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Abstract

Molecular simulations can be used to study disordered polypeptide systems and to generate 

hypotheses on the underlying structural and thermodynamic mechanisms that govern their 

function. As the number of disordered protein systems investigated with simulations increase, it is 

important to understand how particular force fields affect the structural properties of disordered 

polypeptides in solution. To this end, we performed a comparative structural analysis of Gly3 and 

Gly10 in aqueous solution from all-atom, microsecond MD simulations using the CHARMM 27 

(C27), CHARMM 36 (C36), and Amber ff12SB force fields. For each force field, Gly3 and Gly10 

were simulated for at least 300 ns and 1 μs, respectively. Simulating oligoglycines of two different 

lengths allows us to evaluate how force field effects depend on polypeptide length. Using a variety 

of structural metrics (e.g. end-to-end distance, radius of gyration, dihedral angle distributions), we 

characterize the distribution of oligoglycine conformers for each force field and show that each 

sample conformation space differently, yielding considerably different structural tendencies of the 

same oligoglycine model in solution. Notably, we find that C36 samples more extended 

oligoglycine structures than both C27 and ff12SB.

Introduction

Over the past decade there has been considerable effort towards understanding the 

relationship between protein disorder and protein function and how disruptions in the 

primary sequences of these disordered regions abrogate protein function [1]–[5] . At the core 

of this effort is developing methods to characterize the ensemble of protein conformers in 

both native and disease states. Single molecule techniques (e.g. smFRET, FCS, etc.) have 

been successful in probing the conformational landscape of disordered polypeptides and 

entire proteins, however these methods often rely on the attachment of bulky reporter groups 

which may alter the native-state conformations of the polypeptide of interest [6]–[8]. These 

effects are difficult to experimentally control [7]. Molecular simulations are not limited by 

these experimental constraints and, as a result, are useful in considering the structural and 

thermodynamic properties of disordered polypeptides in solution. Mechanisms and 

structural properties hypothesized from the results of simulations can then be leveraged to 

develop targeted, well-designed experiments.
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Classical molecular simulations depend on the functional form and corresponding 

parameters (i.e. force field) used to model inter- and intra-molecular interactions. While 

quantum mechanics (QM) can model these interactions with high accuracy, the most 

accurate computations in solution are intractable for biological macromolecules. A variety 

of force fields have been developed for protein simulations. The most commonly used force 

fields include CHARMM [9] and Amber [10] variants as well as OPLS [11] and GROMOS 

[12].

Force fields may differ in both the functional form of the energy function and its empirically 

adjustable parameters. Each force field is derived with a different methodology, but in 

general parameterization requires minimizing differences between observed and molecular 

mechanical energies by adjusting the energy function variables for a set of target data [13]. 

The target data also differ between force fields, which can lead to force field biases, and an 

understanding of this data used in the parameterization process should be considered when 

using and interpreting results from one particular force field. For example, the CHARMM36 

(C36) force field optimized against a range of condensed phase experimental data (e.g. 

scalar and J-couplings) for full length proteins and polypeptides in combination with gas 

phase QM data [9].

With deficiencies noted in previous force fields, improvements in computational capabilities 

and newly available structural data [14]–[21], force fields are constantly undergoing 

systematic revisions of backbone and side chain parameters [9], [10]. For example free 

energy calculations with C27 (i.e. C22/CMAP) predicted a misfolded conformation of the 

pin WW domain to be lower in energy than the native fold, suggesting a problem with the 

energy function [15]. Furthermore, C27 was shown to over-stabilize helical structures [16], 

[17]. Towards improving the CHARMM force field, authors released C36 in 2012 where 

they reported new backbone CMAP and side chain potentials parameterized against a 

variety of data, including more accurate QM calculations and NMR couplings and shift data 

[9].

Amber force fields have undergone a similar evolution the result of which is a number of 

variants including ff99SB, ff99SB-ILDN, ff99SB*-ILDN, ff03, ff03*, among others [18], 

[19], [22], [23]. Most of these variants attempt to refine backbone and side chain torsion 

potentials, yet biases manifest in different ways. For example, ff03 and ff99SB-ILDN were 

shown to over- and under-stabilize helices, respectively [16]. In 2012 Amber developers 

released ff12SB, which is a combination of the ff99SB parameter and new backbone and 

side chain torsion parameters, the details of which were not published. Generally, many 

force fields perform similarly when modeling well-structured proteins or polypeptides; that 

is, many force fields maintain distributions of conformations close to the native protein fold. 

However, when a protein or polypeptide lacks a stable structure under specified conditions, 

the conformational distributions and secondary structure tendencies, or lack thereof, become 

increasingly more important and the differences in conformational sampling between force 

fields (e.g. parameterization process and target data used) may be more pronounced [16]. 

Here we are interested in elucidating the effects that the commonly used CHARMM and 

Amber force fields have on the distribution of conformations of oligoglycine. Oligoglycine 

was chosen because a) CHARMM and Amber developers compare with, oligoglycine 
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conformer data, b) it has been frequently used to study structural and thermodynamic 

properties of the protein backbone and protein folding [7], [24], [25], and c) we anticipate its 

lack of structure (i.e. high degree of disorder) to capture force field dependent conformation 

sampling well.

In this paper we report a comparative structural analysis of Gly3 and Gly10 from results of 

all-atom, microsecond MD simulations using the C27, C36, and ff12SB force fields. For 

each force field, Gly3 and Gly10 were simulated in explicit TIP3P aqueous solvent at 

constant pressure and temperature for at least 300 ns and 1 μs, respectively. Simulations of 

two different lengths of oligoglycine also allows us to evaluate how force field effects scale 

with polypeptide length. Using a variety of structural metrics (e.g. end-to-end distance, 

radius of gyration, dihedral angle distributions), we characterize the distribution of 

oligoglycine conformers for each force field and show that each sample conformation space 

differently.

Methods

System

Oligoglycine is a model disordered peptide and has been used previously to study 

thermodynamic and structural properties of the protein backbone as it relates to phenomena 

like solvent-induced collapse and aggregation [7], [24]–[27]. Additionally, oligoglycine 

conformers and available structural data (e.g. NMR) were used in comparisons for both 

CHARMM [9], [28] and Amber force fields [19]. Here, we chose two different 

oligoglycines containing three (Gly3) and ten (Gly10) consecutive glycine residues to 

evaluate conformational sampling differences between C27, C36, and ff12SB, and how 

these differences change with oligomer length.

For simulations with the CHARMM force fields, extended Gly3 and Gly10 were built using 

VMD’s Molefacture plugin [29]. Neutral acetyl (ACE) and N-methylamide (NME) caps 

were added and the system was solvated with TIP3P water using VMD’s Solvate plugin. For 

simulations with Amber ff12SB, extended and capped Gly3 and Gly10 were built and 

solvated with TIP3P water using XLeap in AmberTools13 [10]. Initial box size for Gly3 was 

4 nm on a side with 1955, 1953, and 2064 water molecules for C27, C36, and ff12SB 

systems, respectively. Initial box size for Gly10 was 6 nm on a side with 6782, 6782, and 

6674 water molecules for C27, C36, and ff12SB, respectively. All simulations were then 

performed using NAMD 2.9 [30].

Simulations

All-atom C27, C36, and ff12SB protein parameter sets were used to simulate Gly3 and Gly10 

in explicit TIP3P solvent (either CHARMM or Amber’s water parameter set) using the 

NAMD 2.9 molecular dynamics package [30]. Steepest descent minimization was 

performed followed by equilibration runs of at least 20 ns for Gly3 or 100 ns for Gly10 at 

constant number, temperature, and pressure (NPT ensemble). Production simulations were 

similarly performed in the NPT ensemble. Gly3 and Gly10 were simulated for 300 ns and 

950 ns, respectively, with each force field. Temperature and pressure were maintained with 
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a Langevin thermostat and barostat. The equations of motion were integrated with the 

velocity Verlet algorithm with a 2 fs time step. The van der Waals forces were truncated at 

1.2 nm with NAMD’s default switching functions employed at 1.0 nm. Electrostatic forces 

were computed using particle mesh ewald with a grid spacing of 1.0 Å. To match Amber’s 

non-bonded exclusion convention, 1–4 scaling was set to 0.8333 for simulations with 

ff12SB only. Coordinates and system information were saved every 500 time steps 

corresponding to every 1 ps.

Structural Analysis

To evaluate force field dependent conformational sampling we use a variety of structural 

metrics to characterize the oligoglycine chains. Protein coordinates from each simulation of 

Gly3 and Gly10 across the three force fields were used to measure end-to-end distance, 

radius of gyration, solvent accessible surface area (SASA), dihedral angles, NMR J-

couplings and representative structural clusters.

End-to-end distance and radius of gyration

The probability distribution of the end-to-end distance and radius of gyration provide 

information on tendencies to be extended or collapsed. End-to-end distance, defined as the 

distance between terminal carbons in the ACE and NME caps, and mass weighted radius of 

gyration were measured across the trajectories. These values were binned and count 

normalized, yielding probability distributions of end-to-end distance (bin size = 0.2 Å) and 

radius of gyration (bin size = 0.05 Å) for both oligoglycines across the three force fields. 

Error in the average estimates of end-to-end distance and radius of gyration were calculated 

using a block standard error (BSE) method [31]. Briefly, a series of end-to-end distance or 

radius of gyration calculations are broken up into blocks of a particular length such that N = 

MΔn, where N is the number of measurements corresponding to the number of frames 

analysed from a trajectory, M is the number of blocks, and n is the block length, or number 

of elements in one of the M blocks. For a given n the average end-to-end distance or radius 

of gyration is calculated within each of the M blocks. Then the BSE is calculated as the 

standard deviation of these M block averages normalized by the square root of the number of 

blocks. A series of BSE values are computed for a range of block lengths. The error in the 

average end-to-end distance or radius of gyration is estimated as the BSE at the point in 

which the BSE curve plateaus.

Inspection of the BSE suggested that errors in average end-to-end distance and radius of 

gyration could be sufficiently estimated with 20 ns long blocks for Gly3 and 50 ns long 

blocks for Gly10 across the three force fields. Probability distributions of end-to-end 

distance and radius of gyration for each of the 20 ns long blocks for Gly3 or 50 ns blocks for 

Gly10 were constructed using the same bin sizes reported above. The standard deviation of 

the counts in each bin was recorded and captured the within-bin spread. These are depicted 

as the shaded regions in the end-to-end distance and radius of gyration results in Figure 1.

Comparison to random coil

Polymer models have been used to describe the behavior of disorder polypeptide segments 

in a variety of aqueous conditions [32], [33]. To qualitatively assess polymer behavior of 
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Gly10 and how this behavior might change when using different force fields, we compare 

the end-to-end distance distribution of Gly10 to that predicted with an ideal, random coil 

polymer model. In a random coil model it is assumed that there are no self-interactions or 

excluded volume and that intramolecular and solvent interactions balance each other [34]. 

As a result, the end-to-end distance distribution for a random coil can be modeled as a 3D 

random walk (Eqn. 1):

(1)

where r is end-to-end distance, and r2 is mean square end-to-end distance. r2 was measured 

from the simulations of Gly10 with each of C27, C36, and ff12SB and the ideal polymer 

end-to-end distance distributions were compared to those measured from the simulations. 

Polymer models were developed for high polymers containing thousands or more 

monomers. Gly10 is thus expected to show deviations from high polymer ideality. 

Nonetheless, evaluating these deviations as a function of force field provides an additional 

way in which to compare the effects force fields have on modeling highly disordered 

polypeptides.

Solvent Accessible Surface Area Probability Distributions

A protein’s solvent accessible surface area (SASA) plays a major role in its solution and 

binding thermodynamics [2], [35]–[37]. To investigate the dependencies between SASA and 

force field, we measured the SASA of all Gly3 and Gly10 conformations in the C27, C36, 

and ff12SB trajectories with a solvent radius of 1.4 Å in VMD. SASA probability 

distributions were generated for each force field with bin sizes of 5 Å2.

Dihedral Angle Distributions and Free Energy Surfaces

Dihedral angles (φ,ψ) were collected along the trajectories for the internal (non-termini) 

residues of Gly3 and Gly10 from simulations with C27, C36, and ff12SB. Histograms of φ,ψ 

were generated with 2 degree bin widths. The values in each bin were converted to free 

energies via

(2)

where R is the gas constant, T is absolute temperature (300 K), Ni is the count in bin i, and 

Ntot is the total number of counts. The free energy surface is plotted with contour levels 

colored according to ΔGi (dark blue = minimum, bright red = maximum). Populations of the 

major secondary structure regions were assessed using the following criteria: poly-proline 

(PPII) with φ,ψ = (−70°±30°, 150°±30°), β-strand (β) = (−150°±30°,150°±30°), right α-helix 

(αR) = (−85°±55°,−7.5°±67.5°), and left α-helix (αL) = (85°±55°,7.5°±67.5°). The 

definitions of PPII and β-strand follow from [19], however we elected to use larger, 

symmetric areas for the right- and left-handed helical regions because of the symmetry (lack 

of chirality) and larger number of sterically permitted states of oligoglycine. Error in the 

populations of these regions was estimated with the block standard error approach detailed 
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in the Methods section on the end-to-end distance and radius of gyration analyses. Here we 

used blocks of 50 ns and 125 ns for Gly3 and Gly10 respectively.

NMR Scalar Couplings

J-couplings can be related to backbone dihedral angles via the Karplus equation [38], [39]. 

The equation has the general form:

(3)

where A,B, and C are parameterized against experiment or theory, θ is a backbone dihedral 

angle, either φ or ψ, and Δ is a phase shift for a particular J-coupling. Karplus equation 

parameters were taken from [21] for Gly3. Eight J-couplings that probe the dihedral angles 

of the central residue were calculated across the trajectories of Gly3 and Gly10 for each force 

field.

Representative structure clusters

The quality threshold algorithm implemented in VMD [40] was used to classify and 

visualize dominant structure clusters from simulations of Gly10 with the C27, C36, and 

ff12SB force fields. The mass weighted, root mean squared distance (RMSD) between 

heavy atoms was used to measure structure similarity. Five clusters containing structures 

within a cutoff RMSD of 2.5 Å were chosen a priori from snapshots every 50 ps. We then 

compared the dominant structure clusters from each trajectory using end-to-end distance and 

radius of gyration.

Results and Discussion

Distributions of end-to-end distance and radius of gyration exhibit force field dependency

To capture the structural properties of oligoglycine as a function of force field we calculated 

the distance, r, between terminal carbon atoms and the mass weighted radius of gyration, Rg, 

for each trajectory. Convergence and errors in our measurements were estimated using a 

block standard error approach (see Methods) with block lengths of 20 ns for Gly3 and 50 ns 

for Gly10. Considering Gly3, we find that probability distributions of end-to-end distance 

and Rg vary considerably when using C27, C36, or ff12SB as depicted in Figure 1 and Table 

1. C36 samples more extended, less compact structures than C27 and ff12SB with a 

narrower probability distribution concentrated around the mean end-to-end distance, rC36 = 

11.5 Å ± 0.04 and mean Rg, Rg C36 = 4.0 Å ± 0.006. In contrast, both C27 and ff12SB 

sample more structures with short to intermediate end-to-end distances than C36 resulting in 

similar r′s. Although the C27 and ff12SB end-to-end distance distributions are similar, the 

shapes of the Rg distributions are different, suggesting different structural tendencies even 

though Rg C27 and Rg ff12SB are essentially the same. This suggests that end-to-end distance 

alone may not be a sufficient metric to compare force field structure sampling and that 

higher order moments of end-to-end distance and Rg distributions should be considered.

To evaluate how these force field dependent properties change with oligomer length we 

performed the same structural analysis with trajectories of Gly10 generated using C27, C36, 

and ff12SB. At this length of oligoglycine the differences between the force fields are 
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accentuated. We again find C36 to sample more extended, less compact structures with a 

mean end-to-end distance at least 3 Å greater than C27 and ff12SB. Furthermore, both end-

to-end distance and Rg distributions for C36 are skewed towards extended structures, 

opposite those for the other force fields (Figure 1 and Table 1). All three force fields across 

both oligoglycines show a small peak around ~4 Å end-to-end distance which is indicative 

of correlations in a loop-like formation. C27 visits these structures more than ff12SB, and 

considerably more than its successor C36. The question of which force field is accurately 

capturing the frequency with which these correlated, looped Gly10 structures are formed 

may be resolved, in part, by single molecule methods that measure the kinetics of termini 

contact formation[8], [41]. The structural characteristics of ff12SB appear to be intermediate 

to those observed for C27 and C36.

Few experiments provide detailed structural data for longer glycine constructs making a 

direct comparison to experimental data challenging. This may be attributed to the 

increasingly low solubility of oligoglycine with respect to increasing length [25], [42]. A 

computational consideration of the solubility limit of Gly5 solutions suggests a mechanism 

for the phase separation based predominately on non-hydrogen bonding amide dipole 

correlations [27]. Furthermore, experimental and computational studies disagree about the 

conformational preferences of the peptide backbone (extended vs. collapsed), the quality of 

water as its solvent, and how these change depending on chain length. Ohnishi et al. [43] 

used a combination of NMR and SAXS to study the conformational preferences of various 

oligoglycine linkers separating Acetyl-Tyr-Glu-Ser and Ala-Thr-Asp amino acid residues, 

which were used to decrease resonance overlap, and concluded that oligoglycines in solution 

prefer the extended state. For Gly2 and Gly6 linkers they found an Rg of 7.90 Å and 9.10 Å, 

respectively. Our results for Gly10 with the C36 force field are not dramatically different 

considering that the three amino acids added to each end of the oligoglycine linker may alter 

the structural preferences compared to a pure glycine chain and that their polypeptide 

contains two additional residues.

Pappu et al. [44] constructed a potential of mean force as a function of radius of gyration for 

Gly15 with the OPLS AA/L force field and found that Gly15 collapses in water with a 

probability of Rg less than 7 Å to be 0.83. Consistently, Gly15 was also shown to adopt a 

compact structure with a radius of gyration less than 6.5 Å from simulations with C27 

(Karandur, submitted). These are similar to what we find for Gly10 across the three force 

fields and also with what Ohnishi and coworkers [43] find for their shorter constructs. An 

experimental study, [7] determined the hydrodynamic radius of gyration of Gly20 by 

fluorescence correlation spectroscopy to be ~10.4 Å corresponding to an Rg of ~8 Å which 

is less than 1 Å larger than Rg C36 for a system of twice the chain length. The effects of the 

reporting groups is less certain. Recent work by Best et al. [45] suggests that current force 

fields poorly solvate polypeptides leading to more collapsed, unfolded states than suggested 

by experiment and that a better match to experiment can be achieved by modifying the short 

range protein-solvent interactions for disordered proteins. Given their observations and the 

fact that the Rg of these oligoglycine models ranging considerably in length are relatively 

similar, future work should aim to determine if the force fields are accurately capturing the 

scaling of the protein backbone’s structural properties.
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Gly10 deviates from random coil polymer model but depends on force field

Naturally, polymer models and theory have been extended to the study of IDPs and have 

proven useful in understanding how the properties depend on solvent, amino acid 

composition, and number of peptides [32], [33], [46], [47]. Ideal polymers, like the random 

coil, are modeled as a statistical random walk where monomers can occupy the same space 

and the positions of the monomers are uncorrelated [34]. These assumptions yield a skewed 

Gaussian for the end-to-end distance probability distributions (Eqn. 1). Figure 1 clearly 

demonstrates positional correlations, however to show that different force fields introduce 

different non-random coil behavior we compared the end-to-end distance distributions for 

Gly10 obtained from simulations with C27, C36, and ff12SB to what would be expected for 

a random coil (Eqn. 1) with the same variance, r2. Figure 2a–c shows the end-to-end 

distance distribution (solid) overlaid with that predicted for a random coil with the same r2 

(dotted). The large tails and peak locations of the C27 and ff12SB end-to-end distance 

distributions are captured very well by the random coil model, however it clearly does not 

capture these features well for C36. As a result of this “stiffer” behavior, C36 under-samples 

Gly10 conformations with intermediate end-to-end distances compared to its random coil 

model. A non-linear least squares fit of Eqn. 1 to the data also clearly shows that the 

Gaussian functional form does not capture the distribution of long end-to-end distances for 

C36. Across all force fields self-interactions and other multi-body correlations result in 

greater populations of structures with shorter end-to-end distances (peak ~4 Å) than their 

random coil counterparts, but the extent to which they deviate from random depends on the 

force field.

Single molecule methods, like smFRET, can be used to estimate the distribution of end-to-

end distances in IDPs from measurements of the resonance energy transfer by assuming the 

distribution in Eqn. 1 [41], [48]. The fact that the functional form of the end-to-end distance 

distribution depends on force field should be considered when attempting to compare results 

from simulations and single molecule experiments. Which force field is most accurately 

modeling the distribution of end-to-end distances in Gly10 remains to be seen. Single 

molecule experiments could be used to determine how r2 scales with the length of the 

protein backbone and thus force field accuracy.

Solvent accessible surface area exhibits force field dependencies

Intrinsically disordered proteins (IDPs) or regions (IDRs) are often found in regulatory 

network hub proteins and facilitate binding to multiple partners [2]. Conformational 

selection and concomitant binding and folding are thought to be two of the major IDP-

facilitated recognition or binding mechanisms [49]. In either case, an IDP’s conformational 

ensemble is likely to provide a range of available surfaces to accommodate its many binding 

partners. For example, Dunker and coworkers have shown that a disordered region of p53 

adopts four different structures when binding four different partners and that the change in 

accessible surface area vary considerably [2]. Many IDPs have been shown to form 

extended binding surfaces with their targets [35]. The SASA for individual protein or 

polypeptide conformations can be easily calculated from snapshots of a molecular 

simulation. However, the distribution of SASA will depend on the conformational sampling 

and thus the model or force field used in the simulation. To highlight these dependencies we 
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generated SASA probability distributions for Gly3 and Gly10 from the C27, C36, and 

ff12SB trajectories (Figure 3). The SASA distributions for Gly3 concentrate around very 

similar average SASAs with Gly3:SASAC27 = 463 Å2, Gly3:SASAff12SB = 465 Å2, and 

Gly3:SASAC36 = 470 Å2. However, clear differences between force fields emerge when we 

consider Gly10. The Gly10 conformations sampled by the three force fields yielded a wide 

range of SASA (~700–1100 Å2) and very different probability distributions (Figure 3). C36 

overwhelmingly samples extended conformations with a large SASA (Gly10:SASAC36 = 

1010 Å2) whereas C27 samples conformations with a broad distribution of compact, short 

and intermediate SASAs (Gly10:SASAC27 = 880 Å2). Again with structural properties 

intermediate to C36 and C27, we find a small peak at a large SASA and a broad distribution 

across small and intermediate SASAs, albeit less so than what we observe for C27, which 

yields Gly10:SASAff12SB = 934 Å2. While consistent with what we observed from the 

distributions of end-to-end distance and radius of gyration, the differences in structural 

properties of Gly10 modeled with these three force fields are further accentuated when 

considering SASA.

Dihedral angle free energy surfaces

Dihedral angle distributions were constructed for internal residues of Gly3 and Gly10 from 

simulations with C27, C36, and ff12SB. These distributions were count normalized and 

converted to free energy surfaces as described in the Methods. The free energy surfaces as a 

function of force field and oligoglycine length are depicted in Figure 4 as contour plots 

using the same color scale with dark blue and red representing free energy minima and 

maxima, respectively. Surface plots of the corresponding probability distributions are found 

in Supplemental Figure 1. Comparing results for Gly3, we find the minimum free energy in 

the right and left helix region for C27. This helical bias was noted previously [9], [17]. In 

contrast, C36 has changed this bias with the energy minima occurring in the polyproline II 

regions (PPII). The locations of the free energy minima match well with what MacKerell et 

al. observed for uncapped Gly3 [9].

With no predominantly deep energy wells, ff12SB samples the major regions of the 

Ramachandran map more evenly and shows a greater sampling of the β-sheet region than 

C27 and C36. This is consistent with the dihedral energy surfaces reported for Gly3 and the 

ff99SB force field in 2006 by [19]. Upon comparison of the ff12SB and ff99SB protein 

parameter sets and analysis of a preliminary simulation of Gly3 with ff99SB it appears that 

the backbone dihedral parameters for glycine residues have remained unchanged. For Gly10, 

the locations of the energy minima are consistent with Gly3 suggesting a length 

independence. However, due to the considerably longer simulation times and the number of 

internal residues for Gly10, we are able to sample higher free energy regions. Overall, all 

force fields are sampling regions of dihedral space consistent in footprint with what is 

observed from a survey of the PDB (Supplemental Figure 2 and [50]). We note the PDB 

distribution shows correlations with non glycine neighbors, partially skewing the expected 

symmetry. However, it is the probability of occupying these regions that differs between 

force fields and the survey from the PDB, which may be considerably more important for 

disordered proteins than structured ones.
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We also assessed the populations (Table 2) of the four major secondary structure regions. 

The dihedral populations of internal residues of Gly3 and Gly10 are consistent with what we 

observe in the free energy surfaces. We expect in the limit of sufficient sampling that αR and 

αL populations would approach equallity. Interestingly, we find a larger error and more 

asymmetry in sampling of these regions for Gly3 with C27 compared to C36 and ff12SB. 

This asymmetry decreases as we sample over a longer period of time and more dihedrals 

with Gly10. The relatively slower kinetics of the backbone dihedral angles for C27 are likely 

the cause of the asymmetrical sampling. For a simple molecule like butane, Grossfield and 

Zuckerman [51] found that that even after long simulations the populations of the g+ and g- 

states were still different by three percent. Finally, no major multi-body correlation effects 

on the φ,ψ surface seem to be occurring in Gly10 since the patterns of dihedral populations 

are consistent with Gly3.

Our analysis of the dihedral angle distributions in each force field only reports on angles 

found in common secondary structures per residue and does not suggest that oligoglycine 

assumes a stable global secondary structure. The literature on oligoglycine conformations in 

solution is inconsistent. Asher and coworkers[52] used Raman spectroscopy to study the 

structures of Gly5 and Gly6 in lithium salt solutions. They concluded that in solution PPII-

like conformations are stabilized and that these conformations are further stabilized as 

lithium concentrations are increased. This may be the case in the particular solution they 

used, although extrapolating these findings per residue to the global structural behavior of 

oligoglycine in solution is problematic. Using Raman and IR spectroscopy, [53] suggested 

that cationic and zwitterionic triglycine in D2O populate a mix of PPII, right-handed α-

helices, and β-turns. They interpreted their results to conclude that tripeptides in general 

adopt well-defined secondary structures in water. From secondary structure assignments 

across all trajectories using STRIDE in VMD, we find that neither Gly3 nor Gly10 form 

stable, common secondary structures. Rather the structures formed are transient and contain 

combinations of dihedral angles which contribute to the both the residue and the global 

equilibrium structural probability distributions.

Scalar Couplings

J-coupling constants are a measure of the local structure within a protein or polypeptide. 

Table 3 shows the calculated J-coupling constants for the central residues of Gly3 and Gly10 

across the three force fields along with the experimentally measured values [21]. Overall the 

three force fields recapitulate the experimentally measured J-couplings quite well given that 

the uncertainty in these calculated values has been estimated to be at least ±1 Hz [54], [55]. 

The R2 values from a linear fit between calculated and measured J-couplings were all above 

0.96 for each force field. In most cases the calculated J-couplings only differ by a few tenths 

of one Hz between force fields and all force fields systematically either over- or under-

estimate the J-couplings when compared to experiment. It is important to note that Graf et 

al. performed these NMR experiments in very acidic conditions (pH=2) where the carboxyl 

terminus of Gly3 would be protonated. In parameterizing the C36 force field, [9] found that 

the calculated J-couplings from simulations of uncapped, protonated Gly3 matched 

experiment well after the initial QM calculations, and so no further adjustments of the 

torsional correction (CMAP) were made to exactly match experiment. They did however use 
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the measured J-coupling constant from Graf et al. as target data to optimize side chain 

dihedral parameters. The linear fit for uncapped Gly3 (R2=0.988) is only slightly better than 

what we measure for our capped Gly3, suggesting the neutral caps are not significantly 

altering the distribution of internal backbone dihedral angles. While we cannot make a direct 

comparison of the calculated J-couplings for the central residue of Gly10, we do find that 

they did not change considerably compared to those for Gly3 across all force fields.

While NMR provides valuable structural and dynamical data of polypeptides in solution that 

can be used to refine force field parameters, issues arise due to the ensemble averaged nature 

and degeneracy of NMR observables [13], [17], [54]. For example, it has been pointed out 

that three very unique dihedral angle distributions can yield the same J-coupling constant 

calculated using the Karplus equations [54]. Also, [17] noted that 8 different force fields, all 

sampling structures of polyalanine with different secondary structure propensities, match 

experimental NMR data well. Similarly, we find that although C27, C36, and ff12SB match 

experimental J-coupling constants well, the structural distributions and properties of 

oligoglycine simulated with these force fields are quite different.

Structure clustering

To further characterize the differences in conformation sampling between force fields we 

clustered similar structures of Gly10 from the C27, C36, and ff12SB trajectories as described 

in the methods section above. Five dominant structure clusters were generated 

independently for each force field, the results of which can be seen in Figure 5. The 

dominant clusters sampled in C36 are much more extended and less complex than C27. 

Figure 5 also shows the average end-to-end distance, r, and radius of gyration, Rg, per 

cluster. In all clusters rC36 is greater than 16 Å and Rg C36 is greater than 7 Å, both of which 

are well above those found in C27 clusters. The dominant ff12SB clusters are more 

structurally diverse than C36 and C27 with rff12SB and Rg ff12SB spanning a wider range. The 

characteristics of the ff12SB clusters appear to be a combination of those observed for C27 

and C36. Taken together, these findings are consistent with what we observed in the end-to-

end and radius of gyration analysis (Figure 1).

Conclusions

Considerable effort over the last decade has been dedicated to understanding how structural 

disorder is needed for many proteins to function properly [2], [3], [5], [56]. Furthermore, the 

prevalence of protein disorder in various diseases has prompted numerous studies and the 

development of experimental and computational techniques aimed at characterizing 

structural properties of disordered proteins [3], [6], [7], [32]. Low solubility, among other 

factors, has made investigating the structural ensemble of increasingly longer disordered 

proteins in solution experimentally challenging.

Computer simulations are not limited by the same experimental constraints and can provide 

atomic resolution structural properties of the underlying models that can then be used to 

develop hypotheses. Classical simulations rely on a force field approximation of inter- and 

intra-molecular interactions. There exist a variety of classical force fields all of which have 

been parameterized against different QM and experimental data. Force field specific biases 
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can result from target data used and the parameterization process [13]. Many of these force 

fields describe structured proteins similarly well but it is important to continually challenge 

these force fields with diverse systems to ensure their accuracy [16].

Here we have used oligoglycine as a protein backbone model to investigate conformational 

sampling biases of the commonly used C27, C36, and ff12SB force fields. A structural 

analysis of Gly3 and Gly10 revealed that C36 preferentially samples extended structures 

while C27 and ff12SB favor more compact, complex structures. The helical bias noted with 

C27 has been considerably reduced in C36, which more strongly samples polyproline-II 

regions, while ff12SB more evenly samples the major regions of Ramachandran space. We 

find that these force field dependent properties are more pronounced for Gly10 than Gly3. 

From this comparative study, we conclude that more experiments are needed to ensure that 

force fields are capturing the length dependence of the protein backbone’s structural 

properties. Interestingly we also found that the residual dipolar couplings of the central 

residue of Gly3 calculated using the Karplus equation for each force field matched 

experiment quite well, despite each force field exhibiting some clearly different structural 

properties. Others have also observed this in force field comparison studies using 

polyalanine [17] and other alanine rich peptides [57]. While NMR provides valuable data on 

polypeptides in solution, the highly averaged, somewhat uncertain nature of NMR 

observables and the degenerate relationship between these observables and protein backbone 

dihedral angles may be problematic when attempting to optimize a force field against such 

data [13], [54], [55], [57]. Protein force fields have traditionally been used to model well-

structured proteins. Our results suggest that care must be taken not only when applying these 

force fields to IDP systems but also when making mechanistic inferences based on the 

results from using a single force field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Probability distributions of end-to-end distance and radius of gyration for Gly3 (a. and c.) 

and Gly10 (b. and d.) as a function of force field. Results for each force field are colored: 

C36 (blue), C27 (green), and ff12SB (red). The colored dashed lines indicate the average 

end-to-end distance or radius of gyration for the corresponding force field (Table 1). The 

shaded regions represent the standard deviation of within-bin probabilities calculated by 

blocking each Gly3 and Gly10 trajectories into 20 ns and 50 ns blocks, respectively.
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Figure 2. 
End-to-end distance distributions from simulations of Gly10 (solid line) with C27 (a), C36 

(b), and ff12SB (c). Overlaid is the distribution expected for a random coil with the same 

mean squared end-to-end distance measured from simulations (open triangle) and the 

distribution following a non-linear least squares fit (x’s) of Eqn. 1 to the data.
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Figure 3. 
Probability distributions of solvent accessible surface area (SASA) measured from 

simulations of Gly10 with the C27 (Green), C36 (Blue), and ff12SB (red) force fields. A 

solvent probe of 1.4 Å was used to calculate SASA. The mean SASA (dashed lines) for 

Gly10 simulated with C27, C36, and ff12SB was 880 Å2, 1010 Å2, and 934 Å2, respectively.
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Figure 4. 
Dihedral angle free energy surfaces as a function of force field. The backbone dihedral angle 

pairs of internal residues were binned on a grid and the counts were converted to a free 

energy representation as described in the Methods. Figures 4a–c show results for Gly3 and 

4d-f for Gly10 across the C27, C36, and ff12SB force fields.
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Figure 5. 
Five representative structural clusters of Gly10 from C27 (top), C36 (middle) and ff12SB 

(bottom) force fields. Clusters were generated using the quality threshold algorithm in VMD 

with a cluster cutoff of 2.5 Å. Reported below each representative structure is average end-

to-end distance and radius of gyration of all structures within that cluster.

Drake and Pettitt Page 19

J Comput Chem. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Drake and Pettitt Page 20

T
ab

le
 1

M
om

en
ts

 o
f 

th
e 

G
ly

3 
an

d 
G

ly
10

 e
nd

-t
o-

en
d 

di
st

an
ce

 a
nd

 r
ad

iu
s 

of
 g

yr
at

io
n 

di
st

ri
bu

tio
ns

. I
n 

pa
re

nt
he

se
s 

ne
xt

 to
 th

e 
m

ea
n 

is
 th

e 
es

tim
at

ed
 B

SE
.

E
nd

-t
o-

en
d 

D
is

ta
nc

e 
(Å

)
R

ad
iu

s 
of

 G
yr

at
io

n 
(Å

)

F
or

ce
 F

ie
ld

M
ea

n
V

ar
ia

nc
e

Sk
ew

K
ur

to
si

s
M

ea
n

V
ar

ia
nc

e
Sk

ew
K

ur
to

si
s

C
27

10
.0

9 
(0

.0
8)

7.
45

−
15

.8
7

14
6.

69
3.

77
 (

0.
01

5)
0.

16
−

0.
03

0.
06

G
ly

3
C

36
11

.5
0 

(0
.0

4)
3.

58
−

10
.7

1
77

.2
6

4.
00

 (
0.

00
6)

0.
08

−
0.

03
0.

03

ff
12

SB
10

.4
0 

(0
.0

6)
5.

50
−

10
.1

2
95

.2
1

3.
76

 (
0.

01
0)

0.
14

−
0.

02
0.

05

C
27

13
.3

0 
(0

.2
0)

25
.7

8
53

.1
7

19
65

.4
0

5.
65

 (
0.

04
0)

0.
89

0.
89

3.
06

G
ly

10
C

36
18

.1
4 

(0
.2

4)
44

.1
8

−
21

.7
3

43
73

.3
0

7.
22

 (
0.

05
0)

1.
44

−
0.

04
4.

64

ff
12

SB
14

.7
8 

(0
.1

7)
39

.0
9

11
9.

87
41

72
.6

9
6.

31
 (

0.
04

1)
1.

70
1.

60
8.

05

J Comput Chem. Author manuscript; available in PMC 2016 June 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Drake and Pettitt Page 21

T
ab

le
 2

D
ih

ed
ra

l a
ng

le
 p

op
ul

at
io

ns
 (

pe
rc

en
ta

ge
s)

 o
f 

th
e 

ce
nt

ra
l r

es
id

ue
s 

in
 G

ly
3 

an
d 

G
ly

10
. R

eg
io

ns
 o

f 
th

e 
R

am
ac

ha
nd

ra
n 

m
ap

 w
er

e 
de

fi
ne

d 
as

 α
R

(φ
,ψ

) 
=

 (
−

85
°

±
55

°,
−

7.
5°

±
67

.5
°)

, α
L
 =

 (
85

°±
55

°,
7.

5°
±

67
.5

°)
, p

pI
I 

=
 (

−
70

°±
30

°,
15

0°
±

30
°)

, a
nd

 β
 =

 (
−

15
0°

±
30

°,
15

0°
±

30
°)

. I
n 

pa
re

nt
he

se
s 

is
 th

e 
po

pu
la

tio
n 

er
ro

r 

m
ea

su
re

d 
by

 s
pl

itt
in

g 
G

ly
3 

an
d 

G
ly

10
 tr

aj
ec

to
ri

es
 in

to
 5

0 
ns

 a
nd

 1
25

 n
s 

bl
oc

ks
, r

es
pe

ct
iv

el
y 

(s
ee

 M
et

ho
ds

 f
or

 d
et

ai
ls

 o
n 

m
ea

su
ri

ng
 b

lo
ck

 s
ta

nd
ar

d 
er

ro
r)

.

G
ly

3
G

ly
10

C
27

C
36

ff
12

SB
C

27
C

36
ff

12
SB

α
R

26
.8

 (
1.

54
)

5.
20

 (
0.

45
)

14
.3

 (
1.

35
)

30
.8

 (
1.

93
)

7.
04

 (
0.

45
)

17
.0

 (
0.

29
)

α
L

22
.2

 (
1.

20
)

4.
90

 (
0.

48
)

14
.6

 (
0.

56
)

32
.5

 (
2.

42
)

6.
31

 (
0.

28
)

16
.3

 (
0.

61
)

pp
II

13
.4

 (
0.

71
)

25
.2

 (
0.

83
)

17
.4

 (
0.

47
)

8.
80

 (
0.

21
)

24
.2

 (
0.

49
)

16
.2

 (
0.

21
)

β 
– 

st
ra

nd
0.

30
 (

0.
02

)
0.

40
 (

0.
02

)
4.

00
 (

0.
14

)
0.

20
 (

0.
00

8)
0.

40
 (

0.
00

6)
3.

40
 (

0.
04

8)

J Comput Chem. Author manuscript; available in PMC 2016 June 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Drake and Pettitt Page 22

T
ab

le
 3

J-
co

up
lin

g 
co

ns
ta

nt
s 

ca
lc

ul
at

ed
 f

or
 th

e 
ce

nt
ra

l r
es

id
ue

 o
f 

G
ly

3 
an

d 
G

ly
10

 u
si

ng
 th

e 
K

ar
pl

us
 e

qu
at

io
ns

 a
nd

 p
ar

am
et

er
s 

fr
om

 (
G

ra
f 

et
 a

l. 
20

07
)2 .

 T
he

 

ex
pe

ri
m

en
ta

lly
 m

ea
su

re
d 

J-
co

up
lin

gs
 f

or
 G

ly
3 

at
 a

 p
H

 o
f 

2a
re

 r
ep

or
te

d.
 a

s 
w

el
l a

s 
th

os
e 

ca
lc

ul
at

ed
 f

ro
m

 s
im

ul
at

io
ns

 o
f 

G
ly

3 
w

ith
 G

ro
m

os
 (

G
ra

f 
et

 a
l. 

20
07

)2  
an

d 
un

ca
pp

ed
 G

ly
3 

w
ith

 C
36

 (
B

es
t e

t a
l. 

20
12

)1

G
ly

3
F

or
ce

-f
ie

ld

E
xp

.2

(p
H

 =
 2

)
J-

co
up

lin
g

D
ih

ed
ra

l
C

27
C

36
ff

12
SB

C
36

 L
it

.1
G

ro
m

os
 L

it
.2

J(
H

N
,H

A
)

Φ
2

6.
32

7 
±

 0
.0

03
5.

91
6 

±
 0

.0
03

5.
97

4 
±

 0
.0

03
5.

82
5.

8 
±

 2
.7

5.
89

 ±
 0

.0
7

J(
H

N
,C

’)
Φ

2
0.

72
5 

±
 0

.0
02

1.
20

3 
±

 0
.0

02
1.

07
4 

±
 0

.0
02

1.
1

1.
2 

±
 1

.1
1.

1

J(
H

A
,C

’)
Φ

2
3.

80
5 

±
 0

.0
04

4.
02

7 
±

 0
.0

05
3.

61
8 

±
 0

.0
05

3.
73

3.
3 

±
 2

.1
4.

01

J(
C

’,
C

’)
Φ

2
0.

64
5 

±
 0

.0
01

0.
59

9 
±

 0
.0

01
0.

90
2 

±
 0

.0
01

0.
48

1.
3 

±
 0

.8
0.

26

J(
N

,C
A

)1
Ψ

2
10

.9
57

 ±
 0

.0
02

11
.6

54
 ±

 0
.0

01
11

.1
63

 ±
 0

.0
02

11
.7

4
10

.4
 ±

 1
12

.1
7 

±
 0

.0
2

J(
N

,C
A

)2
Ψ

1
7.

93
4 

±
 0

.0
02

7.
93

3 
±

 0
.0

02
7.

88
8 

±
 0

.0
02

8.
58

8.
6 

±
 0

.2
10

.4
5 

±
 0

.0
2

J(
N

,C
A

)2
Ψ

2
7.

24
4 

±
 0

.0
03

8.
39

8 
±

 0
.0

02
7.

80
3 

±
 0

.0
02

8.
5

8.
1 

±
 0

.6
9.

05
 ±

 0
.0

3

J(
H

N
,C

A
)

Φ
2 

&
 Ψ

1
0.

53
4 

±
 0

0.
51

1 
±

 0
0.

60
2 

±
 0

0.
61

0.
8 

±
 0

.2
0.

78

G
ly

10
F

or
ce

-f
ie

ld

J-
co

up
lin

g
D

ih
ed

ra
l

C
27

C
36

ff
12

SB

J(
H

N
,H

A
)

Φ
5

6.
28

9 
±

 0
.0

12
5.

97
4 

±
 0

.0
13

5.
98

6 
±

 0
.0

13

J(
H

N
,C

’)
Φ

5
0.

73
7 

±
 0

.0
06

1.
12

4 
±

 0
.0

07
1.

06
4 

±
 0

.0
07

J(
H

A
,C

’)
Φ

5
3.

85
5 

±
 0

.0
18

4.
09

7 
±

 0
.0

19
3.

65
 ±

 0
.0

18

J(
C

’,
C

’)
Φ

5
0.

59
4 

±
 0

.0
02

0.
61

8 
±

 0
.0

03
0.

84
6 

±
 0

.0
05

J(
N

,C
A

)1
Ψ

5
10

.6
 ±

 0
.0

06
11

.5
90

 ±
 0

.0
05

11
.0

12
 ±

 0
.0

07

J(
N

,C
A

)2
Ψ

4
6.

97
6 

±
 0

.0
1

8.
27

4 
±

 0
.0

07
7.

67
 ±

 0
.0

1

J(
N

,C
A

)2
Ψ

5
6.

75
4 

±
 0

.0
09

8.
31

3 
±

 0
.0

07
7.

61
4 

±
 0

.0
1

J(
H

N
,C

A
)

Φ
5 

&
 Ψ

4
0.

43
7 

±
 0

.0
01

0.
60

0 
±

 0
.0

01
0.

54
9 

±
 0

.0
02

J Comput Chem. Author manuscript; available in PMC 2016 June 30.


