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Abstract

We analyze the electronic structure of molecules which may exist in gas phase of chemical

vapor deposition process for GeSbTe alloy using the electronic stress tensor, with special focus

on the chemical bonds between Ge, Sb and Te atoms. We find that, from the viewpoint of the

electronic stress tensor, they have intermediate properties between alkali metals and hydrocarbon

molecules. We also study the correlation between the bond order which is defined based on the

electronic stress tensor, and energy-related quantities. We find that the correlation with the bond

dissociation energy is not so strong while one with the force constant is very strong. We interpret

these results in terms of the energy density on the “Lagrange surface”, which is considered to

define the boundary surface of atoms in a molecule in the framework of the electronic stress tensor

analysis.
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I. INTRODUCTION

GeSbTe (GST) alloy is the most popular material for phase change memory (PCM)

[1, 2], which is one of the most promising candidates for the next-generation memory device.

So far, GST thin films are deposited by physical vapor deposition such as sputtering and

pulsed laser deposition. However, chemical vapor deposition (CVD) of GST [3–5] has many

advantages such as good step coverage, uniformity and high purity, and considered to be

necessary for future PCM applications. The CVD process for GST is relatively a new field

of research and there remains many things which are not clearly known. One of them is the

chemical reactions in the gas phase of CVD process, and we have investigated reactions and

molecules which may exist in the gas phase using quantum chemical calculation [6]. As the

result of this study, we have obtained a data set of molecules which have bonds among Ge,

Sb and Te. In this paper, we apply our electronic stress tensor analysis based on the Rigged

QED (Quantum Electrodynamics) theory [7–13] to this data set, and investigate how these

bonds can be described by the electronic stress tensor.

In general, the stress tensor, which describes a pattern of internal forces of matter, is

widely used in various fields of science such as mechanical engineering and material science.

The use of stress tensor in quantum systems as well has been investigated for many years, by

one of the earliest quantum mechanics papers [14, 15] and many researchers [16–31] including

our group [7–13, 32–42]. In our past studies, we have shown that the electronic stress tensor

and related quantities can be useful tools to analyze atomic and molecular systems and can

give new viewpoints on the nature of chemical bonding.

We here introduce two of our findings which we wish to investigate more deeply using GST

bonds in this paper. First, we have pointed out that we may characterize some aspects of a

metallic bond or metallicity of a chemical bond in terms of the electronic stress tensor [32, 42].

We have analyzed the bonding region in the small cluster models and periodic models of

Li and Na using the electronic stress tensor, and have found that all the three eigenvalues

of the stress tensor are negative and degenerate, just like those of liquid. This is in stark

contrast to hydrocarbon molecules, which have the positive largest eigenvalue much larger

than the other two negative eigenvalues. The eigenvalue pattern of Li and Na indicates a

lack of directionality and compressive nature of bonding while that of hydrocarbon molecules

indicates solid directionality and tensile nature of bonding. Each pattern well reflects the
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nature of metallic and covalent bonding. Then, the question worth asking is, how the

chemical bonds between metalloid atoms like Ge, Sb and Te are described by the electronic

stress tensor. Second, using the energy density which is defined from the electronic stress

tensor, new definition of bond order has been proposed [32]. So far, we have investigated

a correlation between this new bond order and bond distance [32–34, 40], and have found

that our bond order exhibits better correlation than the other bond orders proposed in

the literature. We, however, have not investigated a correlation with a quantity related to

energy. Therefore, we wish to investigate a correlation between our bond order and the

bond dissociation energy, which is available in our data set as the dimerization energy of the

CVD precursors. In addition, we compute a force constant for the GST bonds and examine

a correlation with our bond order.

The structure of this paper is as follows. Sec. II summarizes our analysis method of

electronic structures using the electronic stress tensor density. In Sec. III, we show the

electronic stress tensor density and its eigenvalues of the GST bonds, and compare with

those of hydrocarbon molecules and alkali metal clusters. We also investigate correlations

between our bond order and energy-related quantities. Finally, Sec. IV is devoted to our

conclusion.

II. THEORY

In the following section, we analyze chemical bonds using quantities such as the electronic

stress tensor density and the kinetic energy density. They are based on the Rigged QED

theory [8] and we briefly describe them in this section. The Rigged QED is a quantum field

theory which has been proposed [8] to treat dynamics of charged particles and photons in

atomic and molecular systems. In addition to the ordinary QED which contains the Dirac

field for electrons and the gauge field for photons, the Schrödinger fields for atomic nuclei are

included. More details are found in our previous papers [7, 8, 11–13]. Below, c denotes the

speed of light in vacuum, ~ the reduced Planck constant, e the electron charge magnitude

(so that e is positive), and m the electron mass. The gamma matrices are denoted by γµ

(µ =0-3).

The most basic quantity in the Rigged QED is the electronic stress tensor density operator
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τ̂Π kl
e (x) which is defined as follows [7].

τ̂Π kl
e (x) =

i~c

2

[

ˆ̄ψ(x)γlD̂e k(x)ψ̂(x)−
(

D̂e k(x)ψ̂(x)
)†

γ0γlψ̂(x)

]

, (1)

where ψ̂(x) is the four-component Dirac field operator for electrons, the dagger as a super-

script is used to express Hermite conjugate, and ˆ̄ψ(x) ≡ ψ̂†(x)γ0. We denote the spacetime

coordinate as x = (ct, ~r). The Latin letter indices like k and l express space coordinates from

1 to 3. Here, the gauge covariant derivative is defined by D̂e k(x) = ∂k + iZee
~c
Âk(x), where

Ze = −1, and Âk(x) is the vector potential of the photon field operator in the Coulomb

gauge (div ~̂A(x) = 0). The important property of this quantity is that the time derivative of

the electronic kinetic momentum density operator ~̂Πe(x)

~̂Πe(x) =
1

2

(

i~ψ̂†(x) ~̂De(x)ψ̂(x)− i~
(

~̂De(x)ψ̂(x)
)†

· ψ̂(x)

)

, (2)

can be expressed by the sum of the Lorentz force density operator ~̂Le(x) and the tension

density operator ~̂τΠe (x), which is the divergence of the stress tensor density operator:

∂

∂t
~̂Πe(x) = ~̂Le(x) + ~̂τΠe (x). (3)

These operators are expressed as follows,

~̂Le(x) = ~̂E(x)ρ̂e(x) +
1

c
~̂je(x)× ~̂B(x), (4)

τ̂Πk
e (x) = ∂lτ̂

Π kl
e (x) (5)

=
i~c

2

[

(

D̂el(x)ψ̂(x)
)†

γ0γl · D̂ek(x)ψ̂(x) +
ˆ̄ψ(x)γlD̂ek(x)D̂el(x)ψ̂(x)

−
(

D̂ek(x)D̂el(x)ψ̂(x)
)†

γ0γl · ψ̂(x)−
(

D̂ek(x)ψ̂(x)
)†

γ0γl · D̂el(x)ψ̂(x)

]

−
1

c

(

~̂je(x)× ~B(x)
)k

, (6)

where ~̂E(x) and ~̂B(x) denote the electric field operator and magnetic field operator respec-

tively, and ρ̂e(x) and ~̂je(x) are the electronic charge density operator and charge current

density operator respectively.
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For nonrelativistic systems, we approximate the expressions above in the framework

of the Primary Rigged QED approximation [12, 13], in which the small components of

the four-component electron field are expressed by the large components as ψ̂S(x) ≈

− 1
2mc

i~σkDkψ̂L(x) and the spin-dependent terms are ignored. Then, we take the expec-

tation value of Eq. (3) with respect to the stationary state of the electrostatic Hamiltonian.

This leads to the equilibrium equation as

0 = 〈~̂Le(x)〉+ 〈~̂τSe (x)〉 = 〈~̂Le(x)〉+ ∂l〈τ̂
S kl
e (x)〉, (7)

which shows the balance between electromagnetic force and quantum field force at each

point in space. Since this expresses the fact that the latter force keeps the electrons in the

stationary bound state in atomic and molecular systems, we can expect to study the nature

of chemical bonding from the viewpoint of quantum field theory by using the stress tensor

density and tension density. We express 〈~̂τSe (x)〉 and 〈~̂τSkle (x)〉 respectively τSk(~r) and τSkl(~r)

for simplicity (we also write only spatial coordinate ~r because we consider stationary state).

The explicit expression for the stress tensor density τSkl(~r) and tension density τSk(~r) are

τSkle (~r) =
~
2

4m

∑

i

νi

[

ψ∗
i (~r)

∂2ψi(~r)

∂xk∂xl
−
∂ψ∗

i (~r)

∂xk
∂ψi(~r)

∂xl

+
∂2ψ∗

i (~r)

∂xk∂xl
ψi(~r)−

∂ψ∗
i (~r)

∂xl
∂ψi(~r)

∂xk

]

, (8)

τSke (~r) =
∑

l

∂lτ
Skl(~r)

=
~
2

4m

∑

i

νi

[

ψ∗
i (~r)

∂∆ψi(~r)

∂xk
−
∂ψ∗

i (~r)

∂xk
∆ψi(~r)

+
∂∆ψ∗

i (~r)

∂xk
ψi(~r)−∆ψ∗

i (~r)
∂ψi(~r)

∂xk

]

, (9)

where ψi(~r) is the ith natural orbital and νi is its occupation number. ∆ denotes the

Laplacian, ∆ ≡
∑3

k=1(∂/∂x
k)2. When the density functional theory (DFT) method is used

to compute the electronic structure, we use the Kohn-Sham orbitals for ψi(~r) in the above

expressions. The eigenvalue of the symmetric tensor
↔
τ
S
is the principal stress and the
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eigenvector is the principal axis as follows:

↔
τ
S

e (~r) =











τSe xx(~r) τ
S
e xy(~r) τ

S
e xz(~r)

τSe yx(~r) τ
S
e yy(~r) τ

S
e yz(~r)

τSe zx(~r) τSe zy(~r) τ
S
e zz(~r)











(10)

diag
−−→











τS11e (~r) 0 0

0 τS22e (~r) 0

0 0 τS33e (~r)











, τS11e (~r) ≤ τS22e (~r) ≤ τS33e (~r). (11)

We use a concept of “Lagrange point” [32] to characterize a bond between two atoms.

The Lagrange point ~rL is defined as the point where the tension density ~τS(~r) vanishes,

namely τSk(~rL) = 0. We analyze chemical bonds by computing the eigenvalues of electronic

stress tensor density at this point.

Another important quantity in the Rigged QED is the electronic kinetic energy density

operator defined as [7],

T̂e(x) = −
~
2

2m
·
1

2

(

ψ̂†(x) ~̂D2
e(x)ψ̂(x) +

(

~̂D2
e(x)ψ̂(x)

)†

· ψ̂(x)

)

. (12)

As is done for the electronic stress tensor density operator, we apply the Primary Rigged

QED approximation to Eq. (12) and take the expectation value with respect to the stationary

state of the electrostatic Hamiltonian. Then, we obtain the definition for the electronic

kinetic energy density as

nTe
(~r) = −

~
2

4m

∑

i

νi [ψ
∗
i (~r)∆ψi(~r) + ∆ψ∗

i (~r) · ψi(~r)] . (13)

Note that our definition of the electronic kinetic energy density is not positive-definite. Using

this kinetic energy density, we can divide the whole space into three types of region: the

electronic drop region RD with nTe
(~r) > 0, where classically allowed motion of electron is

guaranteed and the electron density is amply accumulated; the electronic atmosphere region

RA with nTe
(~r) < 0, where the motion of electron is classically forbidden and the electron

density is dried up; and the electronic interface S with nTe
(~r) = 0, the boundary between

RD and RA, which corresponds to a turning point. The S can give a clear image of the
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intrinsic shape of atoms and molecules and is, therefore, an important region in particular.

Finally, in our analysis, we use the energy density εSτ (~r) which is defined as a half of the

trace of the stress tensor density [7]:

εSτ (~r) =
1

2

3
∑

k=1

τSkk(~r). (14)

It can be regarded as the energy density in a sense that the integration over whole space

gives usual total energy E of the system:
∫

εSτ (~r)d~r = E. This can be proved by using the

virial theorem . Using this energy density εSτ (~r), a new definition of the bond order (bond

strength index) is proposed [32]. It is defined as εSτ (~r) at the Lagrange point between two

atoms. Our definition of bond order between atoms A and B is

bε =
εSτAB(~rL)

εSτHH(~rL)
. (15)

One should note we normalize by the value of a H2 molecule calculated at the same level of

theory (including method and basis set).

III. RESULTS AND DISCUSSION

A. Data set and computational details

Our data set consists of 35 molecules (Table I, the leftmost column) which may exist in

the gas phase of CVD process for GeSbTe alloy. They could be formed by reactions among

GST precursors and/or H2 carrier gas, and each of them has a bond between Ge, Sb or Te

atoms. Their geometries and coordinates are given in the supplementary material (Fig. S1

and Table S1). For the precursors, we assume tert-Butylgermanium (GeH3(tBu), Fig. 1(a))

for the Ge precursor, triisopropylantimony (Sb(iPr)3, Fig. 1(b)) for the Sb precursor, and

diisopropyltellurium (Te(iPr)2, Fig. 1(c)) for the Te precursor [5]. (Their coordinates are

given in the supplementary material, Table S2.) They are optimized by the DFT method

based on the Lee-Yang-Parr gradient-corrected functional [43, 44] with Becke’s three hybrid

parameters [45] (B3LYP). Threshold for maximum force is set to 0.000450 hartree/bohr.

The Dunning-Huzinaga double-zeta basis set [46] with effective core potential by Hay and
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Wadt [47–49] (LanL2DZ) are used for Ge, Sb and Te atoms. 6-31G(d) [50, 51] basis set is

used for C atoms. D95(d,p) [46] basis set is employed for H atoms. Total energies at 0K is

obtained including zero-point energies with a scaling factor for B3LYP, 0.980 [52].

We also use Ge, Sb and Te crystal structures [53–55] as a reference data (see Table S3 in

the supplementary material for the details). We use the norm-conserving pseudopotentials of

Troullier-Martins type [56] and the generalized-gradient approximation method by Perdew-

Burke-Ernzerhof [57] for density functional exchange-correlation interactions. Kinetic energy

cutoff of plane-wave expansion (k-point) is taken as 40.0 hartree (2× 2× 2 k-point set).

The electronic structures used in this paper are obtained by Gaussian 09 [58] for cluster

models and by ABINIT [59, 60] for periodic models. We use the QEDynamics package [61]

developed in our group to compute the quantities described in the previous section such as

Eqs. (8), (9) and (13).

B. Electronic stress tensor and its eigenvalues

We begin by briefly reviewing our past works on the electronic stress tensor analysis

which are related to the present paper. First, it has been proposed that a covalent bond

can be described by the eigenvalues and eigenvectors of the electronic stress tensor [9]. In

detail, the bonding region with covalency can be characterized and visualized by the “spindle

structure”, where the largest eigenvalue of the electronic stress tensor is positive and the

corresponding eigenvectors form a bundle of flow lines that connects nuclei. As an example,

we show a map of the largest eigenvalue of the electronic stress tensor including a region

between C atoms of GeH3(tBu) in Fig. 2 (a), where we can find the spindle structure. In

passing, in Fig. 2 (b), we show the tension density and the Lagrange point for the same

C-C bond. Then, we have proposed that the negativity of the three eigenvalues of the

stress tensor and their degeneracy, which is the same pattern as liquid, can characterize

some aspects of the metallic nature of chemical bonding [32, 42]. In Ref. [42], it has been

shown that the three eigenvalues of the Li and Na clusters have almost same values while

the hydrocarbon molecules have the largest eigenvalue much larger than the second largest

eigenvalue, which has similar value to the smallest eigenvalue. In terms of the differential

eigenvalues, the Li and Na clusters have very small τS33e − τS22e and τS22e − τS11e which are

much smaller than τS33e − τS22e of hydrocarbons. The former degeneracy pattern indicates
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that the bonds are not directional while the latter indicates the clear directionality of the

bonds, reflecting the metallic nature of chemical bonding in the alkali metal clusters and

the covalent nature of bonding in the hydrocarbon molecules.

Now, let us move on to study the electronic stress tensor of the GST bonds. We first show

a map of τS33e and corresponding eigenvector on a plane which contains a bond between GST

atoms in Fig.3. We find a Lagrange point between each bond and its position is marked in

the figure. A common feature we see in all the six panels is that the eigenvectors form a

pattern which connects GST nuclei. However, not all of them are spindle structures. As for

the Ge-Ge (panel (a)) and Ge-Sb (panel (d)) bonds, since they do not exhibit a positive τS33e

region, they are called to have pseudo-spindle structures [40]. As for the Te-Te (panel (c))

and Sb-Te (panel (f)) bonds, although we may say they have spindle structures, the positive

regions are not as conspicuous as the spindle structure of the C-C bond seen in Fig. 2 (a).

As for the Sb-Sb (panel (b)) and Ge-Te (panel (e)) bonds, the positive τS33e regions are

even smaller. These results lead us to conclude that the GST atoms have the ability to

form the spindle structure in the order of Te > Sb > Ge. From our viewpoint that the

spindle structure is the manifestation of the covalency of chemical bonding, Te contributes

to covalency more than Sb or Ge, but less than C. The eigenvalue and eigenvector maps

for the other GST molecules, which are found in the supplementary material (Fig. S2), also

support this ordering.

In Fig. 4, we plot τS33e at the Lagrange point against the bond distance for all the GST

molecules. The original data are found in Table I. We see that τS33e > 0 for the Te-Te bonds

and τS33e < 0 for the Ge-Ge bonds. As for the Sb-Sb bonds, τS33e can be both positive and

negative, and absolute values are smaller than those of the Ge-Ge and Te-Te bonds. τS33e

of the Ge-Sb bonds exhibit intermediate values between the Ge-Ge and Sb-Sb bonds, and

similarly for the Ge-Te and Sb-Te bonds. Therefore, Fig. 4 can be interpreted that the GST

atoms contribute to the positivity of the τS33e at the Lagrange point in the order of Te >

Sb > Ge, which is consistent with the tendency to form the spindle structure as mentioned

above.

We next examine the differential eigenvalues of the electronic stress tensor at the Lagrange

points. In Fig. 5 (a), we show a scatter plot of τS33e − τS22e and τS22e − τS11e for GST bonds,

and, in Fig. 5 (b), we in addition plot points for the hydrocarbon molecules, Li clusters,

and Na clusters, which are taken from the data set studied in our previous paper [42]. We
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see that both τS33e − τS22e and τS22e − τS11e of the Li and Na clusters are O(10−4). As for

the GST molecules, τS33e − τS22e is O(10−2), which is somewhat larger than τS22e − τS11e ,

which is O(10−4)-O(10−3). As for the hydrocarbon molecules, τS33e − τS22e is O(10−1) and

this is much larger than τS22e − τS11e . Thus, the degree of degeneracy can be summarized

as Li,Na ≪ GST ≪ h/c. This is consistent with the usual classification of Ge, Sb and Te

as metalloids, which are placed in between metals and non-metals. Further research may

reveal that the electronic stress tensor density provides a new criterion to define metalloids

based on the electronic structures.

Incidentally, we compute the electronic stress tensor of Ge, Sb, and Te crystals using

periodic models. We compute the electronic stress tensor at the midpoint of two nearest

neighborhood atoms (it is the Lagrange point by symmetry). The results are summarized in

Table II and plotted in Figs. 4 and 5 (a). We see in Fig. 5 (a) that all the crystal structures

have similar values of τS33e − τS22e and τS22e − τS11e to those of the GST molecules. This

indicates that the degree of degeneracy does not differ much between the crystal structures

and molecules. As for τS33e , as shown in Fig. 4, all the crystal structures exhibit negative

values of about −2×10−3. This is close to the τS33e of the Ge-Ge bonds in the molecules, but

not to those of the Sb-Sb or Te-Te bonds, which, respectively, are negative with absolute

values of O(10−5) or positive with values of O(10−3). Thus, from the viewpoint of the

electronic stress tensor, the covalency of the chemical bonding involving Sb and Te atoms

in the GST molecules does not appear in their crystal structures and some metallicity is

manifested. In other words, while Ge, Sb and Te do not exhibit covalency in their crystal

structure, Sb and Te show some covalency in their molecular structure.

C. Bond order and force constant

We briefly review our past works [32–34, 40] on our bond order bε (Eq. (15)), which is

defined using concepts based on the Rigged QED. First, it has been pointed out [32] that bε

of a single, double, and triple bond between carbon atoms in hydrocarbons is close to 1, 2

and 3 respectively, consistent with a conventional bond order. Also, bε of the C-C bond in a

benzene molecule is close to 1.5. However, it has been also reported that bε of some diatomic

molecules overestimate or underestimate the conventional bond order, e.g., bε of N2 is 7.462.

Then, in Ref. [33], the correlation between bε and bond distance re has been investigated
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using various simple organic compounds. By comparing with other bond orders proposed

in the literature, bε is found to have a comparable or better correlation. This has been also

shown using hydrogenated Pt [34] and Pd [40] clusters. We, however, have not investigated

a correlation between bε and a quantity related to energy. Therefore, we here compute the

bond dissociation energy B and force constant k of the GST bonds, and investigate the

correlations with bε.

The results are summarized in Table III. k is calculated based on the directional derivative

of a total energy E of a molecule with respect to the bond direction ~s. Namely, it is computed

using force constant matrix ∂2E
∂xi∂xj as

k = −
∂2E

∂~s∂~s
= −

3
∑

i,j=1

si
∂2E

∂xi∂xj
sj . (16)

The scatter plots of bε versus re, B, and k are shown in Fig. 6. We can see that bε is negatively

correlated with re and positively correlated with k and B, consistently with the usual notion

of bond order. In fact, their correlation coefficients are −0.968, 0.570, and 0.910, respectively

for re, B, and k. Since we need to know the energy when two fragments of a molecule are

infinitely apart to compute B, it is reasonable not to find a strong correlation between bε

and B. Note that bε is defined only using the quantities at the equilibrium structure. On

the other hand, the reason why the correlation with k is very strong may be understood as

follows.

The meaning of k, often called a spring constant, is how much energy we need to stretch

the bond by an infinitesimal distance. It can be expressed as kδ2/2, where δ denotes the

infinitesimal displacement. We may interpret this energy using our energy density εSτ (~r)

(Eq. (14)) and the “Lagrange surface” [11, 12] which is defined as a separatrix in the tension

density ~τS(~r) (Eq. (9)). The vector field of ~τS(~r) generally has a pattern in which vectors

originate from atomic nuclei, and they collide to form separatrix. See Figs. 2 (b) or 7 (a).

We call this separatrix the Lagrange surface and regard it as the boundary of atoms in a

molecule. In Fig. 7 (a), we show some examples of the Lagrange surface in a GeH3-SbH2

molecule. When we move apart two atoms bounded by the Lagrange surface for a small

distance, it may be reasonable to suppose the required energy to be proportional to the

energy stored in the Lagrange surface, that is,
∫

S
εSτ (~σ)d

2σ, where the integration is taken

over the Lagrange surface S. To support this idea, we compute an alternative bond order
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[39, 40] defined as

bε(S) =

∫

SAB

εSτ (~σ)d
2σ

∫

SHH

εSτ (~σ)d
2σ
, (17)

where SAB denotes the Lagrange surface between atoms A and B, and investigate the cor-

relation with k (Fig. S3 (c)). The correlation coefficient is found to be 0.887, and the linear

fit y = ax + b, where x and y, respectively, represent k and bε(S), gives a = 5.54 and

b = 5.62×10−3. (The value of bε(S) for each bond is summarized in Table III.) This suggests

that k ∝
∫

S
εSτ (~σ)d

2σ holds to a large extent. As for the linear fit for bε against k, we obtain

a = 1.63 and b = −7.54×10−3. Since b is close to zero for both cases, we can approximately

consider bε(S) ∝ bε with a proportional constant of 3.4 (the ratio of a’s) for these GST bonds.

This relation between bε(S) and bε can be confirmed directly by computing bε(S)/bε for each

GST bond which is shown in Fig. 8. The average of bε(S)/bε over 35 bonds is 3.74 with the

standard deviation of 0.21. Since the standard deviation is relatively small (5.6% of the

average), we may regard bε(S) ∝ bε for these bonds. The values of the proportional constant

derived in two ways are consistent.

This relation, that bε(S) of the GST bonds is approximately obtained by multiplying bε

by a common factor, holds if the integration of εSτ (~r) over their Lagrange surface is well

approximated by εSτ (~rL) multiplied by a common factor. Such an assumption can be valid,

if the Lagrange surfaces of the GST bonds are flat and the energy density distributions on

them are expressed by Gaussian functions with a common value of the exponent. We can see

this is roughly true as follows. First, the flatness can be checked by the visual inspection of

the Lagrange surface (Fig. 7 (a) and Fig. S2 in the supplementary material). Then, we plot

εSτ (~r) against the distance from ~rL for the points which constitute the Lagrange surface. The

example of this plot for the GeH3-SbH2 molecule is found in Fig. 7 (b). Actually, we plot

εSτ (~r) divided by the energy density of a hydrogen molecule at its Lagrange point so that the

value at ~rL (i.e. |~r − ~rL| = 0) becomes bε. In the figure, we also plot the result of the fit to

the Gaussian function bε exp {−α|~r − ~rL|
2} where the exponent α is the fitting parameter.

The figure shows that εSτ (~r)/ε
S
τHH(~rL) is well fitted by the Gaussian function with α = 1.32.

We perform such a fit to all the GST bonds (Figures similar to Fig. 7 (b) are plotted in

Fig. S4. The values of α are summarized in Table III and Fig. S5) and the average and

standard deviation of the exponent are computed to be 1.31 and 9.40 × 10−2, respectively.
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Therefore, as for the GST bonds, we can say that the energy density distribution over the

Lagrange surface is expressed by the Gaussian functions with a common exponent, which

leads to
∫

S
εSτ (~σ)d

2σ ∝ εSτ (~rL).

As a further test for the idea that bε(S) is proportional to the force constant, we examine

homonuclear diatomic molecules, from H2 to I2 excluding the group 18 elements. We use

experimental values for re, B, and k as is summarized in Table IV. B is the energy of the

ground state atomic products relative to the lowest existing level of the molecule, often

denoted by D0. k is converted from the frequency ω (which is also shown in the table)

via k = Mω2/2, where M is the atomic mass. Note that some of the experimental values

are not available or controversial and we use computational values in such cases. We adopt

computational values for re and ω of Ga2 from Ref. [65], and re and ω of In2 from Ref. [70]. bε

and bε(S) are computed with the same setups as the GST bonds, and shown in Table IV. We

first study how much bε is correlated with re, B, and k. The correlation coefficients are found

to be −0.583, 0.834, and 0.978, respectively for re, B, and k, showing very strong correlation

between bε and k as is the case with the GST bonds. As for bε(S), the correlation with k is

also very strong, with the correlation coefficient 0.990. The scatter plots of k versus bε and

bε(S) are shown in Fig 9 (a) and (b) respectively, and we can see these strong correlations

(similar scatter plots for re and B are shown in Figs. S6 and S7). However, one may notice

a difference between Fig 9 (a) and (b) that the panel (b) shows more proportionality than

the panel (a). In fact, while the linear fit bε = a1k + b1 gives a1 = 3.12 and b1 = −0.23,

bε(S) = a2k + b2 gives a2 = 3.64 and b2 = 5.87× 10−3. Since b1 is not negligible, bε is hardly

considered to be proportional to k, whereas very small value of b2 implies that bε(S) ∝ k

holds to a large extent. Therefore, in general, bε(S) is a better descriptor of a chemical bond

than bε. The drawback is that, since the computation of bε(S) involves the integration over

the Lagrange surface, it costs much greater than that of bε.

Finally, some comments on the correlations of re and B with our bond orders are in order.

First, the correlation coefficient between re and bε is −0.968 for the GST molecules and

−0.583 for the homonuclear diatomic molecules. (As for bε(S), they are −0.970 and −0.651,

respectively.) The difference can be attributed to the fact that the GST data consists

of similar chemical bonds formed by Ge, Sb, and Te, whereas the homonuclear diatomic

molecule data contains various types of elements. It has been found that bε correlates well

with re, as mentioned in the beginning of this subsection, but it has been also shown that the
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slope on the re-bε plane depends on the type of chemical bonding. For example, in Ref. [40],

the Pd-Pd bonds and Pd-H bonds are found to have different slopes. Also, among the Pd-H

bonds, the bonds with shorter bond length (. 1.9 Å) have steeper slope than those with

longer bond length. Therefore, when a data contains different types of chemical bonding,

even though re and bε exhibit negative correlation, the correlation coefficient tends to be

somewhat away from −1. Second, the correlation coefficient between B and bε is 0.570 for

the GST data and 0.834 for the homonuclear diatomic molecules data. (As for bε(S), they

are 0.569 and 0.906 respectively.) There is again some notable difference between the two

data sets. Since the correlation coefficients between bε and k are close to 1 for both data

sets, the degrees of correlation between B and bε are roughly equal to those between B and

k. Although B and k are likely to be positively correlated, since they are not linear to each

other in general, we do not expect a very strong correlation between B and k. Then, the

relatively low value of correlation coefficient of the GST data is reasonable while that of the

homonuclear diatomic molecules data is unexpectedly high. The latter may be understood

by a universality of potential energy curve for diatomic molecules (e.g. [75–77]), which has

been studied for a long time. It is, however, an empirical relation at this stage and the

discussion of its relevance here is beyond the scope of this paper.

IV. CONCLUSIONS

We have analyzed the electronic structure of 35 molecules which may exist in gas phase

of CVD process for GeSbTe alloy using the electronic stress tensor, with special focus on the

chemical bonds between Ge, Sb and Te atoms. Our study consists of two parts. First, we

have studied the pattern of the eigenvalues and eigenvectors of the electronic stress tensor

density of the GST bonds. Next, we have computed the bond order which is defined by the

stress-tensor-based energy density for the GST bonds, and have investigated the correlation

with the energy-related quantities such as the bond dissociation energy and force constant.

In the first part, we have found that, from the viewpoint of the electronic stress tensor

density, GST bonds exhibit intermediate properties between alkali metals and hydrocarbon

molecules. This is illustrated by the sign and degeneracy pattern of the three eigenvalues of

the electronic stress tensor density at the Lagrange point between two atoms. In our previous

studies, we have pointed out that the negative and degenerate eigenvalues, which indicate
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a lack of directionality with the compressive stress, characterize some aspects of metallicity

of chemical bonding. By contrast, the positive largest eigenvalue and much smaller negative

other two eigenvalues, which indicates a solid directionality with the tensile stress in that

direction, characterize covalency. The former pattern has been typically found in the alkali

metals and the latter in the hydrocarbon molecules. Our results in the present paper suggest

that the GST bonds can be located in between metallic bonding and covalent bonding in

terms of their electronic stress tensor. This is consistent with the usual classification of Ge,

Sb and Te as metalloids, which have intermediate properties between metals and nonmetals.

In the second part, we have found that the correlation of our bond order with the bond

dissociation energy is not so strong, while one with the force constant is very strong. We

have interpreted this results in terms of the energy density on the “Lagrange surface”, which

is considered to define the boundary surface of atoms in a molecule in the framework of the

electronic stress tensor analysis. In this study, we have found that both of our definitions

of bond order bε and bε(S), where the former uses the energy density at the Lagrange point

while the latter involves the integration over the Lagrange surface, have strong correlation

with the force constant. We have argued that, if the interpretation above is correct, bε(S) is

the one which is more directly connected with the force constant, and the strong correlation

of the force constant with bε follows from that with bε(S). In fact, we have shown that bε(S)/bε

does not vary much among the GST bonds, which originate from the fact that the energy

distributions on the Lagrange surface of the GST bonds can be well expressed by Gaussian

functions centered at the Lagrange point and with a common value of the exponent. As the

results of this study, it is hinted that the stress-tensor-based energy density can be related

not only to the total energy but also to the force constant by combining with another Rigged

QED concept, the Lagrange surface.

In our future work, regarding the first part, we wish to apply the electronic stress tensor

analysis to the other elements which are conventionally classified as metalloids, B, Si and

As, to see whether it can provide a criterion to define metalloids. For that purpose, it is

also necessary to extend the analysis to the elements nearby metalloids in the periodic table.

We also wish to apply the electronic stress tensor analysis to transition metals, ionic bonds,

hypervalency, and so on, to strengthen its usefulness. It would enable us to deepen our

understanding of the nature of chemical bonding. As for the second part, a further direction

of the study will be to provide more evidence for our results by using other types of molecules.
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If the relation concerning the force constant, which is an experimental observable derived

from a vibrational spectrum, is established in general, it would help to solidify such ideas as

the stress-tensor-based energy density and Lagrange surface. In the end, we would like to

emphasize that our studies are based on the quantities defined at each point in space, which

originate from the quantum field theoretic consideration and not from the electron density.

We believe that our method will lead us to new and beneficial views on chemical systems.
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TABLE I: Data for the bonds between Ge, Sb, and Te atoms in the GST molecules. re is the bond

distance. τS33e , τS22e , and τS11e are three eigenvalues of the electronic stress tensor density at the

Lagrange point.

Molecule re [Å] τ
S33
e (×103) τS22e (×103) τS11e (×103)

GeH2-GeH2 2.343 −7.533 −18.29 −20.08

GeH2(tBu)-GeH2(tBu) 2.489 −1.811 −16.21 −16.31

GeH3-GeH2 2.489 −1.768 −15.71 −15.95

GeH3-GeH2(tBu) 2.486 −1.841 −16.23 −16.28

GeH3-GeH3 2.483 −1.861 −16.25 −16.25

SbH2-SbH2 2.948 0.136 −9.121 −9.562

SbH(iPr)-SbH2 2.946 0.053 −9.204 −9.654

SbH(iPr)-SbH(iPr) 2.937 −0.061 −9.392 −9.891

Sb(iPr)2-SbH2 2.944 0.022 −9.335 −9.724

Sb(iPr)2-SbH(iPr) 2.939 −0.055 −9.451 −9.897

Sb(iPr)2-Sb(iPr)2 2.954 0.213 −9.226 −9.752

TeH-TeH 2.854 1.897 −12.43 −12.45

Te(iPr)-TeH 2.844 1.514 −12.69 −12.82

Te(iPr)-Te(iPr) 2.831 1.139 −13.03 −13.24

GeH2-SbH2 2.703 −0.940 −12.04 −12.61

GeH2-SbH(iPr) 2.696 −1.102 −12.15 −12.83

GeH2-Sb(iPr)2 2.692 −1.218 −12.25 −12.99

GeH2(tBu)-SbH2 2.703 −0.860 −12.49 −12.86

GeH2(tBu)-SbH(iPr) 2.702 −0.894 −12.59 −12.97

GeH2(tBu)-Sb(iPr)2 2.704 −0.869 −12.58 −13.01

GeH3-SbH2 2.700 −0.811 −12.52 −12.82

GeH3-SbH(iPr) 2.694 −0.995 −12.70 −13.04

GeH3-Sb(iPr)2 2.696 −0.987 −12.69 −13.07

GeH2(tBu)-Te(iPr) 2.654 0.059 −14.36 −15.28

GeH2(tBu)-TeH 2.658 0.134 −14.05 −15.15

GeH2-TeH 2.653 −0.649 −13.82 −15.08

GeH2-Te(iPr) 2.637 −1.078 −14.32 −15.57

GeH3-TeH 2.649 0.209 −14.28 −15.30

GeH3-Te(iPr) 2.636 −0.183 −14.76 −15.75

SbH2-TeH 2.892 0.838 −10.60 −11.12

SbH2-Te(iPr) 2.874 0.343 −11.05 −11.52

SbH(iPr)-TeH 2.890 0.627 −10.59 −11.28

SbH(iPr)-Te(iPr) 2.878 0.441 −10.97 −11.58

Sb(iPr)2-TeH 2.892 0.410 −10.66 −11.20

Sb(iPr)2-Te(iPr) 2.879 0.338 −11.05 −11.53
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TABLE II: Data for the bonds in the crystal structure of Ge, Sb, and Te. re is the distance between

the nearest neighborhood atoms. τS33e , τS22e , and τS11e are three eigenvalues of the electronic stress

tensor density at the Lagrange point.

Crystal re [Å] τ
S33
e (×103) τS22e (×103) τS11e (×103)

Ge 2.450 −2.612 −19.52 −19.52

Sb 2.907 −1.981 −12.12 −12.23

Te 2.835 −1.712 −17.46 −17.81
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TABLE III: Data for the bonds between Ge, Sb, and Te atoms in the GST molecules. B and k

are respectively the bond dissociation energy and force constant. bε and bε(S) are our bond orders

(Eqs. (15) and (17)). α is a fitting parameter for the energy density distribution on the Lagrange

surface (see the text for the details).

Molecule B [kcal/mol] k [a.u.] bε bε(S) α

GeH2-GeH2 40.40 0.122 0.179 0.648 1.561

GeH2(tBu)-GeH2(tBu) 59.79 0.080 0.132 0.485 1.443

GeH3-GeH2 40.30 0.079 0.128 0.473 1.444

GeH3-GeH2(tBu) 59.86 0.082 0.132 0.484 1.448

GeH3-GeH3 59.58 0.083 0.132 0.482 1.455

SbH2-SbH2 32.21 0.058 0.071 0.284 1.186

SbH(iPr)-SbH2 32.62 0.056 0.072 0.291 1.175

SbH(iPr)-SbH(iPr) 33.09 0.060 0.074 0.301 1.177

Sb(iPr)2-SbH2 32.72 0.056 0.073 0.297 1.166

Sb(iPr)2-SbH(iPr) 33.19 0.056 0.075 0.303 1.174

Sb(iPr)2-Sb(iPr)2 31.05 0.056 0.072 0.294 1.164

TeH-TeH 33.24 0.064 0.088 0.288 1.279

Te(iPr)-TeH 34.86 0.063 0.092 0.307 1.278

Te(iPr)-Te(iPr) 35.32 0.066 0.097 0.327 1.285

GeH2-SbH2 28.06 0.069 0.098 0.378 1.323

GeH2-SbH(iPr) 28.94 0.068 0.100 0.390 1.316

GeH2-Sb(iPr)2 30.10 0.069 0.102 0.396 1.317

GeH2(tBu)-SbH2 45.95 0.060 0.101 0.389 1.314

GeH2(tBu)-SbH(iPr) 45.75 0.060 0.102 0.395 1.309

GeH2(tBu)-Sb(iPr)2 46.22 0.062 0.102 0.398 1.298

GeH3-SbH2 45.13 0.063 0.100 0.385 1.323

GeH3-SbH(iPr) 45.72 0.064 0.103 0.399 1.318

GeH3-Sb(iPr)2 45.95 0.065 0.103 0.401 1.309

GeH2(tBu)-Te(iPr) 49.93 0.064 0.114 0.404 1.357

GeH2(tBu)-TeH 52.67 0.064 0.112 0.415 1.355

GeH2-TeH 33.96 0.075 0.114 0.403 1.393

GeH2-Te(iPr) 33.70 0.077 0.119 0.428 1.391

GeH3-TeH 50.13 0.069 0.113 0.404 1.375

GeH3-Te(iPr) 49.04 0.071 0.118 0.427 1.375

SbH2-TeH 35.71 0.061 0.080 0.289 1.246

SbH2-Te(iPr) 34.54 0.052 0.085 0.310 1.260

SbH(iPr)-TeH 38.52 0.061 0.082 0.297 1.236

SbH(iPr)-Te(iPr) 37.04 0.061 0.085 0.297 1.233

Sb(iPr)2-TeH 39.79 0.048 0.082 0.301 1.239

Sb(iPr)2-Te(iPr) 38.36 0.060 0.085 0.319 1.233
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TABLE IV: Data for the homonuclear diatomic molecules. re, ω, and B are respectively the bond

distance, frequency, and dissociation energy, whose values are taken from the references. The force

constant k is converted from ω. Details are found in the text. bε and bε(S) are our bond orders

(Eqs. (15) and (17)).

Molecule re [Å] ω [cm−1] k [a.u.] B [kcal/mol] References bε bε(S)
H2 0.74144 4401.21 0.367 103.26 [62] 1.000 1.000

Li2 2.6729 351.43 0.016 24.2 [62] 0.013 0.112

Be2 2.453 270.7 0.012 2.308 [63, 64] 0.035 0.165

B2 1.590 1051.3 0.230 69 [62] 0.452 1.205

C2 1.2425 1854.71 0.781 143 [62] 2.349 3.542

N2 1.09769 2358.57 1.474 225.0 [62] 5.849 6.437

O2 1.20752 1580.19 0.756 118.0 [62] 3.229 4.079

F2 1.41193 916.64 0.302 36.94 [62] 1.303 1.425

Na2 3.0789 159.125 0.011 16.6 [62] 0.006 0.065

Mg2 3.891 51.12 0.001 1.16 [62] 0.004 0.022

Al2 2.466 350.01 0.063 37 [62] 0.074 0.374

Si2 2.246 510.98 0.138 74.0 [62] 0.245 0.802

P2 1.8934 780.77 0.358 116.1 [62] 0.650 1.701

S2 1.8892 725.65 0.319 100.76 [62] 0.701 1.513

Cl2 1.988 559.78 0.208 57.1742 [62] 0.421 0.645

K2 3.9051 92.021 0.006 11.9 [62] 0.004 0.044

Ca2 4.2773 64.93 0.003 3.0 [62] 0.004 0.038

Ga2 2.746 162 0.034 26.36 [65, 66] 0.042 0.133

Ge2 2.3680 287.9 0.116 65 [62, 67] 0.122 0.478

As2 2.1026 429.55 0.262 91.3 [62] 0.423 1.286

Se2 2.166 385.303 0.225 78.66 [62] 0.379 1.015

Br2 2.2811 325.321 0.158 45.444 [62] 0.246 0.540

Rb2 4.2099 57.781 0.005 11 [62, 68] 0.004 0.042

Sr2 4.67174 40.32831 0.003 3.036 [69] 0.003 0.031

In2 3.14 111 0.027 17.8 [70, 71] 0.034 0.170

Sn2 2.746 189.74 0.082 43.8300 [72, 73] 0.108 0.499

Sb2 2.476 269.623 0.167 69.0672 [74] 0.220 0.869

Te2 2.5574 247.07 0.150 61.73 [62] 0.195 0.678

I2 2.666 214.50 0.111 35.5672 [62] 0.137 0.385
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(a) (b) (c)GeH3(tBu) Sb(iPr)3 Te(iPr)2

FIG. 1: The optimized structures of the precursors: (a) GeH3(tBu) (C3v), (b) Sb(iPr)3 (C3), and

(c) Te(iPr)2 (C2).

(a) (b)

FIG. 2: The largest eigenvalue of the electronic stress tensor density (color map) and corresponding

eigenvector (black rods) are shown in panel (a), and tension density (black arrows) and its norm

(color map) are shown in panel (b), around a C-C bond in GeH3(tBu). In both panels, the electronic

interface is depicted by the green dashed lines, and the Lagrange point is shown by a black square.

In panel (a), the red solid lines show the zero contour lines of the eigenvalue.
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(a) (b)

(c) (d)

(e) (f)

FIG. 3: The largest eigenvalue of the electronic stress tensor density and corresponding eigenvector

between the GST atoms are shown in the same manner as Fig. 2 (a). (a) GeH3-GeH3, (b) SbH2-

SbH2, (c) TeH-TeH, (d) GeH3-SbH2, (e) GeH3-TeH, and (f) SbH2-TeH.
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the crystal structures.
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FIG. 5: Differential eigenvalues of the electronic stress tensor at the Lagrange point. In the panel

(a), labels with“bulk” in the subscripts denote that they are computed for the crystal structures.
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points by black squares. In panel (b), the energy density distribution on the Lagrange surface
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The energy density is normalized by the energy density of a H2 molecule at its Lagrange point.

The black dashed line is the best fit Gaussian function: bε exp
{

−α|~r − ~rL|
2
}

where α = 1.32.
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