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Introduction 

Obtaining chemically clear and relevant     
information from Molecular Orbitals (MO) wave      
functions, that are delocalized, is a vast domain        
where the ideas related to localization plays an        
important role.[1] All approaches in this field       
are based on the atomic concept. Density or        
charge analysis,[2][3][4][5][6] ​electronic density    
derivative analysis,[7][8][9][10][11][12] and   
even various Energy Decomposition    
Analysis,[13][14][15] ​all reside on the ground of       
atomic objects, as centroids or as basins. Self        
consistent non orthogonal Valence Bond (VB)      
Theory [16][17][18] and related    
approaches[19][20][21][22] also rely on atomic     
centroids, and among the variety of VB       
approaches,[23] we focussed particularly on the      
first type of approaches, those that can define        
strictly​ ​localized​ ​orbitals.  

These orbitals are used to define bonds and        
lone pairs. A two-electron bond drawn between       
two atoms, A and B, in a Lewis structure,         
embeds a covalent and two ionic VB structures.        
This charge fluctuation is expressed on the basis        
of VB determinants, built on the corresponding       
atomic orbitals, ​a and ​b​: dropping the       

normalization, , ,   

and​ ​ . 

These strictly localized VB structures provide      
the basis of elegant interpretations on the very        
nature of bonding, of the structure of the        
molecules, and even of their reactivity.[24][25]      

This is particularly true for ground states, and        
occasionally​ ​for​ ​excited​ ​states.[26][27]  

For most cases a small number of electrons are         
active (and considered as such in the VB        
formalism), while the inactive electrons can be       
described using inactive orbitals. Those inactive      

orbitals have the same occupation number in all        
the VB structures. Here, the inactive orbitals will        
simply correspond to the ​σ skeleton of       
π​-conjugated compounds. Inactive orbitals can     
indeed be orthogonal one to one another, and        
orthogonal​ ​to​ ​the​ ​active​ ​orbitals.  

In the present contribution, we convert a MO        

wave function to a combination of Lewis
​
or      

 
 

Valence Bond (VB) localized structures. Several      
methods have been proposed in this field, and        
one of the approaches that partly guided us is         
that of Hiberty and Leforestier, where      
Hartree-Fock (HF) and Configuration Interaction     
(CI) wave functions were rewritten as      
combination of VB structures, written in      

minimal basis set.[28]
​
Multi Configurational Self  

 
   

Consistent Field (MCSCF) and Multi Reference      
Configuration Interaction (MRCI) methods give     
more precise results because they embed more       
electronic correlation. They can describe at      
least qualitatively any molecular system,     
including excited states, and they require more       
extended basis sets to reach a reasonable       
accuracy. We redefined the Hiberty-Leforestier     
scheme in such a way that virtually any basis set          
and any multi-determinantal wavefunction can     
be used. We thus considered correlated MO       
wave functions and projected them onto VB       
determinants. Our approach can also be linked       
to Cooper’s or Hirao’s CASVB     

methods,[29][30][31][32][33]
​
which use

 
  

non-singular transformations of the orbitals     
from multi configurational MO wave functions      
to obtain those of the VB determinants as well         
as the coefficients of the VB expansion.       
However, we assume here that the orbitals of        
the VB determinants are known, and we       
evaluate solely the coefficients of the VB wave        
function,​ ​from​ ​the​ ​MO​ ​wave​ ​function.  

The paper is organized as follow: In the first part          
the projection scheme is described, then it is        
tested on two allyl cases (cation and radical),        
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and on the emblematic case of the V state of          
ethene. 

Methods  

As stated above, our MO wave function can be         
any multi determinant wave function. It      
encompasses of course HF, but also virtually       
any MCSCF+CI wave function, such as CASSCF or        

RASSCF.[34]
​
The VB wave function is also

 
      

multi-determinantal but it uses a different      
basis.​ ​We​ ​write 

(1) 

where MO Slater determinants ( ) are      

expanded on MOs that are orthogonal and       
delocalized over the different atoms. VBs      

structures ( ) are expanded on VB spin       

orbitals, that are localized on atoms, and are in         
principle non-orthogonal one to one     
another.[35] One can make either VB structures       
with strictly localized orbitals, or Lewis      
structures, with so-called Bond Distorded     
Orbitals (BDO).[36] In the later case, the BDOs        
are bi-occupied and can extend over two atoms.        
Both types of structures (VB and Lewis) will be         

labelled​ ​as​ ​ ​ ​​in​ ​the​ ​following. 

While and ​are obtained from       

standard MO calculations, both and       

require a specific Valence Bond code.[37][38] In       

the following, we consider that the are        

known and only the ​need to be evaluated.         

The assumption that the ​are known       

makes sense if the VB orbitals can be somehow         
transferable from one system to another,      

and/or from some state to another      

state.[15][39] ​Hence, the can be      

optimized independently from the targeted     
state, and used as building blocks for the wave         
function of a targeted state (ground or excited        

state). If ​and describe the same        

state,​ ​we​ ​can​ ​write:  

(2) 

where N is a normalization factor and        

spans the complementary of the space spanned       

by the basis of the VB structures (the         

basis). We shall also consider that ​ε can be         
small, although it is not compulsory (​vide infra​).        

Moreover, because complements the     

basis, we can write:     

 

Finally, we multiply equation (2) on the left by         

each ​of the basis, and we obtain the         

system of linear equations that can give the set         
of​ ​the​ ​{c​k​},​ ​within​ ​a​ ​renormalization​ ​factor: 

(3) 

The matrix form of this problem is ​B = ​x.S​,          
where ​B is the MO wave function vector written         
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in the ​basis (its ​l​th component writes        

), ​x is the desired     

vector, written in the same basis, and ​S is the          
overlap matrix between the VB structures (      

). We thus define the      

operators that project on each of the        

structures by their action on :      

. Hence,   

is projected onto the ​basis and gives the         

projected​ ​VB​ ​wave​ ​function​​ ​ . 

The resolution of equation (3), to obtain the {        

}, is done with the robust DGESV algorithm        

from the Lapack library.[40] It is interesting to        
note that equation (2) holds true even when ​ε         
is not small. For valence states, we can always         
define a complete VB basis that spans the space         

of , and ​ε is small. However, ​ε is larger          

when the basis set formed by the VB structures         

is not adequately chosen to describe ,       

either because the structures are not relevant,       
or because some structures are missing. Hence,       
even in such a case, a VB wave function can be           
obtained by our approach, although the VB       
wave function thereby obtained might not      
adequately describe the starting MO wave      
function. In order to get some indication       
whether or not the VB wave function       

corresponds to the starting , we simply       

compute the overlap between them, equation      
(4). When ​τ is close to 1 (100 % fit), the VB and             
the MO wave functions are identical, while,       
when it is close to 0 %, the VB and the MO wave             

functions are orthogonal ​one to the other. In         

the following, this overlap is called the trust        
factor,​ ​and​ ​noted​ ​​τ​: 

(4) 

Although very simple, such a trust factor is        
seldom used to assess Valence Bond wave       
functions.[41][42] The ​variations of ​τ​, even      
more than its actual value will be used to check          
the usefulness of an additional VB structure. In        
the end, the weight of each V B structure can          
be obtained with the Coulson-Chirgwin[43]     
formula,​ ​which​ ​writes:  

(5) 

Results 

In this section we use our projection method on         
two classes of systems: primarily on the low        
laying states of allyls (cation and radical), and        
secondly on the ground and on an excited state         
of ethene. The allyl cases are possibly simple        
cases, but they give the opportunity to test how         
symmetry is accounted for while no constraint       
is provided. The ethene case is a reputedly        
difficult case from the MO point of view, and         
was recently considered at the Valence Bond       
level.[44] 

All calculations were carried out with      
GAMESS-US, version May 1 2013 (R1),[45] and       
XMVB 2.0 programs.[46] The 6-311+G(d) basis      
set,[47][48] with 6D cartesian primitives, as      
implemented by default in GAMESS-US, was      
used throughout. The allyls geometries were      
optimized at the B3LYP/6-311+G(d) level in the       
C​2v symmetry group,[49][50] while the     
geometry of the ethene is the experimental       
one.[51] More details can be found in the        
appendices​ ​and​ ​in​ ​Supporting​ ​Information. 

Allyls 
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The allylic systems can be described formally by        
a three-structure resonance; in two of them       
(Lewis structures) the double bond sits either       

on the left ( ) or on the right ( ). These          

structures use BDO orbitals, extended on two       
atoms, to describe the ​π bond. A third        
structure must be added. It is a diradical VB         

structure labelled .[52][53] It is considered      

as a long-bond, and is drawn with a curvy dash          
line to show that the two electrons are        
singlet-coupled. As each orbital is strictly      
localized on one atom, it corresponds to a VB         
structure rather than a Lewis structure. See       
Appendix 2 for more details on the VB orbital         
pre-optimization. 

 

 

Scheme 1: Three-structure resonance for the      
allyl. The ​x symbol indicates the position of the         
charge,​ ​or​ ​of​ ​the​ ​radical​ ​dot.  

Allyl​ ​Cation 

For the allyl cation, the ​x symbol in Scheme 1          
indicates a positive charge, and the three       
structures are directly obtained from this      
scheme. In Lewis structures, the ionic/covalent      
ratio is biased. To discriminate covalent from       
ionic components, we can rewrite them as VB        

structures rather than Lewis’: from ​we       

generate { , , }, ​to { ,    

, }, and the long bond structure       

is retained as is. The redundancy =       

can be easily removed ( ​is in brackets in         

Scheme​ ​2).  

 

 

  

 

 

 

Scheme 2: VB structures for the allyl cation; the         

brakets around indicated that this      

structure is removed ( = ). Circles     

represent​ ​atom-centered​ ​p​ ​orbitals. 

We considered the first two singlet states of the         
allyl cation. CASSCF(2,3) calculations were used      
to describe both the ​1​A​1 ground state and the         

first ​1​B​2 excited state. The { } ​basis were        

obtained by standard VBSCF calculations of the       
ground state in three different cases: with only        

the Lewis structures { , } (noted {     

}), with the addition of the diradical structure {        

, , } (or { }), and with the VB       

basis { , , , , , } (or ​{   

})​. 

As a result, we obtained for each case the          

coefficients ( ) of the projected wave      

function ( ), for the ground and for the        

excited states. These are not eigenvectors of       
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the VB Hamiltonian, so we computed the       
expectation value of the energy, which gives       
access to the energy difference between the       
two states (​Δ​E, Table 1). The trust factor ​τ         
(Equation​ ​4)​ ​is​ ​reported​ ​as​ ​well. 

Table 1. Trust factor (​τ​) and relative energy obtained for the           
projection of the CASSCF(2,3) wave function of the ground (1          
1​A​1​) or excited (1 ​1​B​2​) states of the allyl cation, on different            
basis​ ​of​ ​localized​ ​structures. 

Projected 
Wave​ ​function 

1​ ​​1​A​1  
τ​​ ​​(%) 

1​ ​​1​B​2 

τ​​ ​​(%) 
Δ​E​ ​(eV) 

{ } 91 92 9.03 

{ } 98 94 8.12 

{ } 100 99 6.53 

CASSCF - - 6.13 
 

The trust factor is always close to 100%, so the          
projected wave functions adequately represent     
the physics of the corresponding state. For the        

ground state, when is included we notice        

a clear increase of the trust factor: ​τ goes from          
91% to 98%. It has been shown elsewhere that         

plays indeed an important role on the        

resonance energy.[52][53] It is also shown that       
the basis of the VB structures is better than the          
Lewis ones and better balanced: the trust factor        
for the both ground and excited states is closed         
to 100% (100% and 99%), while when Lewis        
structures are used the trust factor for the        
excited state is a little smaller (94%). Only with         
this basis of VB structures is the energy        
difference between the two states reasonably      
good. The energy difference is then quite close        
to the CASSCF value (6.53 eV instead of 6.13         
eV). In Lewis related basis, the energy       
difference between the two states is more than        
2 eV too large: 8.12 eV instead 6.13 eV. This is           
to be attributed to the excited state, which has         
a too large energy. The energy criterion is        
obviously tougher than the trust factor, and the        

error on ​Δ​E reminds us that orbital       
optimization can be required to obtain more       
accurate energies. However, the quality of the       
projected wave function is adequately gauged      
by​ ​​τ​. 

The projected wave functions can also be       
compared to actual eigenvectors of the      
Hamiltonian expressed on the basis of these VB        

structures { }. Both ground and excited      

states are obtained without further modifying      
the VB structures, only the coefficients of the        
VB expansion are (slightly) different. In any case        
the projected functions and the eigenvectors      
are​ ​essentially​ ​the​ ​same​ ​(Table​ ​2).  

Table 2. Allyl cation: coefficients of the projected VB wave          
functions compared to those of the eigenvectors computed in         
the same basis of VB structures, with the same VB          
orbitals.[a,b] 

Projected  c​1 c​a c​b c​c c​d 

{ } 

1 
1​A​1 

1 
1​B​2 

0.55 
1.15 

- 
- 

- 
- 

- 
- 

- 
- 

{ } 

1 
1​A​1 

1 
1​B​2 

0.45 
1.08 

- 
- 

- 
- 

- 
- 

0.38 
0.00 

{ } 

1 
1​A​1 

1 
1​B​2 

- 
- 

0.42 
0.69 

0.03 
0.15 

0.23 
0.00 

0.34 
0.00 

 
Eigenvecto

r 
      

{ } 

1 
1​A​1 

1 
1​B​2 

0.55 
1.15 

- 
- 

- 
- 

- 
- 

- 
- 

{ } 

1 
1​A​1 

1 
1​B​2 

0.45 
1.08 

- 
- 

- 
- 

- 
- 

0.38 
0.00 

{ } 

1 
1​A​1 

1 
1​B​2 

- 
- 

0.42 
0.69 

0.04 
0.15 

0.22 
0.00 

0.34 
0.00 

[a] We obtained with no symmetry constraint c​2 = c​1 for the A​1             
state, and c​2 = – c​1 for the B​2 state. This is consistent with the               
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symmetry of the states. [b] We also obtained c​e ​= c​a and c​f ​= c​b               
for​ ​the​ ​A​1​ ​​state,​ ​and​ ​c​e​ ​​=​ ​–​ ​c​a​​ ​and​ ​c​f​ ​​=​ ​–​ ​c​b​ ​​for​ ​the​ ​B​2​ ​​state. 

 

For instance with the two Lewis structures {       

}: c​1​=0.55 for the A​1 ground state and        

c​1​=1.15 for the B​2 state are obtained by both         
the projected and the standard approaches.      
Hence, projected and eigenvectors are identical.      

With { }, the same is encountered (c​1​,       

c​d​)=(0.45, 0.38) for the ground state whatever       
the method we used (projected or      
eigenvectors). The same matching is seen for       
the excited state: (c​1​, c​d​)=(1.08, 0.00). Hence,       
the remaining defects of the projected wave       
function in these small basis is not due to the          
projection approach, but to the quality of the        
basis used for the structures, and notably to the         
VB​ ​orbitals. 

The agreement between projected and     
eigenvectors is identically good when VB      

structures { } are used instead of the Lewis        

ones. The coefficients (c​a​, c​b​, c​c​, c​d​) displayed in         
Table 2 for both methods show very small        
differences.  

Allyl​ ​Radical 

For the allyl radical, the ​x symbol of scheme 1          
indicates a radical dot, and, as it was the case          
for the cation, the three structures of Scheme 1         
are directly obtained from this scheme. In the        
following we use for the structures the same        

notation as in the cation ( , etc), but        

the​ ​structures​ ​are​ ​obviously​ ​different. 

The Lewis structures can also be rewritten to        
obtain VB structures rather than Lewis ones       

(scheme 3: ​corresponds to { , ,     

}, structure to { , , }.     

However, from the long bond structure       

we can generate two new ionic structures       

labelled ​and . These ionic structures       

were obtained differently for the cation. Second       
difference with the cation, while no obvious       
redundancies appear, it is well established that       

is redundant with and : =       

+ .[23] It is thus removed ( ​is in        

brackets​ ​in​ ​scheme​ ​3). 

We considered the two first doublet states of        
the allyl radical using CASSCF(3,3) calculations      
to describe both the ​2​A​2 ground state and the         

first ​2​B​1 excited state.[54][55] The ​basis were        

obtained by standard VBSCF calculations of the       
ground state in three different cases: with only        

the Lewis structures { , }, with { ,     

, }, and with the VB basis { , ,      

, , , , , }, which is   

noted​ ​{ }.  

Again the trust factor is close to 100% for the          
two states, no matter if the Lewis structures are         
expanded as VB structures or not. The       
difference between the expectation values of      
the energy of the two states is comparable to         
that of the parent CASSCF wave functions       
(within​ ​0.5​ ​eV).  
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Scheme 3: VB structures for the allyl radical.        

The brackets around indicated that this       

structure is removed (see text). Circles      
represent​ ​atom-centered​ ​​π​​ ​orbitals. 

It is interesting to note that, while structure        

is redundant with and , it is not          

redundant with Lewis structures and      

. Indeed ​τ is increased from 90% to 97%         

when ​is added to the { , } basis.        

This can be attributed to a balancing of the         

ionic/covalent ratio, which is biased in       

and​ ​in​ ​ . 

Table 3. Trust factor (​τ​) and relative energy obtained for the           
projection of the CASSCF(3,3) wave function of the ground (1          
2​A​2​) or excited (1 ​2​B​1​) states of the allyl radical, on different            
basis​ ​of​ ​localized​ ​structures. 

Projected 
Wave​ ​function 

1​ ​​2​A​2  
τ​​ ​​(%) 

1​ ​​2​B​1 

τ​​ ​​(%) 
Δ​E​ ​(eV) 

{ , } 99 90 5.57 

{ , ,

} 

99 97 3.78 

VB​ ​basis​ ​​{ } 100 98 3.88 

CASSCF - - 3.39 
 

Table 4. Allyl radical: coefficients of the projected wave         
functions compared to those of the eigenvectors computed in         

the same basis of VB structures, with the same VB          
orbitals.[a,b]  

Projecte
d  c​1 c​a c​b c​c 

c​d​/​c​d
i 

{ } 
1​ ​​2​A​2 

1​ ​​2​B​1 
0.59 
0.93 

- 
- 

- 
- 

- 
- 

- 
- 

{

} 

1​ ​​2​A​2 

1​ ​​2​B​1 

0.59 
-0.5

1 

- 
- 

- 
- 

- 
- 

0.00 
0.54 

{ } 
1​ ​​2​A​2 

1​ ​​2​B​1 
- 
- 

0.46 
0.89 

0.12 
0.17 

0.09 
0.11 

0.05 
0.05 

 
Eigen-ve

ctor 
      

{ } 
1​ ​​2​A​2 

1​ ​​2​B​1 
0.59 
0.93 

- 
- 

- 
- 

- 
- 

- 
- 

{

} 

1​ ​​2​A​2 

1​ ​​2​B​1 

0.59 
-0.5

0 

- 
- 

- 
- 

- 
- 

0.00 
0.55 

{ } 
1​ ​​2​A​2 

1​ ​​2​B​1 
- 
- 

0.41 
0.92 

0.16 
0.19 

0.12 
0.09 

0.07 
0.05 

[a] We obtained with no symmetry constraint c​2 = – c​1 for the             
A​2 state, and c​2 = c​1 for the B​1 state. This is consistent with              
the symmetry of the states. [b] We also obtained c​e ​= –c​a​, c​f ​=              
–c​b​, c​g ​= –c​c and c​di’ ​= –c​di for the A​2 ​state, and the wave               
function​ ​is​ ​symmetric​​ ​​for​ ​the​ ​B​1​ ​ ​excited​ ​state. 

 

The projected VB wave functions are again very        
close to the actual eigenvectors of the VB        
Hamiltonian: this can be seen on the       

coefficients of VB structures { } (c​a​, c​b​, c​c​,        

c​di​) displayed in Table 4. The very good match is          
again true for both ground and excited states. In         
Table 4 the numbers obtained by our projection        
scheme differ by at most 0.05 from that        
obtained variationally. For the ground state we       
get by projection c​a = 0.46 while the variationnal         
number is c​a ​= 0.41. A similar accuracy is         
obtained​ ​for​ ​the​ ​excited​ ​state. 

Ethene 

In the following, the ethene was considered in        
its experimental geometry,[51] and the D​2h      
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symmetry notation applies. In order to apply       
2

our projected method, we need to have a        
reasonably good MO wave function to start       
with. The literature on ethene’s excited states,       
and particularly on the V state (1 ​1​B​1u​), is very          
rich, and the recent paper published last year by         
Feller ​et al​.[56] provides a detailed survey of        
the subject, particularly in their supporting      
information. To put it in a nutshell, the ground         
state (1 ​1​A​g​) is called the N state, and the ​1​B​1u           
excited state is called the V      
state.[56][57][58][59][60][61][44] The V state is     
reputedly difficult to describe due to some       
mixing with a Rydberg state of same symmetry        
(2 ​1​B​1u​), and the starting orbitals are of great         
importance. Feller ​et al. provide an estimate of        
the Full CI/complete basis set limit for the        
vertical excitation energy, 8.02 eV,[56] in close       
agreement with others.[62][63][64][65][66][67]   
Finally, the best computations so far differ by        
about​ ​0.3​ ​eV.  

The V state corresponds formally to a ​π→ ​π​*          
excitation. However, not only the ​π electrons,       
but also ​σ​’ ones have to be correlated to         
account for a so-called ”dynamic ​σ      
polarization” mentioned by Angeli.[68] We used      
RAS+S wave functions (see Appendix 1), as in        
some of the Angeli’s approaches. We also noted        
that the diffuseness of the V state is not very          
sensitive to the basis set: ​<​x​2​> ​varies by about     
    
0.5 a​0​

2 when the basis varies from double ​ζ (2          

ζ​) to 5 ζ​.[56] In these conditions, and        
considering that VB calculations will be involved       
and are meaningful in rather small basis sets,        
we restricted ourselves to the 6-311+G(d) basis       
set. Wu ​et al. used a similar basis set to study           
the V state at various VB levels, and they         
obtained values very consistent with the      
literature: <x​2​>= 19.2 a​0​

2 and ​Δ​E​N-V = 7.97        
eV.[44]  

Table​ ​5.​ ​RAS​ ​results​ ​in​ ​the​ ​6-311+G(d)​ ​basis​ ​set​ ​for​ ​the 
electronic​ ​states​ ​of​ ​ethene.​ ​N​ ​corresponds​ ​to​ ​the​ ​ground 

2 ​ ​The​ ​molecule​ ​lies​ ​in​ ​the​ ​(y,z)​ ​plane.​ ​The​ ​two​ ​carbon 
atoms​ ​are​ ​on​ ​the​ ​z​ ​axis,​ ​and​ ​the​ ​π​ ​orbitals​ ​are 
defined​ ​by​ ​the​ ​p​xa​​ ​and​ ​p​xb​​ ​primitives​ ​of​ ​each​ ​carbon 
atom.​ ​See​ ​scheme​ ​4. 

state,​ ​V​ ​to​ ​the​ ​1​ ​​1​B​1u​​ ​state.​ ​V​R​​ ​stands​ ​for​ ​the​ ​V​ ​state​ ​when​ ​it 
is​ ​contaminated​ ​by​ ​the​ ​Rydgberg​ ​state. 

Level 
State  n​Det​​ ​​[a] <x​2​>​ ​ ​​[b] Δ​E​ ​​[c] 
RAS 
[2,2]    

V​R​​ ​: 66 22.29 11.90 
V: 66 18.72 8.73 
N: 68 11.70 0.00 

RAS 
[2,6]    

V​R​​ ​: 678 22.42 11.24 
V: 678 17.45 8.32 
N: 684 11.79 0.00 

[a]​ ​Number​ ​of​ ​determinant​ ​in​ ​the​ ​wave​ ​function.​ ​[b]​ ​Unit​ ​: 
a​0​2​.​ ​[c]​ ​Vertical​ ​excitation​ ​energy​ ​from​ ​the​ ​N​ ​state,​ ​in​ ​eV. 

 

Our RAS+S wave functions for the pure V state,         
in such a small basis set, do not attempt to          
compete with the excellent work found in the        
literature, but, as shown in Table 5, they        
certainly carry the physics of the V state.        
Indeed, both the <x​2​> and the vertical excitation        
energies are in the range of the best values of          
the​ ​literature. 

Projection​ ​of​ ​the​ ​MO​ ​wave​ ​function​ ​onto​ ​VB 

All the VB structures used for this study are         
gathered in Scheme 4. We have considered this        
ethene test case in the spirit of the recent         
Valence Bond study of Wu ​et al.​,[44] and we         
shall particularly use the covalent structure they       

introduced : and . The first three        

structures are the usual VB structures: covalent       

( ),​ ​and​ ​ionics​ ​( and​ ​ ). 
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Scheme​ ​4:​ ​Lewis​ ​structure​ ​and​ ​all​ ​  
structures​ ​for​ ​ethene.  

In Scheme 4, we represent the ​σ system as a          
single orbital with two electrons. This orbital is        

polarized in to illustrate the fact that the        

σ orbitals have been pre-optimized for this       
ionic structure. Indeed, the orbitals adapt to the        
charge situation of the ​π system, with a        
negatively charged carbon atom on the left       
hand side, while it is positively charged on the         
right​ ​hand​ ​side​ ​(see​ ​Appendix​ ​2). 

The ​σ orbitals are bi-occupied while the active        
π orbitals are mono-occupied. They are      
labelled ​a​′ and ​a​” and are singlet coupled, as         

mentioned earlier. Because structure ​is      

the symmetric covalent structure, its ​σ system       
is pictured with a symmetric bi-occupied orbital,       
and the ​a and ​b orbitals are pre-optimized for         
this symmetric occupation. Finally we shall      
emphasize that we use different orbitals for       
different configurations, in the spirit of the       
BOVB[16][17] approach: ​a ​≠ a' ​≠ a" and ​b ​≠ ​b'                 

≠ ​b". The orbitals for and ​are          

defined as follow: ​a'​, ​a"​, ​b' ​and ​b" come from           

and . These ​π orbitals are frozen,        

while the ​σ orbitals have been re-optimized for        

either or for . Accordingly, the ​σ        

orbitals​ ​of​ ​ ​ ​and​ ​ ​ ​look​ ​different.  

Ground​ ​state​ ​of​ ​ethene 

The two aforementioned MO wave functions      
have been used to describe the N state:        

RAS[2,2]+S or RAS[2,6]+S ( ). The different      

sets of VB structures ( ) used for the        

projection on the N state are reported in Table         
6 together with the trust factor and the relative         
energy. Except for the last entry, we used the         
RAS[2,2]+S wave function. The projection on      
three pre-optimized VB structures gives a high       
trust factor, ​τ​=97.7%, and the expectation      
value of the energy of the projected wave        
function serves as a reference energy for the        
whole table. ​In the two entries that follow, the         
basis of the VB structures is biased, so the         
quality of the description is intentionally      
decreased, and we appraise the sensitivity of       
the trust factor to the quality of the basis of VB           
structures. When only the determinants of the       
covalent structure are used, ​τ is only slightly        
lowered (95.6%) and the expectation value of       
the energy rises by +0.8 eV. These two        
variations are consistent but of different      
magnitude. It is interesting to note that when        
only the ionic structures are used ​τ falls down         
to 83.9%, and the mean value of the energy         
rises significantly (+3.2 eV). It is a well-known        
fact that ionic structures do not suffice to        
describe such a covalent bond, and it is nice to          
see that our two indicators, the usual energetic        
one and the variation of ​τ​, make a clear signal          
of​ ​the​ ​misuse​ ​of​ ​the​ ​VB​ ​structures.  

Table 6. Trust factor (​τ​) and relative energy obtained for the           
projection of the RAS[2,2]+S wave function of the N state of           
ethene​ ​on​ ​different​ ​VB​ ​wave​ ​functions. 

VB​ ​wave​ ​function τ​​ ​​(%) Δ​E​ ​(eV) 

{ , , } 
97.7 0.0 
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​ ​​ ​​ ​{ } 
95.6 +0.8 

{ , } 
83.9 +3.2 

{ , , } 
[a] 

99.1 -0.5 

{ , , } 
[b] 

97.7 +0.1 

[a]​ ​The​ ​VB​ ​orbitals​ ​are​ ​pre-optimized​ ​for​ ​the​ ​state​ ​rather​ ​than 
for​ ​single​ ​structures. 
[b]​ ​Projection​ ​scheme​ ​with​ ​the​ ​RAS[2,6]+S​ ​wave​ ​function. 

 

In the next entry it is the RAS[2,6]+S wave         
function that is projected on the full set of         
pre-optimized VB structures. The results are      
similar to those obtained with the RAS[2,2]+S       
wave function: ​τ is identical (97.7%), and the        
expectation value of the energies differ by a        
rather small value, about +0.1 eV. These two        
indicators tell that the two wave functions       
contain​ ​about​ ​the​ ​same​ ​physical​ ​meaning.  

In the three first entries, the VB orbitals were         
pre-optimized for individual structures. In the      
fourth, the VB orbitals are pre-optimized for the        
N state and, as shown by the value of ​τ          

(99.1%)​, the projected VB wave function gets       

a​ ​bit​ ​closer​ ​to .  

The VB coefficients and their corresponding      
weights are given in Table 7. The two        
determinants of the covalent wave function are       
in phase, which is consistent with the g        
symmetry and with the singlet coupling of the        

3

ground​ ​state.  

When the ionic structures are ​included, they        

are in phase (g symmetry). The coefficients and        
the weights of the various cases reported here        
differ by only a few %, which indicates that the          
projected wave function provides roughly the      

3 The inversion operator ​i applies to the ​π orbitals as           
follow:​ ​​i(a)=-b​ ​​and​ ​​i(b)=-a​.​ ​Hence​ ​​i()=()​. 

same physical meaning: the ground state is       
essentially​ ​covalent.  

Table 7. Coefficients and weights of VB structures for the N           
state of ethene; projection of the RAS[2,2]+S wave function.         
Due​ ​to​ ​the​ ​symmetry​ ​of​ ​the​ ​N​ ​state,​ ​c​3​=c​2​​ ​and​ ​,​ ​w​3​=w​2​. 

 
VB​ ​wave​ ​function c​1 

(c​2​) 
w​1 

(w​2​) 

{ , , } 
0.76 

(0.19) 
73.9 

(13.1) 
 

{ , , } 
[a] 

0.78 
(0.17) 

76.9 
(11.6) 

[a]​ ​Projection​ ​scheme​ ​with​ ​the​ ​RAS[2,6]+S​ ​wave​ ​function. 

 

Excited​ ​state​ ​of​ ​ethene 

The V state of ethene belongs to the B​1u         
symmetry. It is antisymmetric through the      
inversion operator ​i​, so the standard singlet       

coupled covalent VB wave function ( ​in       

Scheme 4) cannot be used anymore. Wu ​et al.         
introduced the covalent part of the V state with         
asymmetrical orbitals, ​a" and ​b' as in structure        

for instance.[44] The out of phase       

combination of and is indeed anti       

symmetric.   
4

In Table 8, first entry, we obtained only ​τ =          
91.4% and this value could be enhanced (up to         
98.8%) when VB orbitals are pre-optimized for       
the V state (fourth entry). The difference       
between these cases is thus in the orbitals        
rather than in the projection scheme.      
Interestingly, when we remove some VB      
structures, ​τ varies significantly (entry 2 and       
3). For instance when only the ionics are used         
(entry 2), ​τ drops down to 75.4%, and when         
only the covalent are used, ​τ is as small to          

4 ​ ​We​ ​have​ ​​i​()=​​ ​​and​ ​​i​()=. 
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0.9%. The mean values of the energy are also         
subject​ ​to​ ​variations​ ​that​ ​are​ ​consistent​ ​with​ ​​τ​.  

Table 8. Trust factor (​τ​) and relative energy obtained for          
the projection of the RAS[2,2]+S wave function of the V          
state of ethene on different VB wave functions. The last          
column​ ​gives​ ​the​ ​vertical​ ​excitation​ ​energy. 

VB​ ​wave​ ​function 
 

τ 

(%) 
 

Δ​E  
(eV) 

Δ​E​N-V 
(eV) 

{ , , , } 91.4 0.0 +8.97 

{ , } 75.4 +0.6  

​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​{ , } 0.9 +8.0  

{ , , , } 
[a] 

98.8
% -1.4 +8.10 

{ , , , } 
[b] 

93.2 -0.3 +8.63 

[a]​ ​The​ ​VB​ ​orbitals​ ​are​ ​pre-optimized​ ​for​ ​the​ ​V​ ​state​ ​rather 
than​ ​for​ ​single​ ​structures.  
[b]​ ​Projection​ ​scheme​ ​with​ ​the​ ​RAS[2,6]+S​ ​wave​ ​function. 

 

The last entry concerns the projection of the        
RAS[2,6]+S wave function of the V-state onto       
the VB structures with pre-optimized orbitals.      
The results are very similar to the first entry of          
the table: the trust factors are within about 2%         
and the mean values of the energy are similar,         
within about ±0.3 eV. The mean values obtained        
for the V state can be compared to that of the N            
state to find an estimate of the NV excitation         
energy. The values are reported in the last        
column: +8.97 eV with the projection of the        
RAS[2,2]+S wave functions, and +8.63 eV with       
the RAS[2,6]+S wave function. Again, the results       
are considerably enhanced when VB orbitals are       
pre-optimized for the V state (+8.10 eV, forth        
entry). 

We report in Table 9 the coefficients and the         
weights obtained for the projected wave      
function. In the first entry, the covalent       

structures ( ​and ) have large      

coefficients (±0.92), but their Coulson-Chirgwin     
weights are very small. It is difficult to attribute         
this behaviour to a unique component. A large        
balance occurs, due to the sign alternation of        
the coefficients of similar magnitude, and to the        
fact that overlaps between structures are      
similar (S​45 = 0.72 and S​43 = 0.73). An extensive          
discussion on the weights in non-orthogonal CI       
can be read in a very interesting contribution of         
Thorsteinsson​ ​and​ ​Cooper.[69] 

It shall be reminded that other definitions of the         
weights (Löwdin’s or inverse-weights) can also      
be used. Wu ​et al. for instance used them,[44]         
but the weights attributed to these structures       
are still small compared to their role showed by         
the variations of ​τ in Table 4. Indeed, when         
they are included in the basis of VB structures,         

the match between and ​is      

significantly better: ​τ goes from 75.4% to       
91.4%. These puzzling observations lead us to       
analyse the wave function in more detail, to        
better understand the role of the covalent       
structures.  

 

Table 9. Coefficients and weights of VB structures for the V           
state of ethene; projection of the RAS[2,2]+S wave function.         
Due to the symmetry of the V state, c​3​=-c​2​, c​5​=-c​4​, and w​3​=w​2​,            
w​5​=w​4​. 

 
 

VB​ ​wave​ ​function 
c​2 

(c​4​) 

w​2​ ​​ ​​(%) 

​ ​(w​4​) 

{ , , , } 
0.98 

(0.92) 
50.4 

(-0.4) 
 

{ , , , } 
[a] 

0.98 
(0.80) 

52.9 
(-2.9) 

[a]​ ​Projection​ ​scheme​ ​with​ ​the​ ​RAS[2,6]+S​ ​wave​ ​function. 
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Role​ ​of​ ​covalent​ ​structures​ ​in​ ​the​ ​V-state  

Our projection routines run primarily on the       

basis of the n​Det VB determinants ( ,       

Equation 6, Table 10) and these determinants       
are gathered in a (1,1) ratio to obtain structures         

( , Equation 1), either ionic ( and      

), or covalent ( and ). The ratio (and         

the sign) between the determinants has to be        
consistent​ ​with​ ​the​ ​spin​ ​coupling​ ​(singlet). 

(6) 

 

Scheme​ ​5:​ ​One​ ​electron​ ​bond​ ​through​ ​​a​′​​ ​and​ ​​b​′​. 

A closer look at the wave function when it is          
written on the basis of these determinants (Ta-        
ble 10) suggests that a variety of couplings        
between determinants can be built, particularly      
those related to one-electron bonds. They      
correspond to an in-phase combination of two       
determinants where one of the two electrons       
swings between the two atoms, while the other        
settles in a fixed spin orbital. For instance we         
can consider that the first electron (of α spin)         
swings between the two carbons using the ​a'        
and ​b​′ orbitals while the β electron settles on         
the left carbon atom, in the ​a​” orbital (Scheme         
5). For the sake of conciseness, we labelled        

​such a contribution. Hence, we extract       

un-normalized one-electron contributions from    
the wave function like:    

.  
5

5 As a matter of fact, the lowest (normalized) eigenvector          
built on these two determinants describes a one-electron        

Table 10. VB determinants for the V state of         
ethene and their coefficients in the projected       
wave​ ​function​ ​(RAS[2,2]+S). 

  

 
+0.54 

 
+0.54 

 
-0.54 

 
-0.54 

 
+0.60 

 
+0.60 

 
-0.60 

 
-0.60 

 

The wave function can thus be rewritten as a         
combination of one-electron bond contri-     
butions​ ​(Equation​ ​7), 

(7) 

where , built on D​2 and D​5 corresponds        

to spin switches from . Similarly,      

is built on D​4 and D​8​, and is          

built on D​3 and D​7​. Note the sign alternation         

bond, as follow: . The coefficients are somehow similar to          

those​ ​of​ ​​​ ​​in​ ​the​ ​V​ ​state.  
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between and , vs and     

. 

This rewriting embeds no additional     
approximation because the determinants are     
combined with the same coefficients as in Table        
9. The trust factor is thus the same, ​τ = 91.4%.           
However, the new structures have now the       

same weights: .   

These new reading of the wave function is        
satisfactory for two reasons: (i) because the       
coefficients and the weights behave     
approximately the same, and (ii) because it       
gives a reasonable answer to the puzzling fact        
that the distorted long bonds are important, but        
have had negligible weights. As a result, the V         
state of ethylene can be considered as the        
out-of-phase combination of one-electron    
bonds, where one electron resides on one of        
the carbon while the other fluctuates between       
the​ ​two​ ​atoms.  

In addition, the “one-electron interpretation” of      
the V-state might very well provide an       
interpretation of the large effects of dynamic       
correlation in the ​σ orbitals noted      
elsewhere.[44][56][61] Indeed, the hidden ​π     
electron fluctuation that occurs in the      
one-electron bonds must induce a dynamic ​σ       
orbitals repolarisation that requires to handle a       
significant​ ​part​ ​of​ ​​σ​​ ​correlation.  

Conclusions 

In this paper, we presented a method to obtain         
coefficients and weights of a VB wave function        
from a MCSCF wave function. We also defined a         
trust factor ​τ based on the overlap between        
the starting MCSCF wave function and the       
projected VB. We applied successfully this      
approach to ground and low-lying excited states       

of three systems: allyl cation, allyl radical and        
ethene.  

In the cases we considered, the nature of the         
projected wave function does not depend      
dramatically on the quality of the VB orbitals,        
and sound results are obtained even if orbitals        
are pre-optimized in a different context. The       
trust factor, ​τ was used to get confidence in         
the resulting VB wave function to assess that it         
corresponds to the appropriate state described      
by the MR-CI computation. When the VB       
orbitals are pre-optimized for the targeted      
states, ​τ increases moderately, and the energy       
differences​ ​get​ ​more​ ​accurate.  

In our complete projection scheme, we not only        
obtain a wave function for a given state, we also          
associate it to a trust factor, which, in addition         
to the energy criterion, gives strong confidence       
(or warnings) about the relevance of the VB        
writing. It also serves as a guide to actually         
analyse the wave function in terms of local        
contributions. The approach is not restricted to       
the lowest states in their spin and symmetry. It         
can be applied to any state, provided a valid MO          
wave function can be defined in terms of Slater         
determinants. A complementary pedagogical    
version of this work is briefly sketched in        
appendix​ ​3. 

Appendices 

1.​ ​RASSCF​ ​wave​ ​functions 

RAS[2,2]SCF + S wave function has two doubly        
occupied core orbitals: 1a​g​, 1b​1u​, then five ​σ        
orbitals in the RAS 1 space: 2a​g​, 2b​1u​, 1b​2u​, 3a​g​,          
1b​3g​. In RAS 2 space we used two ​π orbitals:          
1b​3u​, 1b​2g and in RAS 3 space, we put five          
unoccupied ​σ orbitals: 2b​2u​, 3b​1u​, 4a​g​, 2b​3g​,       
4b​1u​.  
RAS[2,6]SCF + S wave function is similar to        
RAS[2,2]SCF + S wave function but with six ​π         
orbitals in RAS 2 space: 1b​3u​, 2b​3u​, 3b​3u​, 1b​2g​,         
2b​2g​,​ ​3b​2g​. 
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For these two RAS wave functions: we used a         
maximum number of hole in RAS 1=1, in RAS         
2=1, and a maximum number of particle in RAS         
2=1, in RAS 3=1. Hence, only mono-excitations       
(hole-particle)​ ​are​ ​permitted. 

2.​ ​VB​ ​wave​ ​functions 

For all VB calculations, the 2p​x active orbitals        
are optimized on the basis of the p​x and d​xz          
primitives of the same atom (i.e. the orbitals are         
optimized locally, and they can polarize). The       
active orbitals can be mono-occupied and      
singlet coupled to define a normalized      
two-determinantal covalent structure of the     

type (a, b) = . Ionic structures       

can be defined as either doubly occupied       
orbitals (a​′​,a​′​) or as splitted mono-occupied      
orbitals (a​′​,a”). They are of course also singlet        
coupled. 

In the VB calculations (allyls and ethene), the ​σ         
orbitals are delocalized and orthogonal to each       
other. For the allyls the ​σ and ​π VB orbitals          
are optimized for the multi structure ground       
state using the VBSCF technique: all the       
structures share the same set of orbitals. For        
the ethene unless otherwise stated, they are       
obtained from a single �structure energy      
optimization. Hence, each structure has its own       
set​ ​of​ ​orbital.  

3.​ ​Hückel​ ​related​ ​approach  

The method we present here can be related to         
our Hückel-Lewis Projected method (HLP, HuLiS      
project),[70][71] where a noticeably reliable     
description of ground states in terms of local        
structures was obtained for    
“Hückel-compatible”​ ​systems.[72][73][74][75] 
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