
Detection and characterization of nonspecific, sparsely-
populated binding modes in the early stages of complexation

A. Cardone1,2, A. Bornstein3, H. C. Pant4, M. Brady1, R. Sriram1, and S. A. Hassan5,*

1Software and System Division, National Institute of Standards and Technology, Gaithersburg, 
MD 20899

2Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

3Mathematics and Computer Science, Goucher College, Baltimore, MD 21204

4Laboratory of Neurochemistry, NINDS, National Institutes of Health, Bethesda, MD 20892

5Center for Molecular Modeling, Division of Computational Bioscience, CIT, National Institutes of 
Health, Bethesda, MD 20892

Abstract

A method is proposed to study protein-ligand binding in a system governed by specific and non-

specific interactions. Strong associations lead to narrow distributions in the proteins configuration 

space; weak and ultra-weak associations lead instead to broader distributions, a manifestation of 

non-specific, sparsely-populated binding modes with multiple interfaces. The method is based on 

the notion that a discrete set of preferential first-encounter modes are metastable states from which 

stable (pre-relaxation) complexes at equilibrium evolve. The method can be used to explore 

alternative pathways of complexation with statistical significance and can be integrated into a 

general algorithm to study protein interaction networks. The method is applied to a peptide-protein 

complex. The peptide adopts several low-population conformers and binds in a variety of modes 

with a broad range of affinities. The system is thus well suited to analyze general features of 

binding, including conformational selection, multiplicity of binding modes, and nonspecific 

interactions, and to illustrate how the method can be applied to study these problems 

systematically. The equilibrium distributions can be used to generate biasing functions for 

simulations of multiprotein systems from which bulk thermodynamic quantities can be calculated.
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I. Introduction

Cellular signal transduction involves complex networks of protein-protein interactions, the 

topological properties of which have become the focus of many experimental and theoretical 

studies.1–4 A clear understanding of networks behavior may pave the way for the 

development of strategies to intervene at the level of vertices, edges, and hubs to modify 

cellular function in pathological conditions.5,6 It has been recognized that, to achieve this 

goal, the networks need to be characterized first in terms of the physicochemical properties 

of the individual interaction.2,7,8 Early attempts in this direction related network topology to 

the three-dimensional structures of proteins.2 Microcalorimetric, kinetic, and spectroscopic 

methods are commonly used to probe protein-protein interactions, but microscopic insight is 

often limited.9 Advanced techniques are being developed to gain atomic-resolution insight, 

including weak and ultra-weak association,10–12 detection of sparsely-populated conformers 

and metastable complex intermediates,13,14 and tracking of real-time conformational 

changes upon binding.15,16 The importance of computer simulations in this context is self-

evident, but the challenges are still numerous. These include sampling of the configuration 

space, as well as more fundamental questions related to the physical nature of the 

interactions, such as the role of the aqueous medium in mediating/inducing intermolecular 

forces.

In recent years, a number of experimental studies have evidenced the multifaceted, 

multilayered complexity that real biological media pose to a computational approach. In 

living cells, for example, proteins form complexes with an average of 4–5 proteins per 

complex.1 The prevalence of monomers is rather low (20%), while dimers constitute a small 

majority (40%); the remaining proteins form higher order architectures.4,17 A recent large-

scale study4,18 has shown that about half of the proteins form homooligomers (homomers) 

and the rest heterooligomers (heteromers). Both kinds of oligomers play functional and 

morphological roles, and the therapeutic importance of homomers has been recognized.18 

Homomers are highly symmetrical, and dihedral symmetry is more abundant than either 

cyclic or cubic symmetry, indicating that proteins can self-associate through multiple 

interfaces and with different affinities. Proteins in multimeric complexes tend to interact 

through highly specific contact surfaces, but recent experiments have shown that proteins 

can also interact at multiple sites through non-specific, ultra-weak interactions.10–12 These 

transient associations are difficult to detect with conventional spectroscopic techniques, but 

they are thought to play an important role in many biological processes, including protein 

recognition and spontaneous self-assembly of higher-order architectures.10 Moreover, 

proteins can be multifunctional and interact specifically with several proteins in different 

cellular processes throughout the cell cycle;1,4,17 up to six interfaces have been identified in 

some cases.4

Earlier evidence19,20 had suggested that a large proportion of proteins in cells are in a state 

of high condensation, transiently bound to one another, to membranes, or to the 

cytoskeleton, the most extensive protein complex in eukaryote cells. Electron tomography 

and modeling have recently provided more direct evidence of the subcellular organization of 

large protein complexes in a small prokaryote cell.4 Data show a homogeneous distribution 

of complexes throughout the cytosol, punctuated by regions of higher concentration. Local 
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environments where proteins are in close proximity of one another may facilitate 

translocation (compared to simple three-dimensional diffusion) and association and may 

thus be the result of biological evolution. Moreover, local macromolecular crowding can 

change the strength of protein-protein interactions for reasons (enthalpic) unrelated to 

conventional (entropic) volume-exclusion effects.21 On the one hand, electrostatic 

interactions between proteins can become stronger due to the exclusion of water (highly 

polarizable medium) by nearby complexes,22 an effect recently probed by computer 

simulations in barnase-barstar.23 In addition, changes in the structural and dynamic behavior 

of (non-bulk) water at interfaces and interstitial spaces can affect both electrostatic and 

liquid-structure forces in ways not yet fully understood.22,24,25 The combination of these 

enthalpic and entropic effects may result in the emergence of binding sites or modes not 

observed at higher dilution.

The summary above is concerned with the statistical properties of proteins in the subcellular 

environment. The organization and composition of the complexes, however, vary both in 

time and space. This paper does not directly address the system’s dynamic behavior, which 

is studied once the correct protein/protein interfaces are identified (prediction of ‘hot 

spots’26 on protein surfaces is in and of itself a major goal in most predictive methods27–29). 

The paper deals instead with the spatial characterization of the system. The method provides 

insight into the early stages of complex formation, including aggregation and self-assembly, 

and can be used to explore alternative complexation pathways with statistical significance, 

which has implications for the study of protein interaction networks.2,4,6,30,31

Section II describes a biased Monte Carlo (MC) algorithm for the efficient sampling of the 

configurational space. The biasing function allows mixing large and local changes in the 

spatial distribution of proteins, which enhances sampling of relevant microstates. The 

method is based on the notion that a discrete set of preferential first-encounter modes are 

metastable states from which stable complexes at equilibrium evolve. Strong, specific 

interactions lead to a single binding mode,32 whereas weak or ultra-weak interactions lead to 

a distribution of sparsely-populated, non-specific modes with multiple interfaces. The 

solvent model used to describe protein-ligand interactions is reviewed in Section III, which 

represents the conditions of partial and anisotropic hydration typical in these systems. The 

model accounts for short- and long-range effects of water exclusion, including electrostatic 

and dispersion forces. Long-range electrostatic interactions are optimized using binding 

enthalpy data of two medium-size binary complexes. The method is used in Section IV to 

study binding of a flexible peptide to a protein. The peptide adopts several conformations 

and binds in a variety of modes with different affinities. The selected complex is well suited 

to analyze general features of binding, including conformational selection, and to illustrate 

how the method can be used to study such problems systematically. Generalization to 

multispecies, multiprotein systems is discussed in Section V.

II. Configurational-bias self-adaptive Monte Carlo simulations

A flow chart of the general algorithm is shown in Fig. 1; detailed flowcharts of blocks A and 

B are presented in Fig. 2. Given two proteins, l and p, in an aqueous solution, a 

corresponding set of conformers, {li}i=1,K and {pi}i=1,K′, are first identified. All the 
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conformers are treated as independent structures coexisting in the solution. Any conformer 

of p can potentially bind any conformer of p or l (and vice versa) and trigger a dynamic 

response. The problem associated to conformational selection is thus reduced to a 

combinatorial problem and addressed at this stage. Finding a complete set of conformers, 

however, poses challenges of its own. For small, drug-like compounds, a plain MC search 

might suffice. For a protein of known three-dimensional structure, relevant conformers are 

expected to be structurally similar to the known structure, thus ab initio prediction is not 

needed. In this case, molecular Dynamics (MD)-based methods may suffice to detect 

relevant sub-states,33 for example using principal component analysis34 or related 

techniques for trajectory analysis. Local, enhanced sampling may still be needed to identify 

multiple conformations of unstructured segments (loops), which are known to play a role in 

recognition and binding.35 Medium-size systems of unknown structures are the most 

challenging, and Section IV deals with this problem. Peptides, for example, are typically 

unstructured in aqueous solution or may exist in a variety of interconverting conformers. 

These conformers are difficult to detect with conventional NMR, so advanced methods are 

being developed, including paramagnetic relaxation enhancement,11 chemical-exchange 

saturation transfer,36 and CPMG relaxation dispersion.37 These systems are also a challenge 

to computational methods, and efficient ab initio techniques have been developed to 

generate conformational canonical ensembles from which a reduced set of conformers can 

be extracted.38,39

In what follows, labels 1 and 2 refer indistinctly to two interacting proteins (or solutes, in 

general, including ions and small molecules) or any two conformers adopted by these 

proteins. The method used to predict their binding modes consists of two consecutive 

stages:32 a prescreening of binary interactions to identify physically meaningful first-

encounter modes, followed by an adaptive configurational biased sampling to identify 

statistically relevant binding modes at equilibrium. Prescreening involves optimizations of 

two dimensionless quantities, namely, an electrostatic norm e and a hydrophobic norm h of 

fast computation. To define these functions, the electrostatic potential ϕ on the molecular 

surface of each solvated protein is first evaluated with a conventional Poisson equation 

solver.32 The NM and Nm positions {rM} and {rm} of the local maxima {ϕM} and minima 

{ϕm} (polar centers) are then identified; likewise for the Nm′ positions {rm′} of the local 

minima {|ϕm′|} of |ϕ| (nonpolar centers). Pairs of polar centers with potentials of opposite 

signs are then aligned, as discussed,32 and the two-way norm e is defined as (Fig. 3A)

(1)

where the corresponding proteins are indicated in parentheses in the upper indexes; j in the 

first and second sums denotes the point in protein 2 that is closest to point i in protein 1; 

similarly for the third and fourth sums. The distance between i and j is represented by rij, 

and α and d are constants. The term S12 prevents structural overlaps and is modeled as an 

atom-centered hard-sphere potential.

Pairs of nonpolar centers are also aligned,32 and the norm h is defined as (Fig. 3A)
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(2)

where θ is the Heaviside step function, Rw is the radius of a water molecule, and b are 

system-dependent coefficients. Unlike Eq. 1 where i and j denote other maxima and minima 

of ϕ, in Eq. 2 these indexes run over L points defined over local surface patches centered in 

the aligned centers.

The functional forms of e and h are suitable simplification of the physical effects that each 

one intends to describe and designed specifically for computational efficiency: Eq. 1 

represents local electrostatic complementarity between the surfaces, and Eq. 2 represents the 

degree of burial of the local hydrophobic surfaces. No assumptions are made about surface 

complementarity because both proteins may undergo post-binding structural relaxations (cf. 

Section IV.3). Norm optimizations are carried out by simulated-annealing MC simulations, 

from which a total of Γ electrostatics-driven modes {ui} and Γ′ hydrophobicity-driven 

modes {vi} are obtained. The complete set of Λ = Γ Γ′ prescreened modes {si} is formed by 

the union of both sets, i.e., {si}i=1,Λ = {ui}i=1,Γ ∪ {vi}i=1, Γ′, and represent preferential 

encounters between the proteins in their particular conformations under consideration. This 

set of modes is used to define an initial biasing function, P, for the MC simulation, which is 

adapted as the simulation progresses. Each mode m defines the center of a local Gaussian 

distribution in the conformation space of the complex, and the total distribution over all the 

modes is given by

(3)

where η ≡ (η1,η2,η3,η4,η5,η6 ) is a set of generalized coordinates that determine the relative 

position of the proteins; h is the Boltzmann probability for selecting the mode m; 

 and , where σi is the standard deviation and δηi the unit 

distance along the ηi coordinate in the η space. In Eq. 3, the functions J are given by

(4)

where ηim is the corresponding coordinate ηi in mode m.

The function P is the probability to generate a trial rigid-body move within an element δη 

centered at η. In thermodynamic equilibrium, strict detailed balance implies that the old (o) 

and the new (n) states are related through Boπo→n = Bnπn→o, where B is the corresponding 

Boltzmann occupancy probability, and π is the transition probability between the states, 

given by πo→n = αo→n po→n and πn→o = αn→o pn→o. Here α is the underlying matrix of the 

Markov process and p is the acceptance probability. According to the Metropolis criterion, 

the canonical probability of accepting a new state is
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(5)

where ΔE = En − Eo is the energy difference between the states, and β = 1/kT. The ratio of a 

priori probabilities in Eq. (5) is chosen here as

(6)

where  and  are given by Eq. 4 evaluated at the old and new states, respectively. The 

a priori probabilities can be adjusted on the fly through the variances σi,m, the mode 

probabilities hm, or the mode coordinates ηim. If all these quantities are kept fixed over the 

course of a simulation, the biasing function is said to be non-adaptive; otherwise the 

function is adaptive. In the applications presented here hm and σim are kept fixed and 

determined at the beginning of the simulations, whereas ηim is updated. The weight hm is 

given by hm ∝ exp(−〈Em〉/λkT), where the average energy 〈Em〉 is calculated from a short 

nonadaptive MC simulation using the complete force field; the significance of the 

smoothing parameter λ has been discussed.32

For each trial move, the algorithm first selects a mode m with probability hm, followed by 

either a rotation of a side-chain dihedral angle or one of three types of rigid-body 

movements, namely, translation, rotation, or rototranslation, all selected with equal 

probabilities. The principal axes of inertia of protein 1 define the laboratory coordinates 

system, as indicated in Fig. 3B. For a binary system, the position of 2 is given relative to 1; 

for a multiprotein system, appropriate transformations to the equations below apply. The 

coordinates η are defined here as η = (x, y,z,φ,θ,λ), where (x, y, z) are the cartesian 

coordinates of the center of mass of protein 2, and (φ,θ,γ) are suitable angles that univocally 

determine the protein orientation. Here, the angles φ and θ are chosen as the spherical angles 

of the primary axis of inertia of protein 2, and γ is the azimuthal angle of the second moment 

(Fig. 3B). A translation r → r + Δr is represented by a random displacement Δr = (Δx, Δy, 

Δz) obtained from normal distributions with zero mean and non-unit variance (σx, σy, σz), 

using the Box-Muller (BM) method. A formal rotation consists of random movements 

(Δφ,Δθ,Δγ) of the three independent angles, obtained from normal distributions with zero 

mean and variances (σφ, σθ, σγ), according to the BM method. In practice, rotations r → R̄r 
are represented by a quaternion matrix R̄ consisting of rotations of an angle Δχ around a 

randomly-chosen axis Ω that passes through the center of mass of protein 2, and defined by 

its spherical angles (Φ,Θ) in the molecular frame of 2. Rotations (Δφ,Δθ,Δγ) are thus related 

to (Φ,Θ,Δχ) by simple transformation; the restrictions on (φ,θ,γ) are reflected on Δχ.

The set of coordinates ηim of mode m is continuously updated to the values corresponding to 

the last accepted conformation of the mode, so the probability distribution P itself adapts. 

The canonical distribution of states collected upon convergence can be post-processed by a 
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clustering algorithm to identify a discrete number of ‘binding modes’ (Fig. 1). Once the 

proteins associate in one of these modes they may undergo conformational changes as a 

result of structural relaxation and, possibly, mutually induced fit.40. Structural relaxations 

are here studied by MD simulations. However, backbone conformational changes could be 

integrated into the MC sampling itself using, for example, scaled collective variables41,42 

(SCV). In the SCV method, all the dihedral angles ϕ and ψ along the protein main chain are 

moved concertedly to minimize steric clashes and improve the MC sampling acceptance 

rate.43 Although implementation of this technique is conceptually straightforward, the 

method requires optimization and a detailed analysis of performance, which are not pursued 

here.

III. Atomistic representation of the solute and implicit representation of the 

solvent

The effects of water are described by the screened Coulomb potentials (SCP) implicit 

solvent model.22,44 In this model, the total non-bonded energy of a hydrated solute 

composed of N atoms is given by

(7)

where r ≡ {r1, r2,…, rN} represents the conformation of the solute, ri is the position of 

atom i, and rij is the distance between atoms i and j. In the partition of Eq. 7 the first term is 

the electrostatic interaction energy and the second sum the electrostatic self-energy.22,45 The 

third term is the direct (i.e., gas phase) van der Waals energy, whereas the fourth term is the 

dispersive correction by the solvent.44 The last term in Eq. 7 is the cavity formation energy, 

which plays the role of a hydrophobic potential; γ is the total solvent-accessible surface area 

of the solute, and a ~ 5.2 cal mol−1 Å−1 is obtained by fitting hydration energies of small 

linear alkanes.45 Equation 7 contains four conformation-dependent functions, Dij, Di, Ri, and 

εij, that capture the effects of water exclusion in conditions of partial and anisotropic 

hydration. These functions have been discussed in detail22,45 and are summarized below for 

completeness. The effects of liquid-structure forces (or solvent-induced forces, SIF), 

formally represented by a sixth term in Eq. 7 are in practice introduced empirically through 

a suitable modification of R, which makes the model computationally efficient.22

The screening functions are given by22,46 Dij (rij;r) = (1+ε0)/{1+k exp[−αij (r)rij ]}−1 and 

Di (Ri; r)= (1+ε0 )/{1+k exp[−αi (r)Ri ]}−1, where ε0 is the static permittivity of bulk water 

and k is a constant. Structure information is embedded in the screening coefficients αi 

through22

(8a)
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where A and α0,i are positive constants, M is the total number of residues in the system, and 

rIJ is the distance between residues I and J. The coefficients αij are given by22

(8b)

where α0,ij is a constant. The characteristic lengths σ and σ′ control the long-range decay of 

the electrostatic effects of water exclusion, and render the interaction and self-energy terms 

in Eq. 7 independent of each other. The correct balance between these two terms (discussed 

below) is essential for accurate quantitative results, especially as the proteins grow in size.22 

Unlike long-range effects, the short-range effects of water exclusion are sensitive to the 

atomic details of the solute. This local-structure dependence is incorporated into Ri in the 

form47

(9)

where ai and Rw,i are constants, and Nc is the total number of atoms that surround i within 

certain cutoff distance beyond which the granularity of the system becomes less critical and 

long-range effects take over. The atom-dependent length τi controls the short-range decay of 

electrostatic water-exclusion effects.

The function εij quantifies the strength of dispersion interactions between atoms i and j as 

modulated by water, and is given by44

(10)

where a and b are parameters that depend on the solute-water and water-water dispersion 

interactions; Nk and Nq are the number of atoms within a cutoff distance from the off-solute 

points k and q (both defined by i and j); rkl and rql are the distances between these points and 

the solute atom l. The characteristic distance λ determines the water occupancy at any point 

in the system, in particular at q and k. The values of a, b, and λ have been optimized for 

proteins using results from dynamics simulations in explicit water.44

All the equations that define the model are analytical and continuous (a smoothing function 

is used when a cutoff is introduced), and expressions for the forces corresponding to each 

term have been reported.44,45,47 Optimization of σ and σ′ for the all-atom representation of 

the protein force field is carried out here using ITC binding enthalpy (ΔH) data of two 

medium-size complexes at 25 °C: for barnase-barstar at pH 748 (1BRS) ΔH was measured at 

~ 19.3 kcal/mol; for Iso-1-cytochrome c bound to its peroxidase49 (2PCC), ΔH ~ 2.6 

kcal/mol at pH 6. The strength of the interaction is strong in the former complex and rather 

weak in the latter, and in both cases the enthalpic contributions to association are favorable. 

Using MC simulations with the CHARMM force field,50 binding energies ΔE are estimated 
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in the (σ, σ′)-plane as ΔE = Eb − E∞, where Eb = Z−1Σi Ei exp(−Ei/kT) ≈ Σi Ei/Nb is the 

energy of the bound state; Ei and Nb in the last sum are the total non-bonded energy (Eq. 7) 

of an accepted conformation i and the total number of accepted conformations, respectively; 

E∞ is the energy of the unbound state calculated as the sum of the non-bonded energies of 

the two isolated proteins. Both complexes were used previously44 in the optimization of Eq. 

10, and it was shown that the total (solvent-corrected) van der Waals contributions to 

binding are small. Protonation states were fixed at the start of the simulations, such that Arg, 

Lys, and His are positively charged, whereas Glu and Asp are negatively charged; the Heme 

prosthetic group is taken from the default CHARMM parameters file, which carries a doubly 

negative charge. Trial moves consist of side-chain dihedral angle rotations, or rigid-body 

rotations, translations, or rototranslations, all chosen with equal probabilities. Figure 4 

shows a contour plot of ΔE for the two complexes. The intersection of the lines 

corresponding to the experimental ΔH yields σ = 68 Å and σ′ = 22 Å; for the extended-atom 

force field, the calculations yields σ = 70 Å and σ′ = 45 Å, which supersedes previous 

estimates.22,32 The extreme sensitivity of the results to small changes in σ and σ′, which is 

apparent from the contour plots, reflects the critical balance between the interaction and the 

self-energy terms, as they move in opposite directions during binding.22 It also suggests that 

a residue-based parameterization may ultimately be needed, as the physical interpretation of 

the parameters indicates.22

IV. Results

The method is used to study the binding of cyclin-dependent kinase 5 (cdk5) to the 

inhibitory peptide p6. Under normal physiological conditions, cdk5 is regulated by neuron-

specific activator proteins p35 and p39.51 Physiological stress induces higher concentration 

of calcium, which results in the cleavage of p35 into two fragments, p25 and p10.52,53 When 

p25 binds cdk5 the kinase becomes hyperactive, which leads to the formation of β-amyloid 

plaques and neurofibrillary tangles, hallmarks of Alzheimer’s disease (AD).54 Several 

peptides obtained by truncation of p35 have been proposed as inhibitors of the cdk5 aberrant 

activity in the presence of p25, some of them with therapeutic potential.55,56 In particular, 

the 33-residue peptide p6 contains, as part of its C-terminal sequence, the 24-residue peptide 

p5, one of the most efficient inhibitors.57,58 Peptide p5 is also part of the inhibitory hybrid 

TFP5, which has been shown to cross the blood/brain barrier.58 Compared to p5, however, 

the longer p6 poses a number of computational challenges and features that make it ideal to 

illustrate the method. These features include the presence of several sparsely-populated 

conformers, a multiplicity of binding modes with different interfaces, and a broad range of 

binding affinities. Other inhibitory peptides55 (e.g., p2, p3, CIP) are generally larger than p6, 

hence impractical for the ab initio study intended here.

IV.1 Peptide conformations in solution

None of the structures of the inhibitory peptides have been resolved experimentally. The 

first stage then consists in an ab initio prediction of the p6 conformation(s) in an aqueous 

solution. The sequence of p6 is 1LKPFLVESCKEAFWDRCLSVINLMSSKMLQINA33, 

with uncapped NH3
+– and –COOH− termini; residues K+, R+, E− and D− are all assumed to 

be charged throughout the simulations. To sample the peptide conformational space, replica-
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exchange (REx)38 dynamic simulations are used. First, a stochastic conformational 

optimization is carried out with the MC minimization-annealing (MCMA) method59 to find 

a set of N structurally distinct conformations corresponding to N low-energy local minima in 

the potential energy landscape. The peptide is initially built in an extended conformation, 

using default topology of the all-atom CHARMM force field. In the MCMA method, 

residue-specific biased moves of the side-chain dihedral angles χ1 and χ2 or main-chain 

dihedral angles ϕ and ψ are generated and energy-minimized before a decision on 

acceptance is made. The method does not generate a canonical ensemble of conformations, 

but a set of N relevant structures from which the REx simulations are initiated.22 These 

structures are then distributed over temperatures in ascending order of energies, with the 

lowest energy assigned to the lowest temperature (here, 37 °C). In the present simulations N 

= 24, and the temperatures of the replicas are given (in Kelvin) by Tn = int[310(1 + 

19/310)n−1 + 0.5], with n = 1,…, N; this assignment produces a uniform acceptance rate of 

~0.35. Swaps of neighboring replicas are considered after 100 steps of Langevin dynamics, 

with a collision frequency of 2 ps−1 and an integration time step of 1.0 fs; the SHAKE 

algorithm is used for all bonds with hydrogen atoms. These parameters have been used 

previously,22 and an optimized REx protocol for use with the SCP continuum model has 

recently been reported.60 The canonical distribution obtained at 37 °C contains a large 

number of structures (typically ~104), which are clustered to obtain a reduced set of 

representative conformations. To this end, the degree of similarity between all pairs of 

structures is first computed by Procrustes superimposition,61 and a hierarchical clustering 

algorithm is then applied based on the maximum intra-cluster Cα-rmsd variance (s) 

allowed.62 This threshold determines the number of conformational families and is set at s = 

1.5 Å (changing this cutoff in the 1–2 Å range has only marginal effects on the results). It is 

found that some of the p6 conformational families have very small populations, so a subset 

of K families with populations {gi}i=1,K larger than 5% is selected. The analysis shows that 

p6 exists in eight main conformational families: three major ones with populations of ~15% 

each, one with ~10%, and four minor families each with a population of ~5%. The peptide is 

thus rather structured in solution, in the sense that only ~25% is random coil. Representative 

members {li}i=1,K of these families are chosen as the conformers of p6 at physiological pH 

and temperature (Fig. 5). Any of the conformers have the potential to bind cdk5 and elicit 

different biological actions. A structure li is said to be representative of a family if it has the 

smallest average Cα-rmsd with respect to all other members of the family. Certain elements 

of secondary structure are common among the conformers, including an N-terminus helix 

(colored in red in Fig. 5), a C-terminus helix (blue), and a third intermediate helix (green), 

which is present in most but not all of the families. The helices are joined by β-turns or by 

unstructured segments. The lengths and positions of these structural motifs vary among 

conformers, but are qualitatively similar to those found in p25, as observed in the crystal 

structure of the cdk5-p25 complex (Fig. 6). The main differences among conformers appear 

in the arrangements of the helices into the tertiary fold, which is also different in p25, 

presumably due to the partial unfolding imposed by the rest of the protein. In the absence of 

spectroscopic evidence these observations are presently the only way to somehow validate 

the structural predictions. All the conformers can in principle be detected by NMR 

spectroscopy, which would provide the most solid experimental validation. However, the 

presence of an ensemble of inter-converting, sparsely populated conformers has long posed 
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a challenge to traditional NMR methods, which limits their ability to provide reliable 

structural information. Nonetheless, recent methodological advances11,36,37 have allowed 

detection and characterization of such structures in solution. Successful applications, 

however, require assumptions to be made, e.g., on the number of coexisting conformers.13 

Moreover, the choice of a particular technique depends on the kinetics of the 

interconversions, as they are sensitive to different exchange timescales τ. Although this 

study does not provide kinetics information, the conformers can be used as end points in a 

conformational search to estimate activation energies, hence the exchange rate constants k = 

1/τ. A number of computational methods have been proposed to address this ubiquitous 

problem, including conventional umbrella sampling, replica-path,38 metadynamics,63 

targeted molecular dynamics,64, and others.65 The complete characterization of the 

ensemble, i.e., populations and exchange rates, would then help to select the appropriate 

NMR technique and to interpret the experimental data. Based on the computational 

predictions, a minimum concentration of ~1 mM (threshold for detection) of the lowest 

population conformers would require at least ~20 mM concentration of p6 in a sample. The 

polarity of the peptide at the assumed pH makes aggregation unlikely even at such high 

concentrations, in which case the predicted average distance between the surfaces of 

neighboring conformers would be ~35 Å.

IV.2 Conformational selection and preferential first-encounter modes

The initial conformation of cdk5 is taken from the crystal structure of the cdk5-p25 complex 

(1UNL). The protein is first subjected to a 5-ns MD simulation using the protocol described 

in Section IV.3. The protein is here assumed to adopt a single conformer, which is taken as a 

representative conformation over the last nanosecond of dynamics. Although this 

simplification suffices for the purpose of this study, the protein actually displays a rich 

dynamic behavior, especially in the loops, as evidenced by principal component analysis.34 

Moreover, the activation loop is known to exist in two main conformations,34 active and 

inactive, and only the active form is considered here. Identification of additional conformers, 

which is essential to provide a molecular basis of the binding mechanism and biological 

activity, would not add conceptual content to this study, and are thus omitted.

For the electrostatic and the hydrophobic prescreening, the polar and non-polar centers are 

calculated numerically from solutions of the Poisson equation with parameters specified.32 

In this paper, p6 and cdk5 self-associations are not considered. After norm optimization and 

clustering, a set of preferential first-encounter modes are identified for each of the 

conformers of p6. The complete set is shown in Fig. 7 (left column). These modes determine 

the initial biasing functions for the full MC simulations, which, upon convergence, yield a 

total of fifteen structurally distinct cdk5-p6 binding modes (Fig. 7, middle column). These 

are all plausible (pre-relaxation) modes of association in a mixture of cdk5 and p6 in an 

aqueous solution at physiological conditions, barring changes due to molecular crowding 

(cf. Introduction). All the modes involve mainly the small domain of the kinase, especially 

for the high-population conformers. Moreover, taking all the modes together, only a handful 

of residues are in direct contact with the peptide (not shown). This observation provides 

valuable information for systematic alanine scanning and other site-directed mutagenesis 

studies. Binding is generally non-specific, involving multiple sites. The recognition sites at 
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the cdk5/p6 interfaces contain spatially separate motifs on the surface of the kinase and 

include electrostatic and hydrophobic contacts that could be exploited to improve binding 

selectivity.

Because the binding modes are calculated from independent conformers, the relative 

importance of each mode needs to be assessed. From a methodological perspective, this 

screening is analogous to the determination of hm (Eq. 3) and provides new weights for a 

generalized probability function P to be used in a configurational bias MC simulation of a 

multispecies multiprotein system, as shown schematically in Fig. 1 (block C). Accurate 

calculation of absolute binding affinities between flexible proteins is not presently feasible, 

and remains a challenge even for a small ligand binding to a rigid protein site.66 Relative 

affinities of a set of small rigid molecules for the same protein site can be estimated more 

reliably, e.g., using thermodynamic integration or free energy perturbation methods.66,67 To 

obtain a reasonable estimate of the relative affinities of the cdk5-p6 complexes, a set of 

biased non-adaptive MC simulations are carried out, as described in Section III for the 1BRS 

and 2PCC complexes. The system is initially energy-minimized (100 ABNR steps) using 

Eq. 7 to allow the proteins to partially adjust to their new environments; this relaxation 

involves mainly side chain reorientations. Dissociation constants are estimated as Kd = 

cØexp(ΔG/kT) ≈ cØexp(ΔH/kT), where cØ = 1 kcal/mol is the standard concentration. These 

calculations neglect post-binding induced fit and configurational entropy changes, both of 

which are likely to contribute to negative ΔS and ΔH and may partially compensate each 

other. Rotational and translational entropy changes, previously estimated in a few kcal/

mol,68,69 are expected to be similar in all of the complexes and are thus ignored. Although 

the relative affinities calculated this way are admittedly crude estimates of their measurable 

values, they nonetheless provide information on the relative importance of the modes in the 

early stages of complexation. The calculation can also rule out modes that are probably too 

weak to make a meaningful contribution to the inhibitory mechanism of cdk5 hyperactivity, 

or single out modes strong enough to warrant further scrutiny.

The calculations show that the binding energies vary broadly among the modes, yielding 

dissociation constants in the mM–to–sub-pM range. These are biologically realistic values 

despite that non-bonded interactions were calculated with the complete forcefield (Eq. 7), 

i.e., no assumptions have been made regarding hydrogen-bond and dispersive interactions 

before and after binding. Several of the conformers bind the kinase with pM affinity, 

including the three most populated ones. This suggests that, even accounting for unfavorable 

entropic contributions, the affinities are likely to remain high. One particular high-affinity 

(~70 pM), high-population (~15%) conformer (indicated by arrow a in Fig. 7) warrants a 

detailed examination, as it interacts with three structural motifs previously implicated in 

CIP, p25, and p35 binding and activation.34 These structural motifs include the PSAALRE 

helix (colored blue in Fig. 6), a loop rich in acidic residues (purple), and a two-strand 

antiparallel β-sheet (green), which is part of an extended five-strand β-sheet arrangement; 

the activation loop is also shown (red), and the location of the ATP- and the substrate-

binding pockets are indicated. Unlike other binding sites, which may or may not be partially 

or completely occluded by other proteins in vivo, this site is certain to remain fully 

accessible to the solvent, hence to p6 and other inhibitors. This suggests that the inhibitory 
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action of p6 is probably due to a competition with p25 and/or p35 for cdk5 binding. A 

corollary of this result is that p6 would inhibit cdk5 activity in the presence of both 

activators. Although this prediction has yet to be corroborated experimentally for p6, it is 

nonetheless consistent with in vitro observations of p5: in the absence of cytoskeletal or 

neuron-specific molecules, such as p67, experiments show that p5 inhibits the pathological 

and the physiological activities similarly.58 This study predicts that similar non-specific 

inhibition holds for p6, and probably for other p5-containing peptides.

Two other conformers appear to play similar inhibitory roles (arrows b and c in Fig. 7). One 

of these conformers (b) binds the kinase with high affinity, but its population in solution is 

rather small. The other conformer (c), although higher in population, binds with mM 

affinity, and is thus also unlikely to have a significant effect on the observed activity. The 

latter is a desirable result because in this mode p6 binds in the crevice formed by the 

activation loop and the small domain, which may lock the open conformation of the loop 

and stabilize the active form of the kinase.

IV.3 Structural relaxation and induced fit

A dynamic picture is ultimately needed to fully characterize association/dissociation events. 

The common approach, followed here, introduces dynamics once the correct protein/protein 

interfaces are identified, which is the critical step in most predictive methods. The prevailing 

view on ligand binding has evolved over the years from the lock-and-key model to more 

nuanced views70 based on conformational selection and mutually induced fit.40 These 

distinctions are not absolute, and the precise mechanism depends on a number of factors, 

including the flexibility of the molecules and the strength of the interactions, as well as the 

relaxation time scales. To explore structural relaxation and mutually induced fit upon 

binding, each of the predicted pre-relaxation binding modes is treated separately. The 

complexes are subjected to MD simulations in an explicit solvent representation, thereby 

scaling up the level of description. This sudden change in solvent representation may 

introduce artifacts that should be evaluated in each case. Simulations are performed in the 

isothermal–isobaric ensemble at a temperature of 37 °C and a pressure of 1 atm using the 

all-atom CHARMM protein force field with CMAP dihedral energy corrections.50 The 

Langevin temperature control algorithm (damping coefficient of 5 ps−1) is used in 

combination with a modified Nosé–Hoover constant pressure method (piston pressure 

control with oscillation period of 10 fs and decay of 50 fs). The complexes are embedded in 

cuboids with side lengths chosen so that the minimum distance between the surfaces of 

protein images is 40 Å; this setup yields 1–1.5 × 104 TIP3P water molecules, depending on 

the mode. Periodic boundary conditions and particle mesh Ewald summations are used, with 

parameters recommended in the NAMD documentation. All non-bonded interactions are 

truncated at 12 Å, using a shift function starting at 10 Å; the non-bonded list cutoff is set at 

13.5 Å. The SHAKE algorithm is used, and forces are computed by Verlet integration with a 

2 fs time step. Residues K+, R+, E− and D− are assumed to be charged at physiological pH 

and protonation states are kept fixed throughout the simulations. Three chloride ions are 

added to neutralize the system. To carry out the simulations, the system is first energy 

minimized; the protein atoms are then constrained and water equilibrated for 250 ps using 

temperature rescaling; finally, the constraints are removed, and the entire system is heated 
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and equilibrated for 0.5 ns at the same temperature. Production runs start at this point and 

continued for 5 ns, enough time for the major conformational changes to set in. Two test 

simulations, one of the predicted inhibitory mode (c1,a in Fig. 7) and one of the mode with 

the largest structural changes (c7), in implicit solvent revealed similar relaxation time scales 

(not shown).

All the binding modes undergo structural changes at varying degrees. Restructuring occurs 

mainly in p6 and, to a lesser extent, in unstructured segments of the small domain of cdk5 

(residues 1−86); the large domain (residues 87−292) is largely unaffected. The changes in 

p6 result mainly from rearrangements of the helical bundle, although partial unfolding of 

helices is observed in some cases, usually involving a single turn at one of the helices 

termini. These changes in p6 are apparent in all the high-affinity modes (resulting in Cα-

rmsd as large as ~5 Å), including the main inhibitory mode discussed above (Cα-rmsd ~3 

Å). The conformational changes of p6 in implicit solvent are more modest, and no partial 

unfolding of the termini is observed within the 6-ns simulation; repositioning of p6 relative 

to cdk5 are nonetheless qualitatively similar in both solvent representations, including the 

enhanced surface complementarity at the interface. Figures 7 (right column) shows the 

modes at the end of the simulations. For the main inhibitory mode, the residues in p6 that 

interact directly with cdk5 upon binding (L1, K2, P3, V6, E7, K10, W14, L23, K27, N32 and 

A33) remain in contact with the kinase, but new hydrophobic contacts also develop (F13, 

L18, I31). These residues are necessary for site recognition and the inhibitory effects 

observed in vitro. Of particular interest are residues that also belong to p5 (from K10 upward 

in the sequence), which should be the focus of additional experimental studies, as changes in 

affinity, selectivity, or inhibitory activity can be anticipated.

The conformational changes in cdk5 depend on the particular binding mode. For the main 

inhibitory mode the changes are minor, with the Cα-rmsd of the protein and of the small and 

the large domains, separately, remaining below ~2 Å throughout the simulation. These are 

within the range of changes observed in the uncomplexed protein.34 Other modes display 

larger conformational changes, either within the small domain (Cα-rmsd ~ 3 Å) and/or as a 

result of overall rotations of the small domain relative to the large domain. Similar 

conformational changes (Cα-rmsd ~ 2 Å) are observed in the implicit solvent simulations. 

Conformational changes in the ATP- and substrate-binding pockets are generally within the 

range observed in the uncomplexed protein.34 Changes in the dynamics behavior of cdk5 

upon binding, however, are more remarkable. Cross-correlation of movements can be 

estimated from a normalized covariance matrix , 

where i and j denote atoms (or subsets of atoms) in the system. In a residue-based analysis, 

ri and rj define the geometric centers of residue i and j, and Δri and Δrj are the 

corresponding displacements between time steps; time averages are calculated over the 

equilibrated part of a production run. Positive (Cij > 0) or negative (Cij < 0) correlations 

indicate that residues i and j move concertedly in the same or in opposite directions 

respectively. Orthogonal movements yield Cij ~ 0, so this definition may hide certain atomic 

correlations that could be detected by principal component analysis. A comparative analysis 

of the uncomplexed cdk5 and the cdk5/p25 complex evidenced a unique dynamic behavior 

of the ATP- and the substrate-binding sites.34 In particular, the cross-correlation between the 
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ATP-binding site and other structural elements decreased upon association. It was 

conjectured34 that this decoupling may be needed for catalytic efficiency, as it makes the 

catalytic site less sensitive to structural fluctuations of the protein. The simulations carried 

out here indicate the opposite behavior: the cross-correlation between the ATP-binding site 

and the rest of the protein appears to slightly increase upon p6 binding in almost all the 

modes. This is most apparent in the cross-correlation with the small domain, in particular 

with the five-stranded β-sheet (green and grey in Fig. 6). There is also a modest but clear 

expansion in the number of correlated sites. These observations suggest an independent 

inhibitory mechanism that may be operating in some of the modes apart from steric 

inhibition, namely, a long-range modulation of the kinase dynamics with potentially 

deleterious effect on ATP binding, hence on substrate phosphorylation.

IV. Conclusions

Predictions of protein-ligand binding modes and energies are the single most sought-after 

goals in computational biophysics due to their importance in diverse areas of science and 

technology, such as protein engineering, biomaterial design, and drug discovery. This has 

led to a large number of methods proposed over the years that make use of increasingly 

sophisticated scoring functions and innovative sampling techniques. Yet, attention to proper 

statistical sampling, calculations of thermodynamic quantities from the corresponding 

distributions, and detection and characterization of non-specific (usually weak or ultraweak) 

associations with multiple binding sites have not been the main driving force of such 

developments. Rather, the principal objective has been the prediction of the ‘correct’ 

binding modes and energies of binary systems (usually strong, highly-specific), treated at 

infinite dilution.29,71 Scoring functions are mostly empirical, with ad hoc corrections to 

improve estimates of binding energies from the complex coordinates. Performance is 

generally assessed statistically, i.e., based on the number of correct predictions over a set of 

known complexes. The goal of the method presented in this paper has been redirected to 

address protein-ligand association/dissociation within a more general framework. This 

development opens the possibility to calculate statistical thermodynamic quantities in a 

multispecies, multiprotein solution where specific and non-specific associations coexist.

This paper addressed two important challenges in the simulation of real biological media, 

with special consideration to computational efficiency: sampling of the configuration space 

and representation of long-range solvent effects. The biasing function allows mixing large 

and local changes in the spatial distribution of proteins, thereby enhancing sampling of 

relevant microstates. The method is based on the notion that a discrete set of preferential 

first-encounter modes are metastable states from which stable complexes at equilibrium 

evolve. This can be viewed as a generalization of the two-step mechanism of protein-protein 

association.72 The parallel between the funnel-like view of protein folding and protein-

protein binding73,74 implies that the paths that proteins follow from their first encounters to 

their final (pre-relaxation) modes are not unique. The method can be used to explore these 

alternative pathways to complexation with statistical significance, and could be integrated 

into a more general algorithm to study protein interaction networks.

Cardone et al. Page 15

J Comput Chem. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The energy function (Eq. 7) represents the anisotropic effects of water on protein-protein 

interactions during association or dissociation. These effects operate at different length 

scales and include short- and long-range electrostatic and dispersive interactions. They also 

include liquid structure forces, both (classical) hydrophobic forces and hydrophilic forces 

governed by the hydrogen bond network in the first hydration shells, which control the 

strength of hydrogen bonds at protein/protein interfaces. Each of these components of the 

force field has been parameterized separately in previous studies, using either experimental 

data or results from dynamics simulation in explicit water; the optimization of long-range 

electrostatics is presented in Section III. This description allows decomposition of the 

relevant forces that govern binding without the complications introduced by empirical 

corrections common in predictive docking algorithms. An important feature of Eq. (7) is its 

capability to adapt to the changing protein environment and to represent conditions of 

partial, anisotropic hydration typical of concentrated solutions. Macromolecular crowding is 

known to affect protein-protein interactions through different mechanisms, both entropic and 

enthalpic, and the pitfalls of studying protein function and interactions at high dilution are 

well documented.75,76 The energy function has been designed for computational efficiency 

and is one of the fastest all-atom force fields currently available.50,77

Two major improvements still need to be incorporated to study association/dissociation in a 

more general framework, namely, on-the-fly backbone conformational changes and on-the-

fly changes in protonation states.78,79 In addition, the effects of salts should be introduced 

through an explicit representation of ions, which in this method are treated like any other 

solutes. This approach is computationally more demanding than a purely continuum 

representation of ions (e.g., using the PB equation or DLVO-based models) but necessary to 

study their effects at the solute/liquid interface:80 Solute-ion and solute-cosolute interactions 

are known to induce local forces that may stabilize or destabilize the structure, depending on 

the chemical context80,81 and do not lend themselves to mean-field approximations.82 

Nonetheless, a continuum approach would still be needed to represent bulk effects of ions, 

for example through an empirical modification of the static dielectric permittivity (ε0) of 

bulk water,83 which controls the long-distance behavior of the screening functions D in Eq. 

(7).46 Other improvements of the model and parameterization have been discussed.22,44
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Figure 1. 
Flowchart of the general algorithm described in this study. Blocks A and B are detailed in 

Fig. 2; block C (not discussed here) represents a canonical self-adaptive configurational-bias 

Monte Carlo subroutine for the multispecies-multiprotein system, and is a generalization of 

block B for binary systems.
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Figure 2. 
Flowcharts of block A (single-molecule conformational search) and block B (canonical self-

adaptive configurational-bias Monte Carlo of binary interactions).
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Figure 3. 
(A) Norm optimization: schematic representation of the variables that define the electrostatic 

norm e (upper right; Eq. 1) and hydrophobic norm h (lower left; Eq. 2); (B) schematic 

representation of variables that define the relative orientations of proteins during the biased 

MC simulations.
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Figure 4. 
Contour map of the binding energy ΔE in the (σ, σ′)-plane (both in Å) used to calibrate long-

range electrostatic effects of water exclusion (Eqs. 8a,b) on barnase-barstar (solid line; PDB 

id: 1BRS) and Iso-1-cytochrome c peroxidase-cytochrome c (dashed; 2PCC). Thicker lines 

correspond to contours with ΔE equal to the ITC-determined binding enthalpies ΔH; the 

optimal values of the parameters correspond to the intersection of the two lines.
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Figure 5. 
Representative structures (conformers c1–c8) of the main conformational families of peptide 

p6 in aqueous solution, as determined by replica-exchange molecular dynamics simulations 

using the all-atom CHARMM force field with the SCP implicit solvent model. Populations 

are: g1–g3 ~ 15%; g4 ~ 10%; g5–g8 ~ 5%. Colors are the same as in Fig. 6 for protein p25; 

same color corresponds to the same amino acid sequence (see text).
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Figure 6. 
Cyclic-dependent kinase 5 (cdk5) and pathological activator (p25) with key structural motifs 

involved in binding and regulation shown in color (see text); ATP- and substrate-binding 

pockets indicated by arrows; structures taken from the crystal structure of the cdk5-p25 

complex (inset).
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Figure 7. 
Characterization of cdk5-p6 complex formation in solution: from conformational selection 

to mutually induced fit. Metastable preferential first-encounter modes (left column); pre-

relaxation binding modes (middle column); post-binding dynamics and structural relaxation 

(right column). First encounters are characterized by hundreds of conformations for each 

pair of conformers (shown with cdk5 backbone superimposed). The number of pre-

relaxation binding modes is reduced to 1–3 modes per pair, yielding a total of 15 binding 

modes with affinities in the μM to sub-pM range (p6 shown in different colors for clarity). 

The dynamic behavior of the complexes upon association is explored with a fully-atomistic 

representation of the solvent (water and counter-ions not shown). Arrows a, b, and c indicate 

the predicted inhibitory modes.
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