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Abstract

orbkit is a toolbox for post-processing electronic structure calculations based on
a highly modular and portable Python architecture. The program allows computing
a multitude of electronic properties of molecular systems on arbitrary spatial grids
from the basis set representation of its electronic wavefunction, as well as several grid-
independent properties. The required data can be extracted directly from the standard
output of a large number of quantum chemical programs. orbkit can be used as a
standalone program to determine standard quantities, for example, the electron den-
sity, molecular orbitals, and derivatives thereof. The cornerstone of orbkit is its
modular structure. The existing basic functions can be arranged in an individual way
and can be easily extended by user-written modules to determine any other desired
quantities. orbkit offers multiple output formats that can be processed by com-
mon visualization tools (VMD, Molden, etc.). Additionally, orbkit possesses routines
to order molecular orbitals computed at different nuclear configurations according to
their electronic character and to interpolate the wavefunction between these configura-
tions. The program is open-source under GNU-LGPLv3 license and freely available at
http://sourceforge.net/projects/orbkit/. This article provides an overview of orbkit
with particular focus on its capabilities and applicability, and includes several example
calculations.
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orbkit is an open-source toolbox for post-processing electronic structure calculations. Based
on a highly modular and portable Python architecture, it comes both as a standalone pro-
gram and a function library. The program allows computing electronic properties of molec-
ular systems on arbitrary spatial grids from the output of standard quantum chemistry
programs.
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Introduction

In today’s computational and theoretical chemistry, quantum chemical methods (or elec-

tronic structure methods) are routinely applied for the investigation of molecular systems.

Modern quantum chemical programs are characterized by their general applicability, increas-

ing functionality, and high efficiency due to methodological and numerical progress in the

field. There exists a wide range of such program packages, covering different levels of the-

ory and offering assorted features. The spectrum extends from open source packages, e.g.,

GAMESS-US1, PSI42, or Tonto3, over commercial closed source programs such as Gaus-

sian4, Molpro5, Turbomole6, or Q-Chem7, to software freely available for academic usage

such as ORCA8 or NWChem9. Depending on the methodological requirements of a quantum

chemical problem, the user has to deal with a multitude of differently formatted input and

output data. In this context, projects such as the Atomic Simulation Environment (ASE)10,

the Basis Set Exchange library11,12, cclib13, and OpenBabel14 contributed tremendous stan-

dardization efforts.

Despite this software diversity, most quantum chemical programs dealing with molecules

share the same basic approach to the solution of the time-independent molecular Schrödinger

equation: They solve it for clamped nuclei, and they use an atom-centered Gaussian basis

set to represent the electronic wavefunction at the selected nuclear configuration. A typical

output of a quantum chemical calculation contains not only the energy and other relevant

properties of the molecular system, but also the expansion coefficients of the electronic wave-

function in the selected basis set. The latter allow the calculation of additional quantities

for the system characterization. Conceivable quantities include those based on the recon-

structed electronic wavefunction, e.g., the electron density, and others quantities, such as

molecular orbitals (MO), that are constructed from various combinations of the basis set

and the expansion coefficients. These quantities are typically represented on a grid in the

configuration space of one electron, which facilitates their analysis and enables their visu-

alization. The necessary post-processing tools for the analysis are sparsely implemented in

most of the quantum chemical program packages. Additionally, there is usually no oppor-

tunity to adjust the post-processing parameters, e.g., grid parameters, or to request further

3



quantities after finishing the electronic structure calculation.

To overcome this problem, two strategies can be pursued: the modification or extension of

a quantum chemical program package, or the usage of standalone post-processing programs.

The first approach is practicable only for open source and well-documented programs; ad-

ditionally it is a formidable, time-consuming work to understand, adapt and extend the

respective source code. For the second approach, a handful of specialized tools are avail-

able offering diverse functionalities. An easy visualization of the molecular structure, the

MOs, the electron density, etc., based on the output of a quantum chemical program, can

be carried out with programs such as Molden15 or Avogadro16. To calculate properties from

the electronic wavefunction (i.e., from the basis set used and the coefficients obtained in

the electronic structure calculation) the programs Checkden17,18, DGrid19, Multiwfn20, or

DensToolKit21 are well-suited and provide an impressive number of features. However, if

the desired feature is not already available, extending these codes may become prohibitively

difficult.

For such problems, we have developed the Python toolbox orbkit, which meets all com-

mon requirements of post-processing electronic wavefunctions. orbkit stands out by its

broad applicability in terms of post-processing electronic structure data. It offers similar

features such as Checkden, DGrid, or Multiwfn, and it can be employed as a standalone

program for investigating in detail the characteristics of a molecular system and for visu-

alizing important position space quantities. Its modular design allows the user to combine

the individual functions in any manner. Furthermore, orbkit also comes with a library

and application programming interface. This can be used to create new programs, without

in-depth knowledge of the internal structure. Additionally, the library can be extended by

user-written functions. Programming is greatly facilitated by using Python as major lan-

guage with its user-friendly syntax and large number of function libraries. Consequently, also

non-standard or new problems can be quickly solved by adding new user-written functions

to the standalone program orbkit, or by combining existing functions and new functions

in a user-written program. In this article, we want to present the capabilities and several

selected applications of orbkit.

The paper is structured as follows. Sec. “Methodology” briefly introduces the theoretical
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background and Sec. “Program” describes the structure and main aspects of orbkit. Then,

we present several “Practical Applications” that illustrate the features of orbkit, followed

by a conclusion.

Methodology

In this section, we present the main functions implemented in orbkit that are necessary

to post-process results from electronic structure calculations. Quantities that can be con-

structed from these fundamental components and that are included in orbkit are not listed

here but presented in Sec. “Program”. All theoretical aspects and quantities considered in

Sec. “Practical Applications” will be briefly discussed there, in the respective subsection.

We use atomic units throughout the article.

The Electronic Wavefunction

For the solution of the time-independent molecular Schrödinger equation for clamped nuclei,

most molecular quantum chemistry methods introduce localized one-electron basis set func-

tions to expand the many-body electronic wavefunction. Accordingly, a standard output of

a quantum chemical program provides the data to reconstruct the electronic wavefunction,

i.e., the expansion coefficients of the wavefunction, the selected atom-centered basis set (the

atomic orbitals), and the nuclear configuration (position and type of the nuclei). Gaussian-

type orbitals are by far the most commonly used atom-centered basis sets, and they can be

handled with orbkit.

In general, the many-body electronic wavefunction is arranged in the form of a single

Slater determinant or a linear combination of multiple Slater determinants. These are defined

as antisymmetrized products of N one-electron functions which correspond to orthonormal

MOs. In the MO-LCAO (Molecular Orbital - Linear Combination of Atomic orbitals) ansatz,

each MO ϕa can be reconstructed by the linear expansion of a finite set of contracted Gaussian

basis functions22

ϕa (r) =

NA∑
A

NAO∑
i

Ciaψi (r−RA) , (1)
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where Cia is the ith MO coefficient for the MO a, ψi is the respective atomic orbital centered

at atom A, r are the Cartesian coordinates of one electron, RA denotes the spatial coordinates

of nucleus A, NAO represents the number of atomic orbitals, and NA is the number of atoms.

The atomic orbitals correspond to the real-valued contracted Gaussian basis functions

which are defined by the linear combination of primitive Gaussian functions23

ψi (rA) =
L∑
p

dpgp (rA, αp, lp,mp, np) , (2)

where dp labels the contraction coefficients, L is the length of the contraction, and rA =

r−RA is the position vector of an electron relative to the nucleus A.

A primitive Cartesian Gaussian function gp has the form23

gp (r, αp, lp,mp, np) = Np (αp, lp,mp, np)x
lpympznp exp

(
−αpr2

)
, (3)

where x, y, and z are Cartesian coordinates, r =
√
x2 + y2 + z2 is the magnitude of r,

αp labels the Gaussian orbital exponents, and lp, mp, and np are declared as exponents

whose sum determines the angular momentum and, thus, the type of the orbital, e.g., l =

lp +mp + np = 0 for an s-orbital.

The normalization constant Np is given by23

Np (αp, lp,mp, np) =

√(
2αp
π

) 3
2 (4αp)lp+mp+np

(2lp − 1)!! (2mp − 1)!! (2np − 1)!!
. (4)

In addition to the Cartesian Gaussians, orbkit can process spherical harmonic Gaussians

by using the transformation described by Schlegel and Frisch.24

As a position space one-electron quantity, the experimentally observable electron density

can provide further insights for the analysis of electronic and chemical characteristics of the

system, for instance, bonding properties. These can be studied in various ways, for example,

in partial charge analysis methods such as the Voronoi Deformation Density (VDD).25 For

a single Slater determinant ansatz, the one-electron density reads

ρe (r) =
Nocc∑
a

na |ϕa (r)|2 , (5)

where Nocc is the number of singly or doubly occupied MOs with the respective occupation

number na. For multi-determinant wavefunctions, as obtained from configuration interac-

tion methods or coupled cluster methods, the one-electron density can be constructed, for
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instance, by using the Slater-Condon rules or by converting the wavefunction into a sin-

gle Slater determinant representation built from natural orbitals. These orbitals possess

non-integer occupation numbers na between zero and two.22 The default version of orbkit

supports all single-determinant wavefunctions. Hence, it can directly be used for the results

of a Hartree-Fock or Density Functional Theory calculation as well as of a Post-Hartree

Fock calculation in natural orbital representation. The evaluation of quantities directly from

a multi-determinant wavefunction can be accomplished by using the Slater-Condon rules

mentioned above. For this purpose, it is straightforward to extend orbkit by self-written

modules.

Analytical Derivatives and Integrals

Further basic components, which can be derived from an electronic structure calculation

and are relevant for the determination of other post-processing quantities, include analytical

derivatives and integrals of the basis functions, MOs, and of the electron density.

One of these components is the gradient of the electron density with respect to the

electronic coordinates, which has the general form

~∇ · ρe (r) = 2
Nocc∑
a

na

(
ϕa (r) ~∇ · ϕa (r)

)
(6)

and is constructed from the analytical gradients of the primitive Gaussian functions within

the MO-LCAO ansatz

~∇ · gp (αp, lp,mp, np, ~r) =


∂
∂x

∂
∂y

∂
∂z

 gp (αp, lp,mp, np, ~r) (7)

=


lpx
−1 − 2αpx

mpy
−1 − 2αpy

npz
−1 − 2αpz

 gp (αp, lp,mp, np, ~r) . (8)

Note that the contraction coefficients dp from Eq. 2 and the MO expansion coefficients

Cia from Eq. 1 are independent of the electronic coordinates and thus not affected by the

derivative operator. The gradients can be used to calculate, e.g., the transition electronic

flux density, as shown in an application below.
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Closely related to the gradient is the Laplacian of the electron density, which is defined

as

∇2ρe (r) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ρe (r) . (9)

By revealing information about the local depletion and concentration of the electron density,

the Laplacian plays a key role in the specification of bonding properties, and therefore, it is

also used in the Atoms in Molecules (AIM) theory.26,27

To complete the set of essential functions incorporated in orbkit, we introduce the MO

overlap matrix

〈ϕa |ϕb〉 =

〈
NAO∑
i

Ciaψi

∣∣∣∣∣
NAO∑
j

Cjbψj

〉

=

NAO∑
i

NAO∑
j

CiaCjb 〈ψi |ψj〉 (10)

and the atomic orbital overlap matrix

〈ψi |ψj〉 =

〈
L∑
p

dpigp

∣∣∣∣∣
L∑
q

dqjgq

〉

=
L∑
p

L∑
q

dpidqj 〈gp | gq〉 . (11)

Here, 〈gp | gq〉 is calculated based on the article of Hô and Hernández-Pérez.28 Possible quan-

tities that can be derived from these overlap matrices involve, for example, Mulliken and

Löwdin atomic populations or total and transition dipole moments.22

Program

For the development of orbkit, we pursued the goal to make it practically useful for a large

group of users, ranging from end-users who are interested in a simple and straightforward

calculation of standard quantities, via university teachers who want to illustrate the com-

putational ideas of quantum chemistry, to developers looking for a toolbox that provides

core functions to build upon. To this end, we made a number of design decisions: First, we

chose Python as a programming language because of its user-friendliness, its vast amount
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of standard libraries, and its cross-platform portability. Furthermore, we tried to retain

a readily comprehensible modular structure, i.e., we implemented a broad set of functions

that can be separately called in a user-assembled driver program. This design facilitates the

execution of the single components of orbkit and opens up the opportunity to implement

self-written features in combination with the already existing functions. Besides, there is a

standalone version of orbkit which can calculate a selected number of quantities, such as

the one-electron density or the MOs on a user-defined rectilinear grid. Its simple handling

allows quickly getting started with orbkit. In general, we attempt to ensure a universal

applicability that comprises the readability of standard quantum chemistry programs, the

writing of output files which are easy to handle, and an adequate number of standard quan-

tities. Tab. 1 gives an overview of the possible input and output file formats and lists the

computable quantities.

Concerning the efficiency of orbkit, we use the highly scalable NumPy29 and SciPy30

Python libraries for processing large, multi-dimensional arrays. Moreover, computationally

expensive parts are implemented in C++ using the Python package weave30 and can be

run on multiple processors by using the Python package multiprocessing. Position space

quantities are then calculated by dividing the grid into slices and distributing them on the

requested number of processors, thus offering linearly scaling parallelization.

To understand how to use orbkit, it is recommended to read the detailed documentation

and to work through the example applications in this article or in the orbkit example

package. The documentation also contains function references for advanced usage.

Input and Output

In general, orbkit requires as main input the data of a single determinant wavefunction.

To this end, it extracts the expansion coefficients of the MOs, the selected atomic basis

set, and the specification of the molecular structure from the output of a quantum chemical

calculation. The data files of almost all major quantum chemical programs can be handled

with orbkit (cf. Tab. 1). Besides output files, such as Gaussian log-files, the Molden file

format31 is our main input format. This file format can be both directly written by some pro-

grams, such as Molpro5, and transformed with Molden15 from output files of other program
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Input Output

Molden files HDF5 files

AOMix files Gaussian cube files

GAMESS-US output files VMD script files

Gaussian log-files ZIBAmiraMesh files and network files

Gaussian formatted checkpoint files Mayavi visualization

cclib library XYZ and PDB files

Standard Quantities Additional Feature

Electron densities Input of real-space grid as regular grid or as point set

Atomic and Molecular orbitals Order molecular orbitals of different nuclear structures

Orbital derivatives Interpolate between different nuclear structures

Gross atomic densities Symmetry transformations of the Cartesian grid

Molecular orbital transition flux densities Center grid around specified nuclei

Total dipole moments

Mulliken and Löwdin charges

Table 1: Available input and output formats as well as computable quantities and other

features of orbkit.

packages, such as GAMESS-US. In addition, there exists an interface to the library cclib13,

which is a package-independent platform for parsing and extracting information of several

computational chemistry programs. With this extension, many further file formats can be

read. However, it is also straightforward to read the output of any other electronic structure

program with a self-written Python routine and transfer it into the specific orbkit data

structure. The data formats used by orbkit are described in detail in the documentation.

Based on the extracted data, orbkit can compute all standard position space functions

(cf. Tab. 1) on an equidistant zero- to three-dimensional Cartesian grid with user-defined

grid parameters. Besides, the calculation can be performed on a list of (x, y, z) coordinates

which we call vector grids. This includes equidistant spherical coordinates, random grids,

or user-defined arbitrary point sets. It is also possible to adapt the Cartesian grid to the

molecular structure or to perform symmetry transformations on it.

During an orbkit calculation, a LOG file is written that contains the basic information

concerning the selected computational parameters, e.g., grid type, grid parameter, chosen
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input or output file, or the progress of the calculation. Subsequently, the results, i.e., the

electron density, the MOs, etc., given on the user-defined grid, are typically saved as HDF5

files.32 This hierarchical data format can efficiently store and organize numerical data with

a small need of disk space. Furthermore, there are many programs and tools that support

this data type.

For 3D visualizations with standard molecular graphics programs such as VMD33, or-

bkit provides the option to save the data as Gaussian Cube files. These plain text files

contain the volumetric data, the grid parameters, and the atomic positions of the molecular

system. Besides, orbkit can create VMD script files, which are directly callable with VMD

for a quick depiction of any position space function. It is also possible to use a simple in-

terface to Mayavi34, which enables an immediate and interactive visualization. In addition

to the output of grid-dependent quantities, there exists the possibility to create XYZ and

PDB35 files with orbkit.

Features

Apart from the usual wavefunction analysis (cf. “Standard Quantities” in Tab. 1), several

quantum chemical outputs can be compared simultaneously to highlight for instance the

influence of the change in the nuclear positions on the electronic structure. In this context,

the ordering routine of orbkit should be mentioned, which enables the correct arrange-

ment of the MOs for different nuclear configurations according to their overlap (cf. Eq.

10). This procedure may be useful when the MOs change their symmetry and/or energetic

ordering with the nuclear configuration. An example for the usage is given below. Another

valuable feature of orbkit is the adaptive integration of multidimensional functions using a

Python wrapper36 for the C package Cubature37. This module integrates numerically vector-

valued integrands over hypercubes. In the implemented h-adaptive integration scheme38,39,

the integrands are iteratively evaluated by gradually adding more grid points until a user-

defined tolerance is fulfilled. Especially for functions with localized sharp features such as

the one-electron density, this is a well-suited technique. Additionally, Cubature enables a

simultaneous calculation of the integrals of multiple functions, e.g., MO densities.
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Practical Applications

In this section, we present applications to five molecules: benzene C6H6, 2-cyclopropenyl

cation (C3H3)
+, hydrogen molecule ion H+

2 , carbon dioxide CO2, and formaldehyde CH2O.

For all examples, the Molden data file and the execution command or an extensively com-

mented Python execution code are provided in the orbkit package. Thus, the reader is

encouraged to follow these examples interactively. Additional example codes are also in-

cluded in the orbkit package. All electronic structure calculations are performed with

Molpro5 using the Hartree-Fock method and a cc-pVDZ basis set.40 There are also some

applications of orbkit in the literature, see Refs.41–44.

Electron Density of Benzene

In the first application, the usage of orbkit as a standalone program via the terminal inter-

face and the subsequent visualization of grid-based one-electron quantities are demonstrated

with the example of benzene. In order to characterize the nature of a chemical bond in a

given quantum system, the calculation and analysis of the electron density and its Lapla-

cians, as well as the partitioning of the electron density in certain subsets of electrons, are

useful tools.45–47 In the benzene molecule, for example, we can look at the π-electron density.

The respective MOs can be identified by their nodal plane being the plane spanned by the

nuclei. Hence, the associated π-electron density is distributed above and below the benzene

ring. The electron density ρe (r) (cf. Eq. 5) for all electrons and for the specified set of

electrons (π-electrons) and the respective Laplacians ∇2ρe (r) (cf. Eq. 9) are calculated

with orbkit and visualized (cf. Fig. 1) with VMD33.

The Laplacian of the total electron density is depicted in Fig. 1(b). Here, the negative

Laplacian between two bonded carbons indicates a local concentration of electron density

and thus, as expected, an attractive covalent character for this homonuclear bond. From the

Laplacian of the π-electron density, an accumulation of electron density above and below the

ring and a depletion in the plane are noticeable.

Tasks such as the selection of groups of MOs and the subsequent calculation of grid-based

one-electron quantities are straightforward with orbkit. The associated data can be stored
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(a) (b) (c)

Figure 1: (a) The electron densities of benzene for all electrons (gray) and for the π-

electrons (blue). The isocontour value for the electron densities is 0.01 a−30 . (b) Laplacians of

the molecular electron density and (c) of the π-electron density for benzene. The isocontour

values for the Laplacian of the total electron density are -0.5 a−50 (red) and 0.5 a−50 (blue) and

-0.1 a−50 (red) and 0.1 a−50 (blue) for the π-electron density. The visualization was performed

with VMD.

in output formats like Gaussian cube files. This facilitates its visualization with graphical

programs such as VMD, etc. In addition, a direct visualization in orbkit is feasible also

with Python packages, e.g., matplotlib48 or Mayavi34.

Angular Electron Density of (C3H3)+

Our second application illustrates the ease of utilizing the orbkit library with an existing

program. In this case, the interface of orbkit to Cubature38,39 is introduced and its virtue

for integrating the density in a region of space is demonstrated. The example at hand shows

the integration of the three-dimensional electron density ρ(x, y, z) of (C3H3)
+ to obtain the

angular electron density ρang(φ). The angle φ is defined as the polar angle in the plane of

the nuclei (cf. inset of Fig. 2). Thus, an integration over z and over r =
√
x2 + y2 has to

be performed. Additionally, to obtain a smooth angular density close to the positions of the

nuclei, an averaging along φ has to be done. Hence, for each discrete point φi on our grid

we have to integrate over z ∈ [−∞,∞], r ∈ [0,∞], and φ ∈ [φi −∆φ/2, φi + ∆φ/2].

The choice of grid coordinates is not as straightforward as it may seem. While cylindrical

coordinates are a natural choice, they have a major disadvantage if used equidistantly:

Because of the fixed number of points along φ, there will be a high density of points for

small r but very few for larger r. Thus, the number of points needed to accurately integrate
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Figure 2: Angular electron density ρang (upper panel) and integrated molecular orbital

densities ρMO
ang (lower panel) for angular segments of ∆φ = 1◦ for the 2-cyclopropenyl cation

(C3H3)
+ using a Cubature interface. The inset in the upper panel shows the Lewis structure

of the 2-cyclopropenyl cation and the orientation of the polar angle φ.
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the density around the nuclei quickly becomes prohibitively large. Calculating the density

on a grid in Cartesian coordinates is not an alternative. While the point density in space

does not change, the number of points per angle varies significantly. As a consequence,

integration using Cartesian coordinates needs far too many points to calculate the angular

density efficiently and can yields artifacts nevertheless (see chapter 3.4 of Ref.49 for an

example).

Thus, we implemented an interface to a Python wrapper36 for Cubature37. This program

can integrate multidimensional functions with moderate dimensionality adaptively to a spec-

ified error. A function for integrating in cylindrical coordinates converts the points asked

for by Cubature (which are assumed to be cylindrical coordinates r, φ, z) into Cartesian co-

ordinates, calls orbkit using the list of Cartesian vectors as input, and returns the density

multiplied with r to account for the volume element of the integration. This implementation

is straightforward, as orbkit is designed to be used as both a standalone program and a

function library.

Figures 2(a) and (b) show the angular density and the integrated molecular orbital den-

sities, respectively. The integration of the regions of strong localization around the nuclear

positions are well-converged, which would have been difficult to achieve using simple inte-

gration schemes on equidistant grids.

In general, the adaptive integration by Cubature of grid-based quantities computed in

orbkit, in any user-defined volume, opens up a wide spectrum of conceivable applications,

for example, the determination of Voronoi deformation density atomic charges, etc.

Ordering Molecular Orbitals Along a Reaction Coordinate

In quantum chemistry, it can be of interest to follow the change of molecular properties

during the variation of the nuclear structure, for example, along a reaction coordinate.

While the comparison of most properties is straightforward but possibly cumbersome because

data may have to be extracted from several output files, the comparative analysis of the

molecular orbitals can be a problem: Most quantum chemistry programs are sorting the

orbitals according to their energy and additionally, if applicable, according to their symmetry.

However, often the energetic order of the orbitals changes with the nuclear configuration,
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and it is necessary to order them according to a different criterion. For these issues, orbkit

offers a set of useful functions to simultaneously handle multiple files, and it possesses several

MO ordering routines.

The most useful ordering routine sorts the MOs of different nuclear configurations and

the associated signs according to their overlap. It starts from the first two structures in a

list, computes the analytical overlap between all the orbitals (cf. Eq. 10) of both structures,

and sorts them accordingly. Thereafter, it proceeds with the second and third structure, etc.

Subsequently, the expansion coefficients for the ordered orbitals data can be interpolated

using B-Splines to approximate intermediate nuclear configurations. B-Splines (cf. Ref.50

and references therein) are piecewise polynomial functions with many useful properties, one

of which is their analytical differentiability. This substantiates their usage for the accurate

determination of non-adiabatic coupling terms.

To illustrate the functionality of this ordering routine, we performed a set of quantum

chemical calculations for CO2, varying the ^ OCO angle from 170◦ to 190◦ with a step size

of 2◦. For a sorted set of molecular orbitals, one expects smooth curves for the coefficients

as a function of the slightly modified nuclear configurations. In Fig. 3 (upper panel), the

MO coefficients are displayed for a selected orbital of CO2. Solid lines correspond to the

MO coefficients Cia for the lowest unoccupied MO (LUMO) of the energetically ordered

list of the quantum chemical output and dashed lines signify the coefficients of the orbital

after sorting them according to the MO overlap. To illustrate the difference between a

sorted and unsorted MO list, the curve of one chosen coefficient is marked in blue. For

linear CO2 (^OCO = 180◦), the selected orbital, the LUMO, is energetically degenerate

with another one, the LUMO+1, which leads to an interchange of both in the energetically

ordered list of the quantum chemistry program. Following the procedure described above,

orbkit can sort all orbitals according to their overlap and in groups according to their

symmetry properties, if this information is available. The lower panel of Fig. 3 shows the

orbitals that were incorrectly assigned to each other (solid arrows) and those assigned to

each other after ordering (dashed arrows). Note that the results of the ordering routine

depend on the validity of the overlap as a measure of the character of the orbital. Hence,

the prerequisites for a successful MO sorting are moderate structural variations between the
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Figure 3: Upper panel: Molecular orbital coefficients Cia of the MO (initially the LUMO) as

a function of the ^ OCO angle before (solid line) and after (dashed line) sorting by orbkit.

Lower panel: Isosurface plots of the lowest unoccupied molecular orbital (LUMO) of CO2

at an O-C-O angle of 170◦ (left), of the LUMO and LUMO+1 (degenerate) at 180◦, and of

the LUMO at 190◦. Solid and dashed arrows correspond to the solid and dashed lines in

the upper panel. The isosurface value is ±0.1 a−30 . The isosurface plots were visualized with

VMD.

quantum chemical calculations and the identical orientation of the molecule. Nonetheless, a

failure of the ordering routine can be easily detected and corrected by inspecting the graphs

of, e.g., the orbitals energies or orbital coefficients, and by using the manual ordering function

of orbkit. To the best of our knowledge orbkit is the only post-processing program that

provides such an orbital ordering function. This is complemented by a number of convenience

functions to plot, save and load the computed quantities.
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Transition Electronic Flux Density of H+
2

The example of this section illustrates the computation of the stationary transition electronic

flux density (TEFD) between two selected electronic Born-Oppenheimer states in the hydro-

gen molecular ion H+
2 with orbkit.41 In general, the TEFD is the non-vanishing component

of the electronic flux density in the framework of the Born-Huang expansion and is defined

for the transition from the electronic state λ to the electronic state ν as

JTEFD
e,λν (r, t) =

∫
dR ρn,λν(R, t) · JSTEFD

e,λν (r;R), (12)

with the nuclear transition density ρn,λν(R, t) = χ?λ(R, t)χν(R, t) and the purely imaginary

static transition electronic flux density (STEFD)

JSTEFD
e,λν (r;R) = − ı

2

(
Ψλ(r;R)∇eΨν(r;R)−Ψν(r;R)~∇eΨλ(r;R)

)
, (13)

where Ψλ,Ψν are the real-valued electronic wavefunctions and the gradient ~∇e is taken

with respect to the electronic coordinates.51 The TEFD is a crucial quantity to analyze

the contributions to infrared absorption or vibrational circular dichroism spectra52,53, as a

complement to the study of the adiabatic electronic flux density41, or for the visualization

of electron processes, for example.

The hydrogen molecular ion H+
2 is the simplest diatomic molecule consisting of two pro-

tons and one electron. The fact that the molecular orbitals of H+
2 correspond to its electronic

states simplifies the calculations of the TEFD. However, it is nonetheless feasible to determine

this quantity for more complicated quantum systems with orbkit. This can be accomplished

with the help of the Slater-Condon rules, but it is necessary to take into account the under-

lying basis set expansion of the wavefunction (e.g. single Slater determinant, configuration

state functions, multireference configuration interaction representation, etc.). The required

modules for this computational task can be easily incorporated into the modular structure

of orbkit. In addition, the simple and platform-independent parallelization techniques

within Python can be used to enhance the efficiency of the implemented code. Recently, or-

bkit was used to investigate the ultrafast photoelectron transfer in a Dye-Sensitized Solar

Cell by analyzing the corresponding time-dependent TEFD constructed from configuration

interaction wavefunctions.42
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Figure 4: Contour plots of selected molecular orbitals (MO) of the hydrogen molecule ion

H+
2 for an internuclear distance of R = 1.4 a0: (a) MO 1σg and (b) MO 1σu. (c) Vector plot of

the stationary transition electronic flux density (STEFD) JSTEFD
e,1σg1σu for the transition between

the state 1σg and the state 1σu. The nuclear positions are marked with black crosses.

For the TEFD of H+
2 , the transition between the electronic ground state 1σg and the

first excited state 1σu is selected, since it is experimentally accessible.54 Contour plots of

both electronic states (MOs) are displayed in Fig. 4(a) and 4(b) showing their gerade and

ungerade symmetry properties. The stationary TEFD JSTEFD
e,1σg1σu for the transition between

the ground state 1σg and the excited state 1σu as a function of the x- and z-coordinate for

an internuclear distance of R = 1.4 a0 is depicted in Fig. 4(c). As expected, this imaginary

vector field shows a gerade parity for the transition between a gerade and an ungerade state.

Partial Charges and Gross Atomic Density

orbkit possesses a variety of specialized modules to determine various properties of a molec-

ular system. In the present example, several of these modules are used for the formaldehyde

molecule. To start with, we compute two non-grid based quantities: the Mulliken partial
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charges22

qA = ZA −
NAO∑
i∈A

NAO∑
j

(
Nocc∑
a

naCiaCja

)
〈ψi|ψj〉 (14)

and the total electric dipole moment22

µ =

〈
ϕa

∣∣∣∣∣−
Nocc∑
a

ra

∣∣∣∣∣ϕa
〉

+
∑
A

ZARA. (15)

To visualize partial charges on a molecular system, orbkit offers the opportunity to create

PDB files containing the type, position, and the partial charges of the nuclei. A variety of

visualization programs has the ability to depict PDB files. In Fig. 5, we use a ball-and-stick

representation colored according to the partial charges, i.e., red for negative charges and blue

for positive charges. Additionally, the molecular electric dipole moment of formaldehyde is

represented as a position vector in the adjacent Lewis structure.

A related grid-based quantity to the Mulliken partial charges is the gross atomic density55

ρA (r) =

NAO∑
i∈A

NAO∑
j

(
Nocc∑
a

naCiaCja

)
ψi (r)ψj (r) (16)

whose integral coincides with the respective gross atomic population. In Fig. 5, the gross

atomic density for the carbon atom is shown as a gray wireframe.

Gross atomic populations and Mulliken partial charges are standard quantities, which can

be computed by many other programs as well. orbkit provides the feature to compute them

on a grid to enable a simple consistency check of the grid convergence. Once the value for the

integral over the Gross atomic density converges to the Gross atomic population analytically

calculated, the grid size is appropriate for the evaluation of integrated quantities.

Conclusion

orbkit is a modular designed Python toolbox that allows an individualized cross-platform

post-processing of quantum chemical data from electronic structure calculations. The vari-

ety of position space one-electron functions and fundamental quantities that has been im-

plemented serves as the basis for sophisticated analyses of molecular wavefunctions. Thus,
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Figure 5: Ball-and-stick representation and Lewis structure of a formaldehyde molecule.

Balls and sticks are colored according to the Mulliken partial charge of the respective atom.

Positive partial charges are blue, and negative partial charges are red. The direction of the

molecular electric dipole moment is shown as an arrow next to the Lewis structure. The

gross atomic density of the carbon atom is represented as a gray wireframe with isocontour

value 0.2 a−30 . The ball-and-stick representation and the wireframe plot were illustrated with

VMD33.

it is useful for a wide range of applications. In addition, in its current state of development

orbkit offers multiple options and features for post-processing issues. For the calculation

of one-electron quantities on arbitrary grids, there exists a standalone version which is easy

to handle and can be executed in parallel to speed up the computation. The results can

be directly visualized with a simple and interactive viewer (Mayavi). This is complemented

by the interoperability of orbkit with various external visualization programs. Besides

the standalone execution, the functions existing in orbkit can be individually combined to

enable a problem-specific wavefunction analysis. Furthermore, the possibility to add user-

written Python functions into orbkit can foster the development of own post-processing

programs. For this purpose, only a basic understanding of the design and features of orbkit

is required. The first steps into the program are facilitated by a detailed documentation and

several application examples. Hence, orbkit appeals to novices as well as experienced the-

oretical chemists.

As a wavefunction analysis toolkit, orbkit differs from similar projects by its portability

and its simple modular structures. They enable the user to build own application programs

on top of orbkit with minimal effort and without recompiling. In conclusion, orbkit

is a fairly mature open-source program that provides the basis for many possible further

developments.
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