function in which structures, footprint overlap, and FPS

scores (standard Euclidian distance) converge to a reasonable native-like answer. Here, the

poor overlap seen for the inhibitor erlotinib complexed with epidermal growth factor

receptor (PDB code 1M17)[34], in terms of the initial VDW and ES patterns (anchor FPS =

13.69), converges to lower and lower FPS values (final FPS = 1.94) as each layer of growth

and minimization take place. Overall, the pose reproduction experiments in this section

indicate that grid-based FPS and FPS+MGE growth yields more native-like structures.

Crossdocking

Crossdocking matrices are useful to evaluate the performance of a docking scoring function

in the context of variable receptor conformations and ligands of different size and chemistry.

We iteratively performed pose identification experiments on all combinations of thermolysin

proteins and corresponding ligands (N = 26x26) from the SB2010 test set.[11] Thus, each

column of the matrix can be viewed as a small-scale virtual screening experiment wherein

multiple ligands are docked to the same receptor. Docking experiments were performed

using either (i) SGE, (ii) FPS with standard Euclidean, or (iii) FPS+MGE with standard

Euclidean. The reference footprint in each column of the matrix is the crystal ligand pose

indicated by a white circle on the diagonal. Each docking outcome in the matrix was colored

as a success (blue), scoring failure (green), or sampling failure (red). The results are

presented in Figure 7 and Table 4.

Two important measures from the crossdocking experiments are the matrix (overall) success

rate and the diagonal success rate. For standard SGE docking, the matrix success rate is

26.33% (Figure 7a, Table 4). Docking using the FPS scoring function alone yields a similar

result at 26.04% (Figure 7b, Table 4), however docking using the FPS+MGE scoring

function improves success to 33.58% (Figure 7c, Table 4), an ca. 7% increase over the

standard SGE function. The observed improvements are the result of a 4.88% decrease in

scoring failures and a 2.36% decrease in sampling failures, demonstrating that for this

family, accounting for specific protein-ligand interactions and grid score simultaneously can

be useful in targeting a receptor where binding site conformations may be variable.

Previously, Balius et al.[10] performed an FPS-rescoring test for the carbonic anhydrase

family (N = 29 systems) in which multiple ligand poses were reevaluated based on
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footprints derived from each cell's theoretical ligand-receptor complex pose. While this test

was useful to evaluate FPS rescoring, and ultimately removed many scoring failures, it was

not reflective of a true virtual screening experiment wherein only the top pose for each

ligand would be saved and only a single footprint reference for each receptor would be

available. Here, we achieved a 2.36% improvement in sampling success when keeping only

one pose and using only the cognate ligand as a footprint reference for the FPS+MGE

scoring function, something that is not possible by rescoring alone.

Finally, the diagonal of the crossdocking matrix (marked with white circles, Figure 7) was

examined to assess family-based success for docking each ligand into its cognate receptor.

The diagonal success rate for standard SGE docking is 42.31% (Figure 7a, Table 4),

compared to FPS at 38.46% (Figure 7b, Table 4), and FPS+MGE at 80.77% (Figure 7c,

Table 4), which represents a significant ca. 38% improvement over SGE. Remarkably, use

of the FPS+MGE scoring function removed all sampling failures along the diagonal, and the

diagonal success rate for an otherwise difficult family of systems is now on par with the

above pose reproduction success rates reported over the entire test set (Table 3).

Enrichment Studies

To evaluate how grid-based FPS functions affect database enrichment, we generated

Receiver Operating Characteristic (ROC) curves for three protein systems of pharmaceutical

interest – neuraminidase, trypsin, and EGFR – taken from the widely-used DUD[21]

database. Standard SGE docking, SGE:FPS rescoring, FPS docking, and FPS+MGE docking

were employed, and where applicable, experiments were repeated using standard Euclidean

(d), normalized Euclidean (dnorm), or Pearson correlation (r) metrics to rank order the

actives and decoys from each system. Figure 8 plots standard ROC curves for all scoring

ensembles, while Table 5 shows area under the curve (AUC) values, number of actives

(Nact), and number of decoys (Ndec) recovered at 1%, 10%, and 100% of the ranked

database for only the standard Euclidian results. For comparison, the best possible and

random AUC values at each percentage are also shown.

Examination of the ROC curves in Figure 8 reveals that use of FPS with normalized

Euclidian (blue lines, dnorm column) or Pearson correlation (blue lines, r column) yields

poor enrichment which is consistent with the poor pose prediction results in Table 3 and

Figure 4 that used the same protocols. Results for NA and trypsin are essentially random

(blue lines near diagonal, dnorm and r) while for EGFR they are worse than random (blue

lines below diagonal, dnorm and r). In sharp contrast however, use of FPS+MGE with any of

the similarity metrics (red lines, columns d, dnorm, or r), or use of FPS with standard

Euclidian (blue lines, column d) consistently yield good enrichment. Based on these

observations, and for simplicity, discussion below is restricted to results employing FPS

+MGE with standard Euclidian distance.

At 100% of the database, as demonstrated by the percent of maximum AUC, using the FPS

+MGE scoring function provides more significant enrichment than the standard SGE

function across all three systems examined (Table 5): neuraminidase (FPS+MGE = 84.23%

vs. SGE = 81.12%), trypsin (FPS+MGE = 93.43% vs. SGE = 59.58%), and EGFR (FPS

+MGE = 62.22% vs. SGE = 57.73%). While examination of total AUC is important, early
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enrichment is often considered to be a more useful metric given that the numbers of

compounds that can be procured for experimental testing, for all practical purposes, are

often limited by cost and time. Based on recent projects in our laboratory,[18,19] a reasonable

number for purchase is on the order of 100-200 compounds per target. With these values in

mind, partitioning of the results at 10% of the database for neuraminidase and trypsin and at

1% for EGFR yield a reasonable number of docked ligands for examination: (i)

neuraminidase at 10% (N = 191 ligands) with FPS+MGE = 36 actives vs. SGE = 33; (ii)

trypsin at 10% (N = 166 ligands) with FPS+MGE = 42 actives vs. SGE = 12; and (iii) EGFR

at 1% (N = 165 ligands) with FPS+MGE = 101 actives vs. SGE = 113. Importantly, both

methods yield a relatively large fraction of actives in these early rankings which provides

confidence that virtual screening in a real-world application will yield useful numbers of

lead-like compounds. And, in two of three cases (neuraminidase and trypsin), early

enrichment appears to be enhanced using FPS+MGE over the standard SGE function. While

more studies are desirable, the results provide support for using grid-based footprints “on-

the-fly” instead of purely rescoring conformers that have been previously generated using

standard DOCK procedures. This is expected to be especially important for de novo design

as discussed in the next section.

De novo Design

A key objective of de novo design is to construct new molecules which are chemically

distinct from a known inhibitor or substrate, yet that interact in the protein binding pocket in

a desired manner. To demonstrate the potential utility of using the FPS function to guide de

novo design, we constructed ensembles of new ligands starting from four different anchors

in the binding site of HIVgp41. Anchors were derived from the same four protein sidechains

known to interact in the site and that constitute the reference (Trp117, Trp120, Asp121,

Ile124). In separate experiments, de novo growth was guided by SGE alone, by FPS alone,

or by FPS+MGE. Where appropriate, only the standard Euclidian distance metric was used

to compute footprint similarity. Following de novo growth, the top 100 compounds grown

under each condition (SGE, FPS, FPS+MGE) were then rescored to determine the FPS score

(in the case of SGE) or the Grid Score (in the case of FPS). These experiments required 14

total grids: 13 representing the individual gp41 residues most important for binding (primary

set) and 1 representing the remaining 95 residues (remainder set) of the protein receptor

(PDB code 1AIK).[12] The results are summarized in Figure 9.

As expected, new molecules constructed from the starting scaffolds using the FPS method

alone tend to have the lowest (most favorable) average FPS scores (d = 6.68), followed by

FPS+MGE (d = 10.12), and finally SGE (d = 39.12; Figure 9a). Although perfect overlap is

Euclidian distance of zero, which was not achieved in any of the present tests, use of FPS

(Figure 9a red lines) or FPS+MGE (Figure 9a blue lines) to guide de novo growth yielded a

significant number of compounds with low FPS scores indicating substantial footprint

overlap with the reference. In contrast, use of SGE yielded much less overlap (Figure 9a

black) and in many cases resulted in compounds with large unfavorable FPS scores. As

anticipated, the combined function (FPS+MGE) yielded FPS score populations roughly in

between that of pure FPS or pure SGE.
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In terms of Grid energy (computed on a single grid for SGE, or as a sum over multiple grids

for FPS and FPS+MGE) the lowest (most favorable) average energies are seen in ensembles

generated using the SGE method (−51.45 kcal/mol), followed closely by the FPS+MGE

method (−48.57 kcal/mol), then by FPS (−39.84 kcal/mol; Figure 9b). In sharp contrast to

the average unfavorable FPS scores seen for SGE experiments (Figure 9a black), the

average Grid energies, in all three runs, are generally considered favorable (Figure 9b all

populations yield negative values). Encouragingly, this observation provides validation that

molecules which are driven to have high FPS overlap with a reference will also generally

have favorable Grid scores, presuming that the reference also has a favorable Grid score.

Another interesting observation from Figure 9 is that the FPS+MGE-derived ensembles of

molecules yield an average Grid score that is virtually the same as the SGE method. These

observations in combination with the positive results from the pose reproduction,

crossdocking, and enrichment experiments lead us to the conclusion that FPS+MGE is likely

the most effective method for performing de novo design, despite the trade-off for longer

computation time.

In terms of structure, visual examination of FPS-guided molecules showed numerous

compounds with substituents that were chemically and physically similar to the reference

employed during the construction. Figure 10 shows four examples: two were grown using

the FPS method, and two were grown using the FPS+MGE method. For these experiments,

growth was initiated either from a carboxylate anchor position which was derived from the

C-helix residue Asp121 (Figure 10a,c), or from an indole anchor position which was derived

from the C-helix residue Trp117 (Figure 10b,d). In the two examples starting from

carboxylate anchors, growth proceeded into the HIVgp41 pocket and ultimately ended at

either a thiophene ring (Figure 10a) or a 1,3-benzodioxole group (Figure 10c), both of which

mimic the position and interaction of native C-helix residue Trp117. Conversely, in these

two examples of growth beginning from the indole anchor derived from C-helix residue

Trp117, we observed that growth proceeded into the pocket and ultimately ended at either a

trichloromethyl (Figure 10b) or a carboxylate group (Figure 10d), both of which formed an

electrostatic interaction with HIVgp41 residue Lys63, mimicking the conserved salt-bridge

formed by the native C-helix residue Asp121.[35] Although considerable work yet remains,

these initial de novo results from DOCK provide strong support that the grid-based

implementation of FPS scoring is biasing growth as expected, and that additional testing and

development is warranted.

Conclusions

The implementation of a new grid-based footprint similarity (FPS) scoring method into the

program DOCK has been described and extensively evaluated using pose reproduction,

crossdocking, enrichment, and de novo design experiments. The generalization to multiple

grids allows on-the-fly scoring and sampling to be performed in a computationally tractable

manner and the method was shown to effectively reproduce footprints made in Cartesian

space (Figures 2 - 3). In pose identification, the FPS+MGE rescoring method performs about

9-16% better than standard SGE docking, with all three comparison methods, but is on

average ca. 5 - 6 times slower (Figure 4, Table 3). Nevertheless, this may be an acceptable
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tradeoff for specific docking scenarios. Efforts to increase the calculation speed are being

explored.

Docking using FPS to guide ligand sampling on-the-fly also performs well but only when

using the standard Euclidean similarity metric. Unacceptably high failures are observed

when using FPS with normalized Euclidean or Pearson correlation, which is evidence that

the magnitude of specific protein-ligand interactions should be included if used for pose

reproduction (Figure 4, Table 3). Standard Euclidean matches both the magnitude and the

shape of the footprint spectra while normalized Euclidean and Pearson correlation only

match shape. Notably, all comparison methods perform well in FPS+MGE docking

experiments (Figure 4, Table 3).

Relative to standard SGE sampling, the use of footprints during growth (FPS or FPS+MGE)

yield molecular interactions which are more similar to the reference, as is made evident by

FPS scores ultimately guided to lower values during the course of ligand growth (Figures 5 -

6). Although additional experiments are ongoing, the present pose reproduction studies

indicate that the standard Euclidian similarity metric would be recommended if FPS alone is

used to drive sampling. Otherwise, the combined function FPS+MGE, with either Euclidian

method (standard or normalized), would be recommended. In fact, for virtual screening or

de novo design application, it could be advantageous to use FPS+MGE scoring with

normalized Euclidian to identify molecules that, in addition to matching a specific spectra,

also make interactions with greater, more favorable magnitudes than the reference.

Crossdocking experiments for a challenging family of thermolysin proteins (N = 26

systems) demonstrated that the FPS+MGE scoring function yields moderately enhanced

success (ca. 7%, Table 4) compared to SGE alone for reproducing binding poses in the

context of slightly different receptor geometries and ligand sizes and chemistries (N = 676

protein-ligand pairs, Figure 7). These experiments also showed that the success rate on the

diagonal was increased by ca. 38%, to a rate (80.77%, Table 4) which is more consistent

with the success rate observed across the entire test set in pose reproduction experiments

(84.0%, Table 3).

Analogous to the pose reproduction results (Figure 4, Table 3), enrichment results for the

three test systems (Figure 8, Table 5) demonstrated that the FPS scoring function should be

paired with the standard Euclidean similarity metric if it is used alone to drive sampling.

Poor enrichment here is attributed to a lack of per-residue magnitude information for

normalized Euclidean and Pearson correlation methods. In contrast, when using the FPS

+MGE combination, any of the similarity metrics provided good enrichment over the

standard SGE method as measured by total AUC. In terms of early enrichment at 10%

(neuraminidase, trypsin) or 1% (EGFR) of the databases examined, use of the FPS+MGE

function yielded a higher fraction of actives than the standard SGE function in two out of

three cases.

Finally, we demonstrated that the grid-based FPS can be a useful scoring function to drive

sampling for de novo design applications, as was made evident by the test applications to

HIVgp41 (Figures 9 - 10). Ensembles of molecules built using the FPS or FPS+MGE
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scoring functions on average had higher footprint overlap with the reference structure,

meaning that important binding site interactions were conserved, when compared to the SGE

scoring function alone (Figure 9). In addition, in favorable cases, newly constructed

molecules using FPS or FPS+MGE scoring functions contained functional groups that

mimicked key reference positions and interactions in the binding site (Figure 10).

Overall, the present studies strongly suggest that the new grid-based footprint scoring

method developed here for DOCK will be a practical alternative to the standard procedure

for prioritizing docking, virtual screening, and de novo design results and a useful addition

to the structure-based drug design toolkit. Our experiments indicate that the combined

scoring function, FPS+MGE, is most robust. It is important to emphasize that the methods

described herein are not limited to the systems studied in this manuscript but can be

extended to almost any drug target for which there exists structural information and a

suitable reference can be derived. Further, since the FPS function is a simple decomposition

of the standard molecular mechanics-based energy score, parameterization beyond that

already required to setup a standard DOCK calculation are not needed. The methods

presented here, along with test case examples, will be made available in a forthcoming

release of DOCK.
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Figure 1.
(left / right) Image of the HIVgp41 binding site (gray surface) showing four

crystallographic reference C-helix amino acid sidechains (green) and a candidate small

molecule (orange). (center) Footprint comparisons showing per-residue van der Waals

(VDW, black lines) and electrostatic (ES, red lines) interaction energies (kcal/mol) as a

function of 13 primary residues (01 - 13) and the remainder (rem) set of residues (see

Computational Details for discussion).
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Figure 2.
Comparisons between Cartesian-based (green) and grid-based (black) footprints for PDB

code 2PK4 decomposed into VDW (a,b) and ES (c,d) contributions. Panels (a) and (c) show

footprints across all 80 protein residues and panels (b) and (d) show footprints based on the

subset of primary binding site residues (N = 7) plus the remainder residues (N = 73).
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Figure 3.
Comparison of scores for crystallographic poses minimized in Cartesian space from the

SB2010 test set (N = 780) for: (a) DCE (Cartesian) vs. SGE (single grid), (b) SGE (single

grid) vs. MGE (multi grid), (c) individual residue DCEk (Cartesian) vs. individual residue

MGEk (multi grid), and (d) number of residues above threshold (see Computational Details

for energy cutoffs). Black = VDW energies, red = ES energies, blue = population histogram.
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Figure 4.
Pose reproduction experiments using alternative scoring functions and footprint similarity

metrics: SGE = single grid energy, MGE = multi grid energy, FPS = footprint similarity, and

FPS+MGE (d = standard Euclidean; dnorm = normalized Euclidean; r = Pearson correlation).

Symmetry-corrected rmsds were employed for six randomly-seeded DOCK runs (N = 780

systems). Blue = success, green = scoring failure, red = sampling failure.
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Figure 5.
FPS scores using standard Euclidian distance for all ligand conformers generated at each

growth step (left to right A → 10) for the 10 rotatable bond subset of SB2010 (N = 59)

using three different sampling methods: (a) SGE guided growth (rescored with FPS), (b)
FPS guided growth, and (c) FPS+MGE guided growth. Open circles indicate median FPS

values, open box indicate middle 50th percentiles, dashed lines indicate upper and lower 25th

percentiles, red circles are outliers.
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Figure 6.
Graphical view of convergence for the inhibitor erlotinib complexed with epidermal growth

factor receptor (PDB code 1M17) showing structures, VDW and ES footprints in kcal/mol

(y-axis) derived from 16 individual grids plus 1 remainder grid (x-axis), and FPSVDW+ES

scores as a function of growth step. Reference in red vs. partially grown conformers in

green.
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Figure 7.
Pose reproduction successes (blue), scoring failures (green), and sampling failures (red) for

crossdocking experiment of thermolysin proteins. Experiments were guided either by (a)
SGE, (b) FPS with standard Euclidean, or (c) FPS+MGE with standard Euclidean. White

circles on the diagonal indicate cognate protein-ligand pairs.
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Figure 8.
ROC curves for neuraminidase (1A4G), trypsin (1BJU), and EGFR (1M17) using SGE

(black), SGE:FPS (gray), FPS (blue), and FPS+MGE (red) scoring to rank order actives and

decoys taken from the DUD database for comparison with random enrichment (dashed

lines).
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Figure 9.
Histograms of (a) FPS scores (Euclidian distance) and (b) Grid score (kcal/mol) for

ensembles of molecules built using SGE (black line) vs. FPS (red line) vs. FPS+MGE (blue

line) guided de novo design. The top four rows represent histogram results derived from four

different starting anchors placed in the HIVgp41 binding site and the bottom row represents

the population averages over all runs.
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Figure 10.
Example molecules constructed using de novo design in DOCK targeting HIVgp41 guided

by footprints using either (a,b) the FPS scoring function or (c,d) the FPS+MGE scoring

function. Red circles indicate starting anchor. Molecule 3D structures are footprint plots are

colored as described in Figure 1. MGE energies in kcal/mol, FPS scores in Euclidean

distance.
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Table 1

Coefficient schema and pruning cutoffs for docking/scoring protocols.

MGE FPS FPS+MGE

Standard
a
 Euclidean (d)

C1 = C2 = 1
b C1 = C2 = 0 C1 = C2 = 1

C3 = C4 = 0 C3 = C4 = 1 C3 = C4 = 1

Pruning cutoff = 200.0 Pruning cutoff = 1000.0 Pruning cutoff = 1000.0

Normalized Euclidean (dnorm)

C1 = C2 = 1 C1 = C2 = 0 C1 = C2 = 1

C3 = C4 = 0 C3 = C4 = 1 C3 = C4 = 20

Pruning cutoff = 200.0 Pruning cutoff = 200.0 Pruning cutoff = 200.0

Pearson Correlation (r)

C1 = C2 = 1 C1 = C2 = 0 C1 = C2 = 1

C3 = C4 = 0 C3 = C4 = −1 C3 = C4 = −20

Pruning cutoff = 200.0 Pruning cutoff = 200.0 Pruning cutoff = 200.0

a
Methods used to compute footprint overlap.

b
Coefficients (C1, C2, C3, C4) used to compute a total score as a function of Eq. 8. Pruning cutoff refers to the DOCK parameter

pruning_conformer_score_cutoff in kcal/mol (see text for discussion).
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Balius et al. Page 29

Table 2

Parameters for enrichment and pose reproduction experiments.

DOCK Input File Parameter Description Enrichment Pose Reproduction

pruning_max_orients # anchor orients 100 1000

pruning_conformer_score_cutoff pruning cutoff 100.0
200.0 / 1000.0

a

num_scored_conformers
b # molecules output 1 5000

a
Cutoff of 200.0 kcal/mol used for SGE, MGE, and FPS or FPS+MGE with normalized Euclidean (dnorm) or Pearson correlation (r). Cutoff of

1000.0 kcal/mol used for FPS or FPS+MGE with standard Euclidean (d). See Table 1.

b
One conformer is saved during enrichment vs. 5000 conformers during pose reproduction for improved sampling statistics.
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Table 3

Pose reproduction statistics with flexible (FLX) ligand docking using SGE scoring, SGE:FPS rescoring, MGE

scoring, FPS scoring, and FPS+MGE scoring with the SB2010 test set.

A B C D

procedure
a

division
b

FPS
c

success (%)
d

score fail (%)
d

samp fail (%)
d

time (min)
d

a SGE all 68.5 22.7 8.8 5.89

b SGE:FPS pri+rem d 83.6 7.6 8.8 0.29

c SGE:FPS pri+rem dnorm 83.1 8.1 8.8 0.26

d SGE:FPS pri+rem r 82.4 8.9 8.8 0.20

e MGE pri+rem 69.8 22.3 7.9 28.57

f FPS pri+rem d 82.3 7.0 10.7 27.85

g FPS pri+rem dnorm 34.6 14.6 50.9 30.66

h FPS pri+rem r 24.4 14.0 61.7 30.01

i FPS+MGE pri+rem d 84.0 9.4 6.6 27.82

j FPS+MGE pri+rem dnorm 84.4 8.6 7.0 28.39

k FPS+MGE pri+rem r 77.8 14.3 8.0 28.93

a
SGE = single grid energy, MGE = multi grid energy, FPS = footprint similarity.

b
pri = primary set, rem = remainder set (see text for discussion).

c
d = standard Euclidean, dnorm = normalized Euclidean, r = Pearson correlation.

d
N = 780 systems, symmetry-corrected rmsds, average of six DOCK runs.
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Balius et al. Page 31

Table 4

Summary of crossdocking success / failure rates for thermolysin family (N = 26 systems).

SGE FPS
b

FPS+MGE
b

N
a (%) N

a (%) N
a (%)

Matrix Success 178 26.33 176 26.04 227 33.58

Matrix Scoring Failure 302 44.67 291 43.05 269 39.79

Matrix Sampling Failure 196 28.99 209 30.92 180 26.63

Diagonal Success 11 42.31 10 38.46 21 80.77

Diagonal Scoring Failure 12 46.15 13 50.00 5 19.23

Diagonal Sampling Failure 3 11.54 3 11.54 0 0.00

a
Total of success + scoring failure + sampling failure = 676 for entire matrix; 26 for matrix diagonal.

b
Standard Euclidean similarity metric.
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