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Abstract

We describe methods to perform replica exchange molecular dynamics (REMD) simulations 

asynchronously (ASyncRE). The methods are designed to facilitate large scale REMD simulations 

on grid computing networks consisting of heterogeneous and distributed computing environments 

as well as on homogeneous high performance clusters. We have implemented these methods on 

NSF XSEDE clusters and BOINC distributed computing networks at Temple University, and 

Brooklyn College at CUNY. They are also being implemented on the IBM World Community 

Grid. To illustrate the methods we have performed extensive (more than 60 microseconds in 

aggregate) simulations for the beta-cyclodextrin-heptanoate host-guest system in the context of 

one and two dimensional ASyncRE and we used the results to estimate absolute binding free 

energies using the Binding Energy Distribution Analysis Method (BEDAM). We propose ways to 

improve the efficiency of REMD simulations: these include increasing the number of exchanges 

attempted after a specified MD period up to the fast exchange limit, and/or adjusting the MD 

period to allow sufficient internal relaxation within each thermodynamic state. Although 

ASyncRE simulations generally require long MD periods (> picoseconds) per replica exchange 

cycle to minimize the overhead imposed by heterogeneous computing networks, we found that it 

is possible to reach an efficiency similar to conventional synchronous REMD, by optimizing the 

combination of the MD period and the number of exchanges attempted per cycle.
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Introduction

Molecular Dynamics (MD) simulations are widely employed to study the behavior of 

chemical and biological systems at the molecular level.1-3 However, currently MD 

simulations are limited to time scales much shorter (< milliseconds) than those of many 

biochemical processes,4-6 even using the latest high performance computing resources or 

specialized computing chips.7-9 On the other hand, conformational equilibria of proteins and 

nucleic acids and the catalytic functions of enzymes and ribozymes often occur on time 

scales from milliseconds to seconds or longer.10 Besides utilizing more powerful computing 

hardware,5,7-9,11 developing more advanced conformational sampling techniques1-3,12-14 is 

an important alternative to address the timescale challenge of MD simulations. These 

enhanced sampling techniques are generally based on the imposition of thermodynamic or 

alchemical biasing forces on the relevant chemical reaction space and are able to speed up, 

often by many orders of magnitude, conformational interconversions otherwise too rare to 

be observed in traditional simulations.15-27 Typically true (unbiased) thermodynamic 

observables have to be extracted from biased simulation results via postprocessing using 

reweighting techniques.28-36

Generalized ensemble methods37-43 are popular among the many enhanced conformational 

sampling methods and have been shown to provide better conformational mixing and faster 

convergence in many situations. These algorithms produce a random walk, not only in 

conformational space, but also in thermodynamic or Hamiltonian parameter spaces, such as 

the temperature of the system treated as a stochastic variable in the simulated tempering 

method. In a typical implementation, the information about the state of the system alternates 

between updates of particle positions and velocities from independent molecular dynamics 

(MD) or Monte Carlo (MC) simulations, and stochastic updates of thermodynamic 

conditions and/or Hamiltonian parameters (defined as the thermodynamic “state”), with the 

microscopic reversibility criteria applied to satisfy a valid canonical ensemble at each state. 

Generalized ensemble enhanced sampling implementations can be classified as either serial 

or parallel. In serial implementations (such as serial tempering and Hamiltonian hopping) 

only one MC/MD simulation thread is carried out in position space, and updates of the state 

of the system are performed periodically which requires iteratively adjusted free energy 

weights to equalize state populations visited.44-47 Since the determination of optimal free 

energy weights is equivalent to the computation of a free energy profile, it can be time 

consuming, especially when they are slowly convergent due to rare conformational 

transitions. In contrast, parallel replica exchange (RE) algorithms37-43,48,49 overcome the 

need of serial algorithms for the prior determination of free energy weights by launching 

many replicas (multiple independent MC/MD threads) at the same time. Those replicas are 

executed in parallel in such a way that there are as many replicas as thermodynamic states of 

the system included in the generalized ensemble and only one state is assigned to each 

replica. Periodically, replicas exchange their current state assignment with that of another 

replica, according to the probability of exchanges controlled by microscopic reversibility 

requirements for sampling the generalized ensemble spanning both the configurational space 

of each replica and the combinatorial set of assignments of states to replicas. The 

thermodynamic equivalency of replicas and the fact that there is always one replica at each 
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state, guarantee that at steady state each replica will visit each state with equal probability, a 

clear advantage over serial state-hopping algorithms dependent on prior knowledge of free 

energy weights.

This advantage of REMD is however counterbalanced by the need of RE for a parallel 

computational environment sufficiently large to host each replica of the system; a 

requirement that has historically discouraged the deployment of RE on a large scale. In our 

view, this is not necessarily due to the lack of availability of parallel computer hardware 

technologies—in recent years multi-core high performance computing clusters and 

computational grids have exponentially increased in both numbers and power—but rather to 

the lack of suitable software technologies capable of efficiently harnessing this latent 

computer power. Current implementations of the replica exchange method by the 

computational chemistry community are in fact severely limited in terms of its scalability 

and control when many replicas are involved. In conventional implementations of RE,37-43 

simulations progress in unison and exchanges occur in a synchronous manner right after all 

replicas reach a pre-determined state (typically the completion of a certain number of MD 

steps, the MD period). This synchronous approach has several severe limitations. Firstly, 

sufficient dedicated computational resources must be secured for all of the replicas before 

the simulation can begin execution. Secondly, the computational resources must be statically 

maintained until the simulation is completed. Thirdly, a failure of any replica simulation 

typically causes the whole calculation to abort. Fourthly, the centralized synchronization 

prefers homogeneous computing environments otherwise the efficiency of Synchronous 

REMD (Sync REMD) will deteriorate due to the lag from the slowest computing unit. The 

reliance on a static pool of homogeneous computational resources and zero fault tolerance 

prevents the synchronous RE approach from being a feasible solution for new applications 

that demand multi-dimensional RE algorithms employing hundreds to thousands of 

replicas.50-52 Besides the simulated tempering47 and similar methods53,54 which require 

nontrivial pre-determined weighting factors, a multiplexed replica exchange method 

(MREM)55 has also been proposed to perform RE simulations on the folding@home 

distributed computing environments56 although exchanges between multiplexed replicas still 

require synchronization.47,55

In this work we introduce a replica exchange methodology named ASyncRE which removes 

the synchronizing concept. The basic idea of asynchronous RE is to assign all replicas to 

either the running or the waiting lists, and allowing a subset of replicas in the waiting list to 

perform exchanges independently from the other replicas on the running list. Because the 

exchanges do not rely on centralized synchronization steps, the ASyncRE algorithm is 

scalable to an arbitrary number of processors and avoids the requirement of maintaining a 

static pool of processors. Thus the method is suitable for deployment in both logically and 

physically distributed environments, in which the number of concurrently running replicas 

changes dynamically depending on the available resources. Prototypical implementations57 

have shown the potential range of benefits that can be achieved with dynamic execution and 

asynchronous RE. In addition to resiliency with respect to dynamically changing resources, 

we have shown that asynchronous RE also provides a number of important additional 

benefits, such as higher performance on clusters of machines with heterogeneous CPU 

speeds and the ability to employ complex exchange schemes that improve mixing by going 
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beyond conventional nearest neighbor communication. The challenge is to provide these 

capabilities at extreme scales, and with the flexibility and efficiency required to enable 

science applications currently out of reach. In this report we demonstrate how this challenge 

can be overcome by our recent implementations of the asynchronous RE algorithm which is 

capable of scaling to very large numbers of replicas and taking advantage of dynamically 

distributed and heterogeneous computational resources, including XSEDE high performance 

clusters, university grid networks consisting of spare computers on campus (Temple 

University and Brooklyn College at CUNY), and world-wide networks contributed by 

volunteer computing units (World Community Grid at IBM).

To improve the efficiency and convergence of conventional synchronous (Sync) REMD, 

many developments have been attempted, including modifying nonbonded potentials,58-60 

simplifying the solvent contribution by solute tempering,61 graining solute structure,62,63 

applying bias potentials,27,52,64-66 performing exchanges with structure reservoirs,67-69 and 

many others70,71 with Hamiltonian features. On the other hand, many investigations have 

focused on expanding exchange dimensions,39,42,52,72 building Markov state models,73-76 

and optimizing the setting of simulation parameters such as the temperature distribution of 

the replicas,37,77-83, the number of λ values,74 the exchange frequency,84-87 and the number 

of exchanges attempted.73,88 The efficiency and convergence analysis of synchronous 

REMD in comparison with conventional MD has also been carried out in many previous 

studies.75,79,89-95 There is still debate concerning how to select simulation parameters such 

as the length of individual MD simulations (MD or exchange period) within a single cycle of 

MD + exchange, the number of exchanges attempted after an MD period within a single 

cycle, and the MD period when the total number of exchanges attempted and the total length 

of simulations are fixed. Some early results showed that the efficiency of REMD could be 

significantly reduced when the MD period is smaller than a certain number (1 ps).89,90,92 

Recent results,84,85 however, found that the efficiency increases monotonically as the MD 

period becomes smaller and led to so called “infinite swap” methods.86,87,96 Previous 

results73,88,92,97 also illustrated that at regular MD periods, the number of attempted 

exchanges should be ideally chosen as large as feasible, namely increasing the number of 

exchanges within a single replica exchange cycle can improve the efficiency of REMD. No 

study can be found for “packing” the MD periods together with exchange attempts per cycle 

when the total number of exchanges attempted and the total length of simulation are fixed. 

Since ASyncRE simulations generally require large MD periods (> picoseconds) per RE 

cycle to minimize overhead from heterogeneous computing networks, and our file-based 

implementations of asynchronous (Async) REMD framework allows us more freedom to 

choose exchange settings, all of these become critical for achieving an efficient ASyncRE 

simulation protocol. Another difference between our implementations of Async and Sync 

REMD is that a replica in Async REMD simulations performs exchanges with all other 

replicas not limited to its nearest neighbors in thermodynamic space as is the case for 

traditional Sync REMD simulations. One of the goals of this report is to present the relevant 

efficiency analysis in the context of the ASyncRE methodology.
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Methods

Replica Exchange Sampling

The conformational sampling problem can be formalized as the problem of efficiently 

drawing samples of molecular conformations x from the canonical distribution of the 

chemical system:

(1)

where U(x∣θ) is the potential energy function of the system at molecular configuration x, 

parametrically dependent on environmental conditions (volume, etc.), chemical composition 

(molecular topologies, concentrations, etc.) and modeling parameters (partial charges, QM 

basis functions, biasing potential settings, etc.) collectively denoted as θ. For the following 

we will define the dimensionless potential energy function u(x∣β, θ) = βU(x∣θ), which 

depends parametrically on both the inverse temperature β as well as the system parameters θ. 

For ease of notation we will denote the state of the system as s = (β, θ), fully specified by the 

joint set of inverse temperature and system parameters. Z(β, θ) = Z(s) is the canonical 

configurational partition function at state s = (β, θ) defined such that Eq. (1) is normalized 

with respect to x. Metropolis Monte Carlo (MC) and Molecular Dynamics (MD) are two 

standard molecular modeling methods to sample Eq. (1). These however are limited by slow 

equilibration rates due to rarely crossed energy barriers and entropic bottlenecks connecting 

stable conformational domains.

The Replica Exchange (RE) method37,38 attempts to enhance sampling by considering the 

extended ensemble described by the distribution

(2)

where the index i denotes one of M realizations of the system, called replicas, with 

molecular configuration xi at the assigned state s[i] taken from a discrete set (s1, s2, …, sM) 

of M possible states without repetition, such that no state is assigned to more than one 

replica (although equivalent states in the state set are allowed). The symbol {s} denotes one 

of the M! permutations of the assignment of states to replicas and s[i] is the state assigned to 

replica i according to the given permutation. For example with three replicas and three 

states, (s[1] = s2, s[2] = s1, s[3] = s3) is one such permutation, in which state s2 is assigned to 

replica 1, state s1 is assigned to replica 2, and state s3 is assigned to replica 3.

Because there are no cross terms, the partition function, ZRE, corresponding to the 

normalization factor in Eq. (2), is given by the product of the partition functions at each state

(3)

and is, consequently, independent of the state permutation {s}. It follows that any 

thermodynamic quantity of the replica exchange extended ensemble can be computed with 

an arbitrary state permutation, or that, equivalently, any two permutations will result in the 
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same value of thermodynamic quantities. This property is exploited in the replica exchange 

conformational sampling method in which replicas are allowed to explore both 

conformational space, x, and chemical/parameter space s by sampling the discrete space of 

M! state permutations {s}. Formally the method samples the joint distribution

(4)

where pRE(x1, x2, …, xM ∣{s}) is defined above and we have chosen uniform prior 

probabilities, p({s}) = 1/M!, of state permutations. Similarly, Eq. (4) can be equivalently 

written as

(5)

where we have assumed uniform probability, p(x1, x2, …, xM), in configurational space in 

absence of potential energy. Comparing Eqs. (4) and (5) we see that the conditional 

probability pRE(x1, x2, …, xM ∣{s}) of molecular configurations given the permutation of 

states and the conditional probability pRE({s}∣x1, x2, …, xM}) of state permutations are 

given by the same expression [the numerator of Eq. (2)] by interpreting it alternatively in 

terms of (x1, x2, …, xM) or {s} as the independent variables.

Asynchronous Replica Exchange

In conventional synchronous implementations of RE37,38 the reassignment of states to 

replicas is coordinated by a master process (typically implemented using MPI) and occurs 

simultaneously for all replicas after these have reached a suitable synchronization point, 

such as the completion of a given number of MD steps (MD period). Synchronous RE (Sync 

RE) is a suitable algorithm for stable, tightly coupled, and uniform computing architectures, 

such as a large High Performance Computing (HPC) cluster, where many MD threads can 

efficiently execute in parallel at equal speeds for extended periods of time without failures. 

When these conditions are met, it is straightforward to implement synchronous RE 

algorithms capable of achieving a high rate of exchanges with minimal impact of the MD 

stoppage time on the overall throughput.

Synchronous implementations of RE, however, are either not feasible or extremely 

inefficient in heterogeneous environments, as in the extreme case of volunteered 

computational grids such as IBM’s World Community Grid (WCG). In these environments 

interprocess communication across compute nodes is typically not available, and the pool of 

compute nodes changes dynamically without guarantee of stability or homogeneity. Similar 

concerns exist for larger installations as, for example, when attempting to straddle one large 

coupled parallel simulation across two or more HPC clusters connected by a thin network 

link. As illustrated in this work, for multi-dimensional RE simulations involving a large 

number of replicas (hundreds to thousands), there are clear benefits of alternatives to 

synchronous RE in terms of resource allocation, resiliency to failure, and ease of 

implementation even on tightly coupled HPC clusters.

Unlike parallel numerical algorithms, such as molecular dynamics, requiring 

synchronization between parallel threads, the replica exchange method itself does not 
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impose the restriction that exchanges should necessarily occur synchronously across all 

processors. In particular the RE method itself does not require that all of the replicas be 

running at the same time. There are therefore no obstacles in principle preventing the 

deployment of RE over distributed and heterogeneous computing infrastructures. An 

asynchronous RE algorithm based on a decentralized over-the-network mechanism has been 

developed by some of us some years ago.57,98 That work showed that the asynchronous 

prescription can provide significant advantages over the conventional synchronous 

implementation in terms of scalability with increasing number of replicas, both with respect 

to CPU utilization and the ability to employ a non-nearest neighbor exchange scheme 

leading to improved mixing in configurational and state spaces.

In this work we propose a similar algorithm in spirit but based on a coordination server that 

conducts exchanges on the file system where replicas not currently running are 

checkpointed. The algorithm can be described schematically as follows:

1. Job files and executables for each replica are set up locally as appropriate 

depending on the application.

2. Periodically, a subset of the replicas are submitted for execution of MD simulation 

remotely. At the same time the output of remote replicas that have completed an 

MD execution cycle are collected.

3. Periodically, exchanges of thermodynamic parameters are performed between the 

local replicas not currently executing. The energetic and structural information 

required for the exchange steps are collected from the output files of the replicas. 

Swaps are implemented by replacing values of parameters, in the MD engine input 

files as appropriate. New cycles are then initiated by re-submitting replicas for 

execution (point 2).

It is evident that in this algorithm exchanges occur asynchronously, that is for example they 

occur for some replicas while other replicas are undergoing MD. The algorithm does not 

require a direct network link between the compute nodes as all exchanges occur on the file-

system of the coordination server. Furthermore the algorithm does not rely on a static pool 

of compute nodes as each run cycle of a replica can occur on a different compute node that 

does not need to be secured in advance. We have implemented the ASyncRE methodology 

for XSEDE high performance cluster resources, the BOINC distributed computing for 

campus grid networks like the ones at Temple University and Brooklyn College at the City 

University of New York, and we are working on an implementation for the world-wide 

distributed BOINC networks like World Community Grid (WCG) at IBM consisting of 

650,000 volunteers and 2,700,000 computing units. A brief introduction to the specific 

implementations is included as an Appendix and a more complete description of the 

software will be published soon.99 The software is free to download at (https://github.com/

ComputationalBiophysicsCollaborative/AsyncRE).

Replica Exchange Scheme

In RE, sampling is performed through a Markov chain alternating between updates of 

molecular configurations using MC or MD independently for each replica at a fixed state, 
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and updates of state assignments to replicas (permutations) via a series of coordinated 

attempted swaps of states among pairs of replicas according to MC algorithms. In the 

simplest variation, a new permutation of states {s′} is proposed at random from the current 

permutation {s} typically by swapping two randomly picked indexes, corresponding to 

exchanging states among a pair of replicas. The proposal is then accepted with probability

(6)

based on the well-known Metropolis scheme. The acceptance probability of this randomly 

picked update is typically very low unless it is downhill (such as, for example, when giving 

the lower temperature to the replica with the lower potential energy) or when the 

permutation involves neighboring states. For large multi-dimensional simulations covering a 

large portion of state space the probability of picking a pair of replicas with neighboring 

states can be very small. Because of the high rate of rejections this algorithm (referred to as 

“Metropolis all-to-all”) results in slow diffusion in parameter space.

One alternative (referred to as “Metropolis nearest-neighbor”) is to select pairs of replicas 

for exchange so as to minimize the rejection probability of the exchange. In conventional 

one-dimensional implementations of RE (those in which only the temperature or a single 

thermodynamic parameter is varied at constant temperature) it is common to limit exchanges 

between neighboring replicas, that is those that hold immediately adjacent states, (e.g. in the 

nearest neighbor exchange scheme a set of attempted exchanges is performed between 

paired nearest neighbor thermodynamic states). On the other hand, for more complex 

multidimensional RE implementations, limiting attempted exchanges to neighboring states 

can be problematic. For the ASyncRE methodology we designed, only the replicas in the 

waiting list can participate in the exchange process, therefore we implemented an algorithm 

for the sampling of the state permutation space which does not require the prior 

identification of neighboring states, similar to the Metropolis-based independence sampling 

(MIS) algorithm by Chodera & Shirts,88 which attempts to exchange two replicas randomly 

picked but follows the same Metropolis criterion, and it was postulated that this algorithm 

approaches the Gibbs sampling limit when the number of swaps is of the order of M3 to M5.

BEDAM Method and UWHAM Reweighting for Estimating Absolute Binding Free Energy

The Binding Energy Distribution Analysis Method (BEDAM),100-104 a novel approach for 

absolute binding free energy estimation and analysis developed in our group, is based on a 

sound statistical mechanics theory105 of molecular association and efficient computational 

strategies built upon parallel Hamiltonian replica exchange sampling (λ hopping)61,106 and 

thermodynamic reweighting.28,31,33,35 The total potential energy of the receptor-ligand 

complex can be reduced to the dimensionless form as

(7)

where λ is an alchemical progress parameter ranging from 0, corresponding to the uncoupled 

state of the complex, to 1, corresponding to the fully coupled state of the complex. U0(x) is 
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the potential energy of the complex when receptor and ligand are uncoupled, that is as if 

they were separated at infinite distance from each other. The quantity b(x), called the 

binding energy, is defined as the change in effective potential energy of the complex for 

bringing the receptor and ligand from infinite separation to the given conformation x of the 

complex.

The BEDAM method calculates the binding free energy  between a receptor A and a 

ligand B using the AGBNP implicit solvation model107,108 as :

(8)

where β = 1/kBT, C° (=1M) is the the standard concentration of ligand molecules, Vsite is the 

volume of the binding site, and p0(b) is the probability distribution of binding energy (b(x) 

in Eqs. 7 and 8) collected in an appropriate decoupled ensemble of conformations in which 

the ligand is confined in the binding site while the receptor and the ligand are not interacting 

with each other but both only with the solvent continuum.

Earlier versions of BEDAM100 were implemented in our IMPACT109 molecular simulation 

package using the synchronous nearest-neighbor exchange scheme and performing the 

Hamiltonian replica exchange only in the λ space. Diffusion along the λ variable connects 

the bound and unbound conformational states and accelerates the exploration of 

intermolecular degrees of freedom. The ability to carry out extensive conformational 

sampling of relative position and orientation of the ligand with respect to the receptor is an 

advantage of BEDAM100-104 over existing free energy perturbation (FEP) and absolute 

binding free energies protocols in explicit solvent.

In the multi-dimensional BEDAM method as illustrated in Fig. 1 and implemented as the 

ASyncRE framework, the system is modeled with λ and β as exchange parameters. The 

purpose of sampling along λ is to enhance mixing of conformations along the alchemical 

pathway while high temperatures enhance sampling of internal molecular degrees of 

freedom at each alchemical state. We mention that the temperature is only one of the 

additional thermodynamic coordinates designed to activate more thoroughly intramolecular 

degrees of freedom that can be implemented in our file-based ASyncRE implementations 

using the IMPACT MD engine. In Figs. S1 and S2 of Supporting Information, we show 

several time series of λ and temperature for replicas from the 1D and 2D Async RE 

simulations. It is clear that in both 1D and 2D Async RE implementations the diffusion 

speed in thermodynamic state space increases as the number of exchanges is increased after 

a MD period.

In this work, we employed the unbinned weighting histogram analysis method 

(UWHAM)34,35 to estimate binding energy distributions p0(b) and binding free energies 

 from binding energy samples obtained from the HREM 

simulations. The unbinned WHAM is a recent development and can treat, in a very efficient 

way, sparsely distributed interaction energy samples as obtained from unmodified 

interaction potentials that are difficult to analyze using standard binning methods.28,30 The 
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theoretical derivation and numerical validation of UWHAM have been reported 

recently,34,35 along with the comparison with other methods such as WHAM28,30 and the 

multi-state Bennet acceptance ratio method (MBAR).33 The code implementation also has 

been incorporated into the R package available at (http://cran.r-project.org/web/packages/

UWHAM/index.html).

Metrics of Efficiency and Convergence

Currently there is no universally accepted metric for evaluating the sampling efficiency in 

REMD simulations although several methods have been utilized in previous work such as 

the slowest eigenvalue of the Markov chain from an analysis of the state transition 

matrix,79,88 correlation time and end-to end transit of the replica state index,88 variances of 

the estimated means of relevant observables,75,91,93 and root-mean-square deviation 

(RMSD) of related observables of test simulations from the corresponding reference 

simulation.84,85 In this work, we performed statistical inefficiency analysis110 and extracted 

the total effective relaxation time of the binding energy at λ = 1.0, which includes all 

relaxation effects both from MD simulations and replica exchange mixing. The statistical 

inefficiency (s) can be extracted from the block averaging of the binding energy series and is 

related to total effective relaxation time of binding energy (τu) as below, 110

(9)

where the whole series of length T is divided into nb blocks of length Tb and < u >b is the 

time average from a block of the length of , and 

 is the corresponding variance from nb blocks. In 

contrast, < u > and σ2(u) are the average and variance of the binding energy calculated from 

the whole series T = Tbnb.

To evaluate the divergence of the binding energy distribution from a target distribution, we 

also calculated the Kullback-Leibler (KL) divergence111 defined as

(10)

which represents an approximated distance between the calculated distribution Q(i) and the 

target one P(i). Namely DKL → 0 as Q(i) → P(i) for all bins from the distributions.

Results

1D Sync REMD Simulations

The model complex we studied is b-cyclodextrin-heptanoate as depicted in Fig. 2, one of the 

host-guest systems investigated in our previous work.101,103 As a benchmark we performed 

standard 1D Synchronous BEDAM simulations at 16 λ values (0.0, 0.001, 0.002, 0.004, 
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0.01, 0.04, 0.07, 0.1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, 0.95, and 1.0) and two different temperatures 

(200 and 300K respectively) with a MD period of 0.5 ps per RE cycle, using the OPSL-AA 

force field112,113 and the AGBNP2 implicit solvent model.108 The binding energy 

distributions at λ = 1.0 are displayed in Fig. 2 (the results shown correspond to the 

distributions obtained after UWHAMing) for both 200K and 300K, and were calculated 

from 1.152 μs aggregated simulations with 16 replicas (72 ns for each replica). The multiple 

peaks in the binding energy distributions correspond to different orientations of heptanoate 

in the host cavity, each characterized by different hydrogen bonding patterns with b-

cyclodextrin.101,103 The binding free energies estimated from these two simulations are 

-0.60 and -6.58 kcal/mol for 300 and 200K respectively. These two long 1D Sync REMD 

simulations will serve as the golden standard for evaluating our 1D and 2D Async REMD 

simulations with different combinations of MD simulation period per RE cycle and the 

number of exchanges attempted after the MD period per RE cycle. All 2D Async REMD 

simulations have the same 16 λ values and the temperature dimension is extended to the 

following fifteen temperatures (200, 206, 212, 218, 225, 231, 238, 245, 252, 260, 267, 275, 

283, 291, 300K), resulting in a total of 16 × 15 = 240 replicas with 240 different pairs of (λ, 

β) values.

Convergence and Efficiency Analysis for 1D Async REMD

Figure 3a shows the binding free energies as a function of simulation time from 1D Async 

REMD using different combinations of the MD period per RE cycle and the number of 

exchanges attempted per RE cycle, along with the golden standard from 1D Sync REMD. 

The binding free energies from all simulations converge to a value of around -0.60 kcal/mol 

at 300K before 30ns. The final distributions of binding energies from 1D Asnyc REMD are 

consistent with that of Sync REMD as displayed in Fig. 3b and also in Fig. 3c for KL 

divergence curves. The slight differences around the three peaks originates from the 

accumulated effects of the different initial conditions since all data points in the time series 

including the initial equilibration have been included in the distributions.

Figure 3d shows the results of the block averaging of binding energies from 1D Async 

REMD simulations when only one exchange was attempted per RE cycle after an MD 

period (1ps or 10ps). From the values of inefficiency s (the plateau value when the block 

size increases), it is clear that for a fixed number of exchange attempts per RE cycle a 

shorter MD period is more efficient, which is consistent with previous work from other 

groups.84,85,89,90,92 The underlying rationale is that the REMD simulation with a longer MD 

period involves a smaller number of total exchanges attempted per unit time, and therefore 

results in a slower equilibration of replicas. This observation suggests an apparent drawback 

of asynchronous implementations of replica exchange since the MD period generally can not 

be too small (> 1ps) due to the overhead from the latency response of the local filesystem 

and/or the allocating and transferring of MD jobs by the job manager. But this is not really a 

problem, see the following results and discussion below.

When the MD period per cycle is fixed to a large value (10 ps) as in Fig. 3e, the REMD 

simulation becomes more efficient as the number of attempted exchanges is increased (from 

10 to 100). This observation is in agreement with our previous studies of Markov 
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models73,97 of replica exchange and also REMD simulations by other groups.88,92 The fact 

that simulations with 50 and 100 exchange attempts have almost the same efficiency 

suggests that a fast exchange limit exists when the MD period per cycle is held constant. We 

explore the issue of the fast exchange limit further in related work.114 From Fig. 3e, it can 

also be seen that the inefficiency s values of Async REMD simulations (with 50 or 100 

exchanges) can be smaller than that of Sync REMD simulation with a typical MD period of 

0.5ps. This information is critical for improving the efficiency of Async REMD simulations 

where the overhead from heterogeneous and distributed computing environments 

necessitates longer MD periods per RE cycle (> 1ps). Namely, we can increase the number 

of exchanges per RE cycle, until the fast exchange limit is reached, and reduce the replica 

mixing time (improve the efficiency) to a value comparable to the Sync REMD benchmark 

(which employed one set of nearest-neighbor exchange per cycle) despite the longer MD 

period required for Async REMD.

Moreover, from Fig. 3f, we also found that the efficiency increases as the MD period is 

increased to 10ps from 1ps when the number of exchanges attempted per RE cycle is also 

increased, keeping the ratio of exchange attempts per cycle to the MD period per cycle 

constant (fixed at 1 or 5 exchanges per ps in Fig. 3f). This might be considered a surprising 

result since a fixed ratio implies that the total number of exchanges attempted is the same for 

the same total simulation length. However these can be “packed” using different MD 

periods per cycle, such as 1ps MD and 1 exchange, and 10ps MD and 10 exchanges. Figure 

3f illustrates that the longer MD period can lead to higher efficiency when the total number 

of attempted exchanges per unit time is fixed, suggesting that a minimum value of the MD 

period may be required to allow sufficient internal relaxation at a thermodynamic state and 

improve efficiency when the simulations have the same replica mixing effects (the same 

total number of attempted exchanges per unit time). We return to this subject in the 

discussion.

The efficiency analysis above is based on binding energies which is the most direct and 

relevant quantity for binding free energy calculations. We note that similar conclusions are 

also valid for other quantities related to conformational changes. In Fig. S3 of Supporting 

Information, we show the results using the orientational angles of the heptanoate relative to 

the ring plane of cyclodexin, which mainly determines the binding poses of the ligand. The 

results are consistent with Figs. 3e and 3f, although in general the derived total effective 

relaxation times of orientational angles are larger than that from binding energies.

Convergence and Efficiency Analysis for 2D Async REMD

Multi-dimensional REMD is another way to improve the efficiency of REMD 

simulations.39,42,52,115 We have extended the 1D Async REMD simulations (16 λ values) to 

2D Aysnc REMD simulations using the additional temperature space (15 values), resulting 

in 240 replicas and 7.2 μs aggregated simulation time (30 ns for each replica). Figures 4a 

and 4b show the final binding energy distributions and corresponding KL divergences at λ = 

1.0 and T=300K calculated from several 2D Async REMD simulations with different 

combinations of the MD period and the number of exchanges attempted per RE cycle. All 

Xia et al. Page 12

J Comput Chem. Author manuscript; available in PMC 2016 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding energy distributions converge to the result of the standard 1D Sync REMD as in the 

case of 1D Async REMD but in a shorter simulation time (about 20ns versus 30ns).

The efficiency results in Fig. 4 suggest similar trends as that of 1D Async REMD. The 2D 

Async REMD simulation becomes more efficient as the number of exchanges attempted per 

RE cycle is increased when the MD period is fixed (10ps Fig. 4c); efficiency is also 

improved as the MD period is increased to 10ps from 1ps when the ratio of the number of 

exchanges attempted to the MD period is fixed at 1 per ps (Fig. 4d). We also note that the s 

value of the most efficient parameter choice (10ps for the MD period and 8000 for the 

number of exchanges attempted per RE cycle) for 2D Async REMD is almost half of that of 

1D Async REMD (Fig. 3e), indicating that the efficiency of 2D REMD in the fast exchange 

limit can be at least twice as good as running 1D REMD with a standard choice of 

parameters. It is obvious that 2D REMD simulations require much more computing 

resources due to the extension of the temperature dimension, but the simulations also 

provide binding free energies at different temperatures (see Figs. 4e and 4f for results at 

T=200K). More importantly, 2D REMD simulations require much less computing time per 

thermodynamic state due to the faster convergence than that of 1D REMD, since high-

temperature replicas can accelerate the sampling of low-temperature replicas. We note that 

in this work, we performed the 2D REMD in a temperature range below 300K (200, 206, 

212, 218, 225, 231, 238, 245, 252, 260, 267, 275, 283, 291, and 300K), in order to mimic 

stronger binding free energies which are comparable in strength to values typically observed 

in protein-ligand systems.

Efficiency of 2D Async REMD on a BOINC Distributed Network

The efficiency results above were obtained from our Async REMD implementation for 

XSEDE high performance resources and only one homogeneous cluster (Gordon, Trestles, 

or Stampede) was involved for each set of Async REMD simulations. In those simulations 

all replicas have the same CPU wall time for all individual MD simulations. In contrast, for 

the BOINC distributed network at Temple University consisting of 450 CPUs in teaching 

laboratories, the CPU wall times for individual MD simulations (100 ps for the b-

cyclodextrin-heptanoate complex) have wide distributions as shown in Fig. 5a. The 

multimode distribution is not only due to the heterogeneous hardware resources, but also to 

the different interrupt patterns of usage, since the BOINC clients are set so that a running 

MD simulation will be halted once a user login is detected and will be resumed after logout. 

This heterogeneity of the BOINC distributed network also resulted in a wide distribution of 

the number of exchanges attempted, displayed in Fig. 5b (with a mean value around 1200 

exchanges in a 100ps MD period) across the 240 replicas. As such, for the BOINC 

benchmarks we can only specify an estimated wall clock time of exchange cycling for all 

replicas.

One limitation of Async REMD is that the MD period can not be too short as illustrated in 

Table 1 in order to reduce the overhead inherent in the BOINC management infrastructure 

including preparing input files in the local filesystem, delayed queuing inherent to the 

BOINC server, and submitting input files to and receiving output files from remote BOINC 

clients. We can see that, from Table 1, the fraction of overhead can be cut down greatly as 
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the MD period is increased from 10 ps to 100 ps for the b-cyclodextrin-heptanoate complex, 

or as the system size becomes large enough, comparable to that of protein-ligand systems. 

Shown as an example in Table 1 is the timing for simulations of the enzyme ABL kinase. 

We note that the fraction of overhead can be minimized by optimizing the MD period 

through a series of ASync REMD simulations at different MD periods. However, this trade-

off value of MD period, balancing the fraction of time spent on overhead which goes up as 

the MD period decreases and the efficiency of Async RE algorithm which becomes more 

efficient as the MD period decreases, depends on the system size and other settings of 

distributed networks.

Due to the inefficiency of Async REMD if the MD period is too short, we are interested in 

analyzing how efficient the Async REMD can be when a large MD period (such as 100 ps) 

is selected. Figure 5c shows the binding energy distribution calculated from a 2D Async 

REMD simulation using the Temple BOINC grid network, which is in agreement with 1D 

and 2D Async REMD simulations using XSEDE resources. The statistical inefficiency value 

from this simulation is slightly larger than the standard 1D Sync REMD as shown in Fig. 5d.

We point out that the number of exchanges attempted in this case is only an average value 

(1200) from a wide distribution (see Fig. 5b) due to the heterogeneous nature of the BOINC 

distribution network. The value of inefficiency s, however, can be decreased greatly by 

setting a much smaller wall clock time for exchange cycling to increase the average number 

of exchanges attempted. Hence the efficiency of 2D REMD using BOINC shown in Fig. 5d 

is not yet saturated by the fast exchange limit and can be improved further.

Discussion

The ASyncRE methodology described in this work, as illustrated by the applications, is 

capable of supporting large-scale and flexible execution of replica exchange calculations 

with hundreds of replicas. The algorithm is flexible in the sense that it supports different 

coupling schemes between the replicas. The basic idea behind the design of ASyncRE is to 

allow pairs of replicas to perform exchanges independently from the other replicas. Because 

it does not rely on centralized synchronization steps, the algorithm is scalable to a very large 

number of processors and avoids the requirement of maintaining a static pool of processors. 

Thus the method is suitable for deployment in both logically and physically distributed 

heterogeneous environments, in which the number of concurrently running replicas changes 

dynamically depending on the available resources. In contrast, synchronous replica 

exchange is designed for use on stable, tightly coupled, and homogeneous computing 

architectures, such as a large High Performance Computing (HPC) clusters, where many 

MD threads can efficiently execute in parallel at equal speeds for extended periods of time 

without failures. For simplicity in performing our efficiency analysis, we set the number of 

replicas on the waiting list to be roughly equal to the number on the running list. It should be 

possible to optimize the ratio between the number on the waiting list and that on the running 

list since intuitively more replicas on the waiting list will improve the exchange efficiency 

of thermodynamic states but reduce the number of MD simulations completed in a fixed 

clock time and slow down the diffusion speed in conformational space during the MD steps. 

So there is a tradeoff here which we will investigate in a future communication.
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The major drawback of the file-based AsyncRE methodology is that the MD period has to 

be large enough in order to reduce the fraction of overhead due to the preparation of local 

files required to launch the MD simulations every cycle, the job queuing of the BOINC 

server, and the file transferring to and from remote BOINC clients. However, our results 

also show that the loss of efficiency resulting from longer MD periods per cycle can be 

compensated by increasing the number of exchanges attempted per cycle up to the fast 

exchange limit. In addition, the selected MD period can also to be shorter as the system size 

is increased, as shown in the case of ABL kinase. Moreover, the ASyncRE framework is 

very robust to failures of individual MD processes since no synchronizing process is 

required and failed jobs can be resubmitted automatically by the job manager.

The replica exchange MC algorithm implemented in our ASyncRE is based on randomly 

picking exchange pairs, so called Metropolis-based independence sampling.88 Our results 

for 1D and 2D Async REMD simulations show that increasing the number of exchanges 

attempted per replica exchange cycle can significantly reduce the total effective relaxation 

time of the binding energy and improve the efficiency of REMD simulations. However, for 

the traditional implementation of REMD, the exchange process is synchronized after all 

individual MD simulations have finished. The total wall clock time for exchanges will be 

increased significantly if the completion of exchanges requires recalculating the potential 

energies in the new states (in the dimensions of the atomic positions (x) and the 

thermodynamic parameters (β, λ)) through the energy functions in the MD code. In our case, 

the potential energy u(x, β, λ) can be decomposed into a linear combination of u0(x), b(x), β 

and λ (see Eq. 7). The reevaluation of new energies can be processed locally in a very fast 

way because it only involves recombination of these four terms from the output of MD 

simulations and does not need to call MD energy functions remotely. However, for some 

systems using non-linear soft-core potentials for ligand binding, the potential energy cannot 

be decomposed linearly and MD energy functions have to be recalled to obtain the energies 

of new states combining the information of new thermodynamic parameters and atomic 

positions. For those cases, the wall clock time for reevaluating new energies for exchanges 

may become comparable to the time required for the MD simulations as the number of 

attempted exchanges becomes large.

Through our experiments with 1D and 2D Async REMD simulations, we found three 

possible ways to improve the efficiency: (a) reduce the MD period per cycle when the total 

number of exchanges attempted per cycle is fixed; (b) increase the number of exchanges per 

MD period to reach the fast exchange limit when the MD period is fixed; (c) adjust the MD 

period so that it is not smaller than a minimum value which allows for sufficient internal 

relaxation while adjusting the number of exchanges attempted per cycle so as to remain in 

the fast exchange limit. Determining the most optimal set of parameters can be challenging 

since the fast exchange limit and the minimum value of the MD period are not a priori 

known and can vary from system to system. For the b-cyclodextrin-heptanoate host-guest 

system, the minimum value of the MD period is between 1 and 10ps, and the fast exchange 

limit for the MD period of 10 ps is 10 to 100 exchange attempts per replica and per 

exchange cycle. There are some signs that these values can be related to the roughness of the 
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energy landscape, and we are working on a more theoretical analysis of this problem using 

Markov state models to simulate the replica exchange process.114

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

ASyncRE Software Framework, Modular Design, and Implementations on 

Different Computer Resources

As discussed above, the reliance on a static pool of computational resources and zero fault 

tolerance prevents the synchronous RE approach from being a feasible solution for new 

application areas that demand multi-dimensional RE algorithms employing hundreds to 

thousands of replicas. To address these challenges we have developed a novel Python 

package named ASyncRE for distributed replica-exchange applications (https://github.com/

ComputationalBiophysicsCollaborative/AsyncRE). An upcoming publication will focus on 

the design of the software. Briefly, as illustrated in Fig. 6, the idea behind ASyncRE is the 

implementation of replicas as independent executions of the MD engine for a predetermined 

amount of simulation time. Each replica lives in a separate sub-directory of a local 

coordination server where the ASyncRE application runs. MD engine input files are 

prepared for each replica according to the RE scheme under consideration. As resources 

become available, a randomly chosen subset of the replicas are submitted to a Job Manager, 

which launches them on remote resources using a direct ssh link or through a BOINC 

infrastructure, and enter a running state. When a replica completes a cycle remotely (for 

example on XSEDE compute nodes or a BOINC client), the output data is transferred back 

to the server and the replica enters a waiting state, making it eligible for exchange with other 

replicas as well as the initiation of a new cycle. Periodically, exchanges of thermodynamic 

parameters are attempted between replicas in a waiting state using the Metropolis 

Independent Sampling algorithm88 described above restricted to only the pool of replicas in 

the waiting state. Exchanges are conducted based on the appropriate reduced energies as 

specified in user-defined modules. This usually entails, see below, extracting energetic and 

structural information from the MD engine output files. Exchanges result in a new set of 

MD engine input files ready to begin a new execution cycle.
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The ASyncRE software is modularized by taking advantage of the object-oriented 

capabilities of the Python language (class inheritance and method overrides), including three 

major components as described below.

1. modules to interface MD engines. These modules facilitate the interaction with the 

specified MD engine (IMPACT in this case), such as providing routines to 

compose input control files, and to read output files for collecting MD simulation 

results.

2. modules to perform common tasks such as job staging through job manager and 

coordinating exchanges of parameters among replicas. Independence sampling 

algorithms are implemented in the core module, which often calls specialized 

routines defined in user-provided modules implementing specific RE schemes with 

a given MD engine (temperature, Hamiltonian, etc. including multidimensional 

combinations of these). Currently modules for multidimensional RE and BEDAM 

λ-RE alchemical binding free energy calculations with the IMPACT MD engine are 

provided. One key function of modules implementing RE schemes is the 

computation of the reduced potential energy matrix uij= u(xi; sj) in Eq. (2), 

containing the reduced potential energy of each replica i at each of the M states sj. 

This, and the list of waiting replicas, is the only input for the independence 

sampling exchange algorithm implemented in the core module. RE modules also 

often override generic input/output routines in the MD engine modules to, for 

example, extract specific energetic information from output files to compute the 

reduced potential energy matrix.

3. modules to utilize different job transport mechanisms. An early design and initial 

usage of the ASyncRE software (https://github.com/saga-project/asyncre-bigjob) is 

described in a recent report.98 To hide most of the complexities of resource 

allocation and job scheduling on a variety of architectures from large national 

supercomputing clusters to local departmental resources, we have recently 

implemented two different job transport systems: SSH transport for high 

performance cluster resources (such as those of XSEDE), and the BOINC transport 

for distributed computing on campus grid networks like the ones at Temple 

University and Brooklyn College at the City University of New York. Our group 

also received an invitation to join the FightAIDS@home project (http://

fightaidsathome.scripps.edu) and will have access to the IBM computing resources, 

World Community Grid (WCG), a distributed BOINC volunteer grid network in a 

much larger scale (650,000 volunteers, 2,700,000 computing units).
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Figure 1. 
Representation of (λ, T) 2D RE approach to the calculation of binding free energies. Each 

cell represent an alchemical thermodynamic state at each temperature. The red dashed line 

illustrates a possible thermodynamic path connecting the bound and unbound conformations 

of the complex.
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Figure 2. 
(a) Side and top view of b-cyclodextrin-heptonoate complex, (b) binding energy 

distributions at λ = 1.0 for T=300 and 200K from two 72ns 1D Sync REMD simulations.
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Figure 3. 
Simulation results at 300K from 1D Async REMD using different combinations of the MD 

period and the number of exchanges attempted: (a) binding free energies calculated from 

UWHAM reweighting; (b) binding energy distributions including all data points from 0 to 

40 ns; (c) KL divergences of binding energy distributions to the standard 1D Sync REMD 

result; (d), (e) and (f) statistical inefficiencies.
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Figure 4. 
Simulation results from 2D Async REMD using different combinations of the MD period 

and the number of exchanges attempted: (a) binding energy distributions at 300K; (b) KL 

divergences at 300K; (c) statistical inefficiency as the function of the number of exchanges 

attempted; (d) statistical inefficiency as the function of the MD period when the ratio of 

EX/MD is fixed; (e) binding energy distributions at 200K; (f) KL divergences at 200K.
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Figure 5. 
2D Async REMD results from the BOINC distributed network at Temple University: (a) 

distribution of wall clock times for individual 100ps MD simulations; (b) distribution of the 

number of exchanges attempted per MD period of 100 ps across 240 replicas; (c) binding 

energy distributions at 300K; (d) statistical inefficiency.
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Figure 6. 
Schematic diagram of the asynchronous RE algorithm implemented in the ASyncRE 

software. The filesystem resides on a coordination server, each cell represent a replica which 

can be either in a waiting (“W”) state or running (“R”) state. Replicas in the waiting state 

can exchange thermodynamic parameters as illustrated by the curved arrows at the bottom of 

the diagram. Replica in the running state are submitted to the job manager for execution on 

remote compute resources.
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Table 1

Wall Time Information of Async REMD Implemented with BOINC

wall clock time (median) b-cyclodextrin b-cyclodextrin ABL kinase

system size 144 + 22 atoms 144 + 22 atoms 4421+69 atoms

MD period 10 ps 100 ps 10 ps

MD wall time 4m 15s 41m 19s 42m 42s

exchange wall time 4m 39s 14m 35s 16m 26s

overhead 5m 16s 8m 50s 12m 08s

fraction of overhead 37% 13% 17%
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