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Abstract

De novo design can be used to explore vast areas of chemical space in computational lead 

discovery. As a complement to virtual screening, from-scratch construction of molecules is not 

limited to compounds in pre-existing vendor catalogs. Here, we present an iterative fragment 

growth method, integrated into the program DOCK, in which new molecules are built using rules 

for allowable connections based on known molecules. The method leverages DOCK’s advanced 

scoring and pruning approaches and users can define very specific criteria in terms of properties or 

features to customize growth toward a particular region of chemical space. The code was validated 

using three increasingly difficult classes of calculations: (1) Rebuilding known x-ray ligands taken 

from 663 complexes using only their component parts (focused libraries), (2) construction of new 

ligands in 57 drug target sites using a library derived from ~13M drug-like compounds (generic 

libraries), and (3) application to a challenging protein-protein interface on the viral drug target 

HIV gp41. The computational testing confirms that the de novo DOCK routines are robust and 

working as envisioned, and the compelling results highlight the potential utility for designing new 

molecules against a wide variety of important protein targets.
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De novo design methods aim to create new molecules, from scratch, with steric and electrostatic 

compatibility for the target system(s). In this work we describe development, validation, and 

application of a new de novo design version of the program DOCK that allows assembly of small 

organic molecules in a binding site using fragment libraries consisting of scaffolds, linkers, and 

sidechains. The results highlight the potential utility for designing new molecules against a wide 

variety of important protein targets.
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Introduction

Virtual screening (VS) is an effective strategy for narrowing the search space of potential 

leads at the early stages of drug discovery. The in silico structure-based approach enriches 

for molecules that are compatible with a drug-target receptor, and eliminates molecules that 

are likely to be incompatible.1,2 Typically, a subset of the most attractive molecules from a 

VS are selected for experimental evaluation. Then, a small area of chemical space around 

promising lead compounds can be further explored using medicinal or synthetic chemistry, 

with the goal of improving affinity to and specificity for the receptor.3 While VS is an 

effective approach with numerous success stories (recently discussed in Refs. 4,5) it is not 

without its own challenges.6 For one, the number and identity of molecules available for 

screening are limited to those provided by online catalogues including ZINC,7,8 the 

Chemical Abstracts Service Registry,9 and PubChem,10 among others. Screening libraries, 

which range on the size of 107 to 108 molecules, represent unique, existing chemical matter. 

Some estimates, however, put the actual number of molecules under 500 Da that could exist, 
also called “Chemical Space”, on the order of 1060 molecules.11–13 Thus, it follows that a 

molecule with truly optimal steric and energetic compatibility with a drug target may not be 

easily found through conventional VS strategies alone. Additionally, off-the-shelf 
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compounds identified via VS may be subject to forms of intellectual property protection as 

they are not novel chemical entities.

As an alternative to VS, an approach termed de novo design assembles molecules from the 
beginning, or from constituent parts, directly complementing available binding interactions 

in the receptor2,14 (Figure 1). Conceptually, the approach has some parallels to fragment-

based drug design (FBDD) in that large molecular scaffolds in a binding site are connected 

by linkers, and also can be decorated with various sidechains.15–17 In principle, the building 

blocks of assembly for de novo design, however, can be individual atoms, small functional 

groups, rings or fused ring systems, large flexible scaffolds, and combinations therein. With 

this method, molecules assembled in the context of the receptor remain compatible with the 

receptor. More importantly, the ensemble of molecules sampled is not limited to existing 

databases; rather they have the potential to explore many diverse regions of chemical space. 

Following de novo design, particularly encouraging molecules as evaluated by scoring or 

fitness metrics can be synthesized or, as an alternative strategy, the molecules can be used as 

probes in chemical databases7–10 to identify related, purchasable compounds. Consistent 

with established VS studies, experimental verification of leads and medicinal chemistry is 

advantageous, but the benefit of this alternative approach is that it opens up for exploration 

new chemical matter and new areas of chemical space that may not have been otherwise 

identified.18,19

Currently available de novo design programs are distinguished by their search methods, 

scoring methods, pruning and filtering criteria, receptor vs. ligand-based approaches, and the 

size and identity of constituent fragments. Focusing on differences among the search 

method, some of the more widely-used approaches include: (i) scaffold hopping and 

molecular transformation (e.g. Skelgen,20 DYNAMO,21 SHOP,22 DAECS23), (ii) fragment 

linking (e.g. LUDI,24 CONFIRM,25 LiGen26), (iii) iterative fragment growth (e.g. GROW,27 

BOMB,28,29 FOG30), (iv) genetic or evolutionary algorithms (e.g. TOPAS,31 ADAPT,32 

LEA3D,33,34 MEGA,35 AutoGrow36), (v) combinatorial library searches (e.g. 

CombiDOCK,37,38 FORECASTER,39 MAntA40), and (vi) a combination of methods (e.g. 

SPROUT,41 SMoG,42 LigBuilder43,44). The recently published OpenGrowth45 method 

selects fragments for addition based on the statistical likelihood that the two fragments have 

been observed concurrently in a training set. Several of these programs, and others, have 

successfully led to experimentally verified new chemical matter or improved leads against a 

variety of drug targets.28,29,46–54 Despite the great strides already taken, de novo design 

programs still face challenges in that they are limited by the efficient navigation of chemical 

space, accuracy in scoring, and synthetic feasibility of designed molecules.18 However, 

given the advent of advances in computing power, this approach is gaining popularity and 

tractability as a complementary approach to traditional VS.6

In this manuscript, we present an original implementation of a de novo design method 

integrated into the infrastructure of the widely-used structure-based design program 

DOCK5,55,56 (hereafter referred to as de novo DOCK). The method is an iterative fragment 

growth approach built upon the successful anchor-and-grow search algorithm used by 

DOCK6.57 Fragments for growth and rules for allowable connections originate from the 

ZINC database7,8 of existing, synthesizable, and drug-like chemical compounds, or can be 
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generated on the fly by the user. De novo DOCK takes advantage of several of the 

specialized algorithms currently in DOCK, including advanced scoring and pruning 

methods, to overcome some of the known challenges of de novo design. The method is also 

highly “targeted” in that users may define very specific criteria in terms of chemical 

properties or features to guide growth toward a particular area of chemical space.

The new de novo DOCK implementation was validated using three increasingly complex 

classes of calculations. First, we attempted to rebuild known ligands from 663 

crystallographic co-complexes taken from the Protein Data Bank (PDB),58 using only their 

component parts (focused libraries). Second, we constructed new ligands in several 

important drug target sites using a much larger library of molecule fragments (N=380) 

which was derived from ~13M drug-like compounds (generic libraries). Third, as a real-

world application, we explored the ability of the algorithm to generate potential inhibitors of 

viral entry through targeting a known protein-protein interface on the drug target HIV 

gp41.59,60 A key objective of the work was to develop protocols that lead to the construction 

of new drug-like molecules that create binding-site interactions similar to known binders. 

Overall, we envision this new software will be useful to build new molecules with user-

defined properties, and to explore chemical space around a certain scaffold. The algorithms 

discussed in this work, along with example input files and test cases, have been implemented 

into the DOCK6 suite of programs and will be made available for download for free to 

registered academic users at http://dock.compbio.ucsf.edu/.

Theory and Implementation

De novo DOCK consists of two primary processes: (1) fragment generation and (2) de novo 
construction. These two processes, as well as additional relevant details, are described in 

depth below. In this section, input filenames and parameter names are in italics.

Fragment Generation

Fragments, in this context, represent the smallest rigid chemical unit perceived by the 

program de novo DOCK. These rigid units, analogous to segments in standard DOCK,5 are 

determined by the Sybyl atom types61 of input molecules and settings in the flexible 

definition library (flex.defn) distributed with the program. As a rule, fragments themselves 

contain no internal rotatable bonds, however there are some exceptions. For example, methyl 

groups (R–CH3), cyano groups (R–CN), halogens (R–F, R–Cl, etc.), and hydrogens (R–H) 

are, strictly speaking, rotatable groups. But, rotating about the R–X bond does not change 

the nature of the interaction with the receptor. Thus, these bonds are treated as rigid in the 

fragment generation process. In addition, the double bond in alkenes (–C=C–) is not 

typically described as a rotatable bond, but de novo DOCK treats it as such with two 

possible states: cis and trans. Thus, alkene double bonds are broken in the fragment 

generation process.

To generate fragments, molecules in mol2 format61 must first be downloaded from a 

chemical catalog. For the tests described here, the molecules were downloaded from the 

ZINC database.7,8 The input molecule file is read by de novo DOCK, the molecules are 

broken at each rotatable bond, and finally fragments are written to file with dummy atoms 
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(labeled as Du) used as placeholders to mark where the fragment was cleaved. These points 

in the fragments, called “attachment points”, define where two fragments can be connected. 

Final fragments are written to three separate output mol2 files, classified as either 

“sidechains” (one attachment point), “linkers” (two attachment points), or “scaffolds” (three 

or more attachment points). Furthermore, redundant fragments are removed, and the 

frequency of each fragment in the input database is recorded in the header section of the 

mol2 file. Figure 2 contains an illustration for the deconstruction of DANA, a potent 

inhibitor of neuraminidase,62 into two scaffolds, two linkers, and three sidechains.

It is important to emphasize that the fragment generation process is highly customizable to 

fit the requirements of different applications. The input molecule database can range from a 

generic set of several million drug-like compounds to a focused set of known inhibitors for a 

single target. The flex.defn file63 can be readily modified to enforce special treatment of 

certain bonds, i.e. specific bond types may be defined as rotatable or non-rotatable, which 

affects the identity of fragments generated by de novo DOCK. A cutoff parameter 

(fragment_library_freq_cutoff) can be used to retain only fragments that appear above a 

specified frequency threshold within the input library. Finally, the output fragment libraries 

can be sorted either by frequency or by chemical similarity. Fragment libraries, once 

generated, may be swapped out, concatenated, or hand-edited to remove or add new 

fragments as needed.

Torsion Environments

A major barrier in de novo design is the synthetic feasibility of constructed compounds.18,19 

If molecules designed via de novo DOCK are not accessible in a synthetic chemistry setting, 

then they have limited practical use. As such, to maximize efficiency, it follows that only a 

synthesizable region of chemical space should be explored. To address this challenge, we 

have co-opted the 2D molecular fingerprints already implemented in DOCK into an idea 

called “torsion environments”.

The molecular fingerprints used in de novo DOCK are based on the MOLPRINT 2D 

descriptors termed “atom environments” previously reported.64,65 For every atom in a given 

molecule, its local topology in all directions one bond away is computed and stored as a 

canonical string. The atom hybridization, as well as the bond order are considered in these 

environments, and the collection of all atom environments in a molecule constitutes its 

fingerprint. Two adjacent atom environments connected by a rotatable bond are termed here 

a “torsion environment”. De novo DOCK will only connect two fragments together if the 

torsion environment exists in a user-supplied look up table. The look-up table itself is 

generated by de novo DOCK from, for example, a large database of synthesizable, drug-like 

molecules.

Following fragment and torsion environment table generation, the construction of new 

molecules with de novo DOCK is guided by principles of sampling, scoring, and searching. 

As in standard docking, “sampling” refers to the generation of three-dimensional molecule 

binding geometries (poses) including rotational, translational, and torsional degrees of 

freedom, and “scoring” refers to the quantitative method for evaluating the fitness and 

properties of each molecule. Specific to de novo design, “searching” refers to the exploration 
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of chemical space, or the manner in which different fragments from the input libraries are 

selected and assembled. These three guiding principles are discussed in detail below.

De novo Construction: Sampling and Searching

Analogous to standard docking,5 sampling begins with orientation of “anchors” to the target 

binding site spheres via a graph-matching algorithm.57 Anchors can be any fragment 

provided by the user in a separate input file, or automatically chosen by the program from 

the standard input libraries based on number of atoms and number of attachment points. The 

precise number of unique anchors (dn_unique_anchors) and the number of positions retained 

for each unique anchor (dn_anchor_positions) are specified by the user. If fragments are 

provided that are already oriented to a binding site, such as those derived from 

crystallographic co-complexes, or if the objective is ligand-based de novo design absent 

from a receptor, then orienting may be skipped. This is particularly useful for lead 

refinement in which the user seeks to automate ‘R’ group sampling of a ligand with a known 

binding pose.

Beginning from an anchor in the binding site, de novo DOCK generates new molecule 

structures using the input fragment libraries in a layer-by-layer, iterative growth approach 

(Figure 3). Similar to the standard DOCK anchor-and-grow strategy,57 a full layer of 

fragments is assembled around the central anchor prior to extending by multiple fragments 

along any one path. The default search method (dn_search_method) for choosing new 

fragments, called “graph”, is a breadth-first search with a simulated annealing function. With 

this method, a graph is initially prepared that links different fragments (as graph nodes) with 

each other based on their Tanimoto similarity (as weighted graph edges).66 All fragments are 

connected to all other fragments, and the Tanimoto coefficients range from 0 (least similar) 

to 1 (most similar). Then, given an attachment point on the current anchor, a random 

fragment is connected. The fragment torsions are sampled, partial charges are recomputed 

(see below), the molecule is energy minimized, and the score is computed. If the new score 

is an improvement over the previous score, then the fragment is retained and the program 

attempts to connect chemically similar fragments at that same position by searching adjacent 

nodes in the graph. If the addition of a fragment worsens the score, then that fragment may 

still be retained based on the probability in Eq. 1:

(Eq. 1)

Where P is the probability that the new fragment is retained, Ef and Ei are the energy scores 

for the final and initial molecules, respectively, and T is an annealing temperature. The 

default beginning annealing temperature (dn_graph_temperature) is 100, then scales down 

toward 1 for each layer of growth. In this manner, new fragments that worsen the score may 

be kept more frequently at beginning layers of growth.

This search continues at each original attachment point on the anchor as long as fragments 

continue to improve the score, or until the search has reached a user-defined limit. At any 

given layer, all attachment points existing at the beginning of the layer are filled before any 

new attachment points are sampled. The breadth (dn_graph_breadth) and the depth 
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(dn_graph_depth) of the fragment graph search determine how many new fragments similar 

to a retained fragment will be sampled. These parameters along with the number of random 

starting points in the fragment graph (dn_graph_max_picks), are defined in the input file. In 

addition, the number of partially grown molecules that advance through the search to 

subsequent attachment points (dn_max_layer_size) is also defined in the input file. Finally, 

the number of partially grown molecules retained after each layer (dn_max_root_size) 

directly influences the number of new anchors that seed the beginning of the next layer of 

growth. The thoroughness of sampling (and the amount of time required) is most directly 

influenced by these five parameters.

There are two additional search functions employed by de novo DOCK. They are termed 

“random”, and “exhaustive”. The random search method selects a user defined 

(dn_num_random_picks) number of random fragments at each attachment point of a 

growing molecule. The exhaustive method samples all fragments at each attachment point 

and is therefore only recommended for use with small libraries. These methods rely more on 

the same rigorous pruning parameters as the graph method to bound the search space. These 

alternative search methods are described in greater detail in the online documentation, and 

are not discussed further here.

De novo Construction: Scoring

Many different scoring functions exist in DOCK, any of which may be employed by de novo 
DOCK. Some functions are physics-based67 and use a classical molecular modeling force 

field63 to derive a quality-of-fit. Others are knowledge-based68–70 and compare candidate 

molecules against a reference molecule – typically something that is known to bind to the 

target such as a co-crystallized inhibitor. All functions have in common the assumption that 

a greater negative number (or a positive number closer to zero) represents a more favorable 

score. Specific scoring procedures used in the present work include: (1) standard DOCK 

single grid energy (SGE)5 comprised of van der Waals and electrostatic contributions, (2) 

multi-grid energy (MGE)69 which is numerically equivalent to SGE but contributions for 

key binding residues can be stored on individual grids enabling per-residue decompositions 

(i.e. footprints) to be mapped, (3) footprint similarity (FPS)68,69 which is a measure of the 

overlap (typically Euclidian distance) between any two footprints, (4) multi-grid energy plus 

footprint similarity (MGE+FPS) which is a combined function consisting of van der Waals 

and electrostatic contributions plus their footprint overlap, (5) pharmacophore matching 

similarity (FPS)70 which is a measure of the pharmacophore overlap between two 

molecules, and (6) Hungarian matching similarity (HMS)71 which scores how well two 

compounds overlap in an RMSD-like space. The two main actions of scoring in de novo 
design are targeted growth (Figure 4, vertical arrow), and pruning or filtering (Figure 4, 

horizontal arrow). These ideas largely control which molecules are retained or discarded 

during growth to bound the search space and address the problem of combinatorial 

explosion in de novo design.

Targeted growth in de novo DOCK refers to the application of scoring functions to drive the 

average score of the molecule ensemble toward a favorable value (Figure 4, unidirectional 

blue arrow). The driving force can be any of the individual scoring functions described 
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above or, because of a major upgrade to the function called Descriptor Score, most any 

combination of DOCK scoring methods can be used. Coefficients specified in the input file 

determine the relative weight of each term. The Descriptor Score follows the general 

functional form:

(Eq. 2)

Where each coefficient (C1, C2, …, CN) and each scoring function (F1, F2, …, FN), are 

defined in the input file. Targeted growth by vertical pruning is achieved by first rank-

ordering all molecules at a specific stage of growth by score, then retaining only a top-

scoring fraction for subsequent stages of growth. Overall, a high level of control over the 

scoring functions employed can drive the population of growing molecules through chemical 

space in a targeted, purposeful manner.

The objectives of horizontal pruning is to remove redundant molecules, increase diversity in 

the growing ensemble, and remove molecules with undesirable properties (Figure 4, 

bidirectional red arrow). To help achieve these outcomes, we employed Hungarian RMSD 

(HRMSD)71 which is a measure of the 3D spatial differences between two molecules 

calculated as:

(Eq. 3)

Where #ref is the number of atoms in the larger molecule, #unmatched is the number of atoms 

that are dissimilar between the two molecules, RMSDmatched is the symmetry-corrected 

RMSD between the atoms that are in common, and C1 and C2 are weighted coefficients. 

With these metrics, pruning is achieved by a best-first cluster. In other words, all molecules 

are ranked by score, then pairwise combinations are examined, beginning with the best 

molecule first, to eliminate any subsequent molecule which is too similar by the Hungarian 

score. The coefficients, as well as the pruning cutoffs for both metrics, are specified in the 

input parameter file (dn_heur_unmatched_num, dn_heur_matched_rmsd).

In addition, molecules that exceed a user-specified molecular weight 

(dn_constraint_mol_wt), number of rotatable bonds (dn_constraint_rot_bond), or formal 

charge (dn_constraint_formal_charge) are also filtered. Overall, this process increases 

diversity of molecules in the growing ensemble while driving the search space toward a 

favorable property ensemble. Taken together, we believe this level of control over the 

scoring, pruning, and filtering process is key to providing users the means to build molecules 

with very specific, highly-customizable properties.

Partial Charge Equilibration

At every stage of growth, it is important that partially-assembled molecules (those that 

contain open attachment points) remain as physical as possible. To that end, dummy atoms 

are treated as the chemical equivalent to hydrogen atoms for scoring purposes. As each new 
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fragment is added to the growing anchor, the Gasteiger function72 is used to equilibrate 

partial charges, ensuring an integral formal charge. The Gasteiger function was chosen for 

its speed and efficiency at equilibrating charges over large sets of molecules, which, 

depending on run conditions, can reach tens to hundreds of thousands.

Final Output Ensembles

Performing de novo design with the present input parameters and infrastructure produces 

final molecule ensembles that may contain multiple different conformers for each of the 

unique chemotypes sampled during growth. During program development, outcomes were 

significantly improved when multiple conformers of partially grown molecules were 

retained at each stage of growth (layer-by-layer). Conceptually this is similar to standard 

docking wherein multiple conformers of a molecule are retained. However, as is the case for 

VS, it is often desirable to only look at the best scoring member from each unique 

chemotype. For clarity, analysis of ensembles in this work potentially containing multiple 

conformers are labeled “Built Ensembles” and those containing only the best scoring 

conformer from each chemotype are labeled “Unique Ensembles”. Currently for de novo 
DOCK, a Built Ensemble is post processed to generate a Unique Ensemble using the 

following steps: (1) The best scoring molecule in the Built Ensemble not already ‘seen’ is 

saved in the Unique Ensemble and used as a reference, (no molecules have been ‘seen’ on 

the first iteration) (2) DOCK is used to calculate the Tanimoto coefficients of all molecules 

to the reference molecule, (3) all molecules with a Tanimoto coefficient of 1 to the reference 

molecule are marked as ‘seen’, (4) steps 1–3 are repeated until all molecules have either 

been ‘seen’ or copied into the Unique Ensemble. Inspection revealed results for focused 

library runs often contain numerous conformers of each species while generic runs are 

already mostly unique. This is attributable to the small size of the focused libraries which 

results in the increased sampling compared to the generic runs. Redundant chemotypes are 

more likely to be constructed starting from different anchors using small libraries with a 

limited number of fragments. Finally, an input parameter (dn_write_prune_dump) is 

provided to enable a memory dump of all molecules explored during de novo growth.

Computational Details

Fragment Libraries

Fragment libraries described in this manuscript are classified as “focused” or “generic”. 

Focused libraries contain only the non-redundant group of fragments from within a single 

parent molecule. As such, each of the focused libraries is distinct in composition and 

contains only a small number of fragments and accompanying torsion environments. In 

contrast, the large generic fragment library was derived from a data set of 13,195,579 drug-

like molecules from ZINC. Fragments that appeared 13,000 times (0.1%) or greater among 

the ~13 million molecules were retained, resulting in 217 distinct sidechains, 145 distinct 

linkers, and 18 distinct scaffolds (380 in total). From the same input ZINC library, 10,838 

possible torsion environments were identified occurring at any frequency. Only one generic 

library with one generic torsion environment table was used for all the generic experiments 

in this manuscript.
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Anchor Selection

All focused library calculations employed up to three anchors per run as suggested by prior 

work5 from our laboratory. Analogous to standard docking of a small molecule with known 

topology, the three largest anchors here were automatically selected from among the 

fragment entries in each of the focused library files. Given the small size of the focused 

libraries automatic selection of anchors based on size is a reasonable procedure. For the 

generic runs, however, in which the fragment library contained 380 entries, our initial 

growth tests revealed that automatic selection based on size was not likely to be a suitable 

strategy. More specifically, selection based on size always resulted in the same three largest 

ring structures selected to seed growth regardless of the protein binding site. To address this 

issue, we opted to seed growth with anchor fragments that had the highest overall observed 

frequencies in the drug-like ZINC library. To further increase sampling, generic library 

calculations for a given system employed 15 different anchors run concurrently on separate 

processors, and the results were merged together into a final ensemble for subsequent 

analysis.

Test Set Preparation: SB2012

A subset consisting of 663 out of 1043 systems in the SB2012 test set5,73 was used for the 

focused library generation and re-building tests based on complexes containing all ligands 

with 5–15 rotatable bonds (inclusive) and with formal charge of −2e to +2e. This removes 

the most rigid molecules (<5 rotatable bonds) as well as the most flexible (>15 rotatable 

bonds), while remaining in the domain of drug-like molecules. A second smaller subset of 

57 co-crystallized receptor-ligand complexes was chosen from among the 663 with a focus 

on diverse families of proteins representing important disease targets. The set of 57 was used 

for de novo growth tests using the larger generic library.

All test set complexes were prepared for docking as previously described.5,73 Briefly, crystal 

structures were downloaded from the Protein Data Bank,58 and ligands were separated from 

receptors, protonated using the program MOE,74 and assigned AM1-BCC charges75,76 and 

GAFF77 force field parameters using the AmberTools program antechamber.78 Receptors 

were protonated and ff99SB79 charges and parameters were assigned using the AmberTools 

program tleap. The assembled receptor-ligand complex was then subjected to a short energy 

minimization using Amber with heavy restraints on all non-hydrogen atoms to relax the 

system in a controlled manner. The surface of the receptor, absent the ligand, was then 

determined using DMS80 with a 1.4 Å radius probe atom, and the binding cavity was filled 

with docking spheres using the DOCK tool sphgen.81 Finally, a docking grid was generated 

for each receptor with the DOCK accessory program grid67 within a box that surrounded all 

spheres with a margin of 8.0 Å in all directions and at 0.3 Å resolution. Each grid point 

contained Lennard-Jones terms with 6–9 attractive and repulsive exponents, respectively, 

and a Coulombic energy term using distance dependent dielectric of 4r.

De novo DOCK Parameters

The de novo parameters used for all sections of Results in Discussion are identical unless 

otherwise stated. The graph sampling method was used to select fragments with 10 random 

starting points per attachment point, a breadth of 5, and a depth of 2. The graph temperature, 

Allen et al. Page 10

J Comput Chem. Author manuscript; available in PMC 2018 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which controls the acceptance ratio of fragments that do not improve the score, was set to 

100.0, and it decreased by half each layer. All fragments with an energy score greater than a 

maximum value were discarded. The maximum energy value started at +100 and decreased 

geometrically with each layer. Upper bounds were placed on molecular weight (750 Da 

focused, 500 Da generic), number of rotatable bonds (15 focused, 10 generic), and formal 

charge (±2.0) to limit growth. To further control how much sampling is performed, the de 
novo maximum root size was set to 25, and the maximum layer size was also set to 25, 

meaning that the code would only create 25 molecules from a single growing fragment and 

that at the end of each layer the best 25 incomplete molecules would be advanced for further 

growth. No more than one scaffold could be added at each layer of growth to control 

branching and to decrease the number of attachment points per layer. The maximum number 

of layers each molecule could grow was 9 and the maximum number of concurrent 

attachment points on any growing fragment was 5.

Table 1 demonstrates how the selection of maximum number of layers and maximum 

number of attachment points per layer parameters impacted the ability of the code to 

theoretically rebuild the 663 molecules from the focused growth test set. For example, for 

the smallest least-flexible molecules in our test set (5 rotatable bonds), we could 

theoretically rebuild all 105 molecules using five attachment points per layer. Using three 

attachment points per layer prevents complete growth of seven molecules; these molecules 

have a branched structure requiring either four or five attachment points in a given layer. 

Based on the calculations, we found that that 647 out of 663 molecules could be 

reconstructed by selecting nine growth layers with a maximum of five attachment points per 

layer (Table 1, 9 Layers/5 AP versus #Mol). For comparison, parameter choices of either 

seven layers or five layers, each with a maximum of five attachment points per layer, could 

yield at most only 605 or 469 of the compounds, respectively. Overall, use of nine layers and 

a maximum of five attachment points per layer provided a reasonable balance between 

concerns of timing and topology of resulting molecules. For all other DOCK functions the 

default parameters were chosen including those that control internal energy, orienting, 

scoring, and energy minimization. For details, see references.5,63

Chemical Similarity

Quantifying structural similarity between two molecules allows us to evaluate de novo test 

results and identify purchasable compounds similar to newly designed molecules. The 

Tanimoto coefficient is a comparison of 2D fingerprints between two molecules, and it 

considers composition and topology, but not conformation or position. In contrast to atom 

environments used for the torsion environment table (see Theory and Implementation), 

which only consider atoms up to one bond away from a root, the Tanimoto calculation for 

similarity considers all atoms and connectivity up to three bonds away from the root. The 

Tanimoto coefficient in de novo DOCK is measured as:

(Eq. 4)
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Where Fa,b is the number of features in common between two molecules, a and b, Fa is the 

number of features only in molecule a, and Fb is the number of features only in molecule b. 

“Features”, in this context, are atom environments based on the MOLPRINT descriptors 

described by Bender et al.64,65

Results and Discussion

Part 1. De novo Design using Focused Libraries

A conceptually simple (but not trivial) way to validate de novo design protocols is re-

building ligands in their co-crystal binding site, using only the component parts from the 

original ligand. Although the focused libraries are small, this test is still challenging given 

that the procedure requires anchor selection, orientation, minimization, and clustering 

followed by layer-by-layer growth, and only a limited number of conformations and 

partially-grown molecules can be retained at each step. Success of the exercise is based on 

whether the original ligand is rebuilt (chemical identity), and whether the ligand is rebuilt to 

the original pose (pose identity). Depending on the scoring function(s) and input parameters 

used, the outcomes may vary. This test presents an opportunity to screen different 

combinations.

We first used de novo DOCK to decompose each individual ligand from the set of 663 

systems into their component fragments (see Figure 2). On average, ligands in this set 

contained 7.0 distinct fragments (focused library) and 7.3 distinct torsion environments 

(torsion library). Then, independently, we used de novo DOCK to construct new ligands in 

each of the 663 receptor binding sites using only the cognate ligand’s focused library and 

accompanying torsion library. It is important to emphasize that the ligand construction 

initiated from up to 3 anchor positions that were sampled (i.e. oriented) during growth and 

not seeded to match those observed in the crystallographic structures. The results are 

summarized in Table 2.

Chemical Identity of Constructed Molecules—Several scoring functions (Table 2, 

column i) were evaluated including single grid energy scoring function (SGE), footprint 

similarity scoring function (FPS), the single grid energy plus pharmacophore70 scoring 

function (SGE+FMS), the multi-grid energy plus Tanimoto function (MGE+TAN), or multi-

grid energy + footprint similarity scoring function (MGE+FPS). Readers should note that 

MGE is numerically equivalent to SGE (see Balius et al69 for details) but allows the FPS 

function to be used during sampling. The final row, showing MGE+FPS with “enhanced” 

sampling, used the standard protocol with increased layer and root size parameters. 

Interestingly, for the standard sampling runs, the average number of built molecules (column 

iii) which ranges from 149.7 – 182.1, and the accompanying average number of unique 
molecules (column iv) which ranges from 18.1 – 19.8, does not change significantly based 

on the scoring function. In addition, the percentage of systems in which de novo DOCK 

builds at least one molecule that is chemically identical to the cognate ligand does not vary 

significantly with the choice of scoring function (from 72.4 – 73.9%) for standard sampling 

(Table 2, column v), except in the case where Tanimoto coefficient (TAN) is explicitly 

included in the score, which yields an increase to 84.9%. Enhanced sampling parameters 
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increase the number of molecules constructed and the percentage of which match the 

cognate ligand, but at the cost of a diminishing return on increased calculation time (Table 2, 

column viii). These data indicate that the extent of sampling in the binding sites using 

focused fragment libraries is somewhat independent of scoring function, and more a 

function of which sampling parameter values are used. This is reasonable for small fragment 

libraries where the number of possible combinations is limited by the number of fragments 

and small number of allowable torsion entries.

Pose Identity of Built Ensembles—Although the scoring function does not play a large 

role in choosing fragments, or how they are assembled for focused libraries, it does have a 

significant impact on which molecule poses are sampled and retained. For example, use of 

SGE alone produces a molecule identical to and less than 2.0 Å RMSD to the cognate ligand 

in 40.6% of all systems (Table 2, column vi). This frequency increases slightly to 43.9% 

when using FPS score alone. The combination functions SGE+FMS (48.4%) and MGE+FPS 

(46.0%) return additional increases. Here, the combined use of energy (SGE or MGE) with a 

pharmacophore (FMS) or footprint (FPS) similarity terms biases growth to mimic patterns 

made by the cognate ligands. Finally, use of MGE + TAN yields a pose less than 2.0 Å 

RMSD to the cognate in 51.1% of the cases because it leads to increased local chemotype 

sampling about the cognate ligand. Overall, MGE+FPS with enhanced sampling (100 vs 25 

molecules per layer) performs the best and successfully reproduces a cognate ligand to 

within 2.0 Å RMSD in 57.3% of systems, although at a larger cost of computation time 

(Table 2, column viii). Importantly, the results indicate that the de novo protocols and 

routines are working as expected and able to guide from-scratch ligand construction using a 

variety of different scoring functions.

Pose Identity of Unique Ensembles—In practice, we imagine that users will only 

typically consider compounds and poses found in the Unique ensembles which are derived 

from the “best-scoring” geometry of each chemotype constructed. This is analogous to 

virtual screening in which only a single conformation of each docked ligand is typically 

retained. As expected, pose reproduction rates for re-building cognate ligands under these 

more stringent conditions are lower (Table 2, column vii) than when all conformations with 

Tanimoto = 1 are included (Table 2, column v) or when all conformations with Tanimoto = 1 

and RMSD ≤ 2.0 Å are included (Table 2, column vi). Nevertheless, our observation that 

SGE (27.9%) < FPS (34.5%) < MGE+FPS (36.3%) < SGE+FMS (43.1%) is consistent with 

our expectation that use of a scoring function that includes additional information on binding 

(e.g. footprints, pharmacophores) will yield greater pose identity.

From another perspective, the ratio of % Pose Identity Unique to % Chemical Identity Built 

(Table 2, columns vii/v) gives additional information on scoring function accuracy for 

compounds with Tanimoto = 1 which can be roughly compared to the typical docking 

success rate of ca. 73%5 (SGE) seen with DOCK in which ligand topologies are known and 

fixed. By this metric, the observed de novo pose reproduction rates of between 38.5% for 

SGE (27.9/72.4) and 58.6% for SGE + FMS (43.1/73.6) are lower than 73% primarily 

because docking algorithms need only consider (retain) changes in conformational space and 

not keep track of unique chemotypes and their associate conformations. The consequence is 
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de novo design builds and retain significantly fewer copies of each unique molecule. 

Although, increased sampling helps to ameliorate this effect, for example, use of the MGE

+FPS enhanced protocol shows an increase in both the number of built molecules” (636.7 vs 

149.7) and their associated re-construction rate of 56.2% (46.8/83.3) vs 49.1% (36.3/73.9) 

when the numbers of molecule per layer of growth is increased (100 vs 25).

Layer by Layer Growth—As indicated previously, an important design feature of de novo 
DOCK is the ability to drive molecules into the user defined scoring space. This enables 

users to customize molecule ensembles to broad or narrow properties as desired using the 

full range of scoring functions and filters available in DOCK6. Therefore, it would be 

expected that the average score of the ensemble of molecules would improve as a function of 

the growth layer. Figure 5 shows the score per layer of each molecule grown in the 663 test 

case systems driven separately by the SGE, FPS, and MGE+FPS scoring functions. The 

range of favorable scores is defined differently for each scoring function. Molecules with 

large negative SGE and MGE+FPS scores are more favorable, and molecules with FPS 

scores close to zero are more favorable. In both cases, values closer to the bottom of the 

plots in Figure 5 are more favorable. Overall, we found that ensembles of molecules built by 

all three scoring functions had a wide spread of scores at early growth layers that trended 

toward favorable scores in later layers. In addition, the number of high scoring outliers 

declined as the de novo DOCK pruning functions eliminated unfavorable chemotypes and 

poses. There are two useful takeaways from Figure 5. First, we observe that the de novo 
implementation is working as intended in that during sampling DOCK eliminated molecules 

that had unfavorable scores, and retained molecules that had more favorable scores. Second, 

the final range of scores in the output ensembles, and in particular the most favorable 

quartile, are within the range of what we would judge to be “good” scores for the scoring 

function. Overall, we recommend a scoring function with terms designed to capture both 

physics-based interaction energies and a quantitative measure of binding mode similarity to 

a known reference, such as MGE+FPS. Such functions consider both the relative strength of 

binding interactions and the identity of binding interactions which weigh in to the overall 

score and helps to bound the search space. Unless otherwise noted, the results presented in 

the rest of the manuscript have employed the MGE+FPS function.

Comparisons with Crystallographic Binding Geometries (Poses)—Our final 

focused library analysis examined 3-dimensional poses of molecules constructed by de novo 
DOCK in the context of their crystallographic counterparts (Figure 6). For manageability, 

we examined only the Unique Ensembles (see Methods) which contain the “best scoring” 

member for each newly constructed chemotype with other conformers removed. Results for 

24 out of the 663 focused systems are shown comparing cognate ligand geometries (orange) 

with de novo constructed geometries (gray). All protein residues are hidden for clarity. Here, 

the test set of 663 receptor-ligand co-complexes was sorted by the number of distinct 

fragments in each focused library and then alphanumerically to facilitate un-biased selection 

of typical systems from each subgroup. With the exception of groups #2 (N=1) and #3 (N=3) 

the first two PDB codes in each case are shown. The plot is organized by increasing number 

of distinct fragments (left to right) and therefore presumably increasing rebuilding difficulty. 

Also shown are the number of cognate ligand rotatable bonds and the Tanimoto and 
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Hungarian RMSD between the cognate ligand and the selected ensemble member. For 

simplicity, analysis in this section focused only on the result obtained using the MGE+FPS 

scoring function. For these comparisons, the molecules shown represent the member from 

within each Unique Ensemble, with the best Tanimoto coefficient to the co-crystalized 

ligand from which the focused library was generated. Readers should keep in mind that 

these representative structures were not derived via docking but from de novo construction 

of fragments with no pre-defined topology other than that imposed by the allowable torsion 

environments.

As would be expected, based on the MGE+FPS results from Table 2 which showed ~36% 

pose identity for molecule selected from Unique Ensembles, visualization of top-scoring 

entries with Tanimoto=1 (or next highest value) reveals substantial overlap and low RMSD 

values for many of the systems. For example, 10 out of the 12 molecules from the first two 

rows (2–7 distinct fragments each) have Tanimoto=1 with low RMSD values less than 2 Å, 

and four of those molecules have RMSD values less than 1 Å. Some systems with seemingly 

unfavorable RMSD, for example 1AID at 3.11 Å, in fact has good functional overlap when 

one considers that two of the four rings are well-aligned and the other two rings are swapped 

in space. The good overlap observed for the highly flexible ligand from PDB code 1AJV is 

particularly striking given the large number of rotatable bonds (12 RB), although this is not a 

general trend. The RMSD values for ligands in the latter two rows (8–15 distinct fragments 

each) are higher with only two entries - 1CKP and 1A4Q - less than 2 Å. This demonstrates 

the increasing complexity of the calculation with increasing number of fragments. 

Nevertheless, on a case-by-case basis, many of the ligands (e.g. 1BN4, 1ETT, 1F0U, 1G2L, 

and 1HPV) show substantial overlap for portions of the molecule. Overall, the focused 

library tests show that the present sampling, scoring, and de novo design routines, in 

favorable cases, can lead to from-scratch-construction of ligands that mimic placement of 

physical observed ligand functionality. Additionally, enhanced sampling techniques may be 

used to further improve the results, but at the expense of time.

Part 2. De novo Design using Generic Libraries

A test that is closer to real-world application of de novo design is to build new ligands in a 

binding site using generic fragments. In contrast to the individual focused libraries, the 

single “generic library” contains a wide variety of chemotypes – in particular, chemotypes 

which appear commonly in drug-like molecules. While the primary goal of the focused 

calculations was to validate sampling, assembly, clustering, pruning and scoring routines 

(using re-construction of co-crystallized ligands), the primary goal of the generic 

calculations was to assess the properties of newly designed molecules. Given the large size 

of the generic library compared to the focused (380 vs 7 fragments on average), and greater 

number of allowable bonds (10,838 vs 7 torsion environments on average), it is unrealistic to 

expect that known ligands would be re-built exactly under the parameter choices used here 

that strive to balance run time with ligand diversity. In fact, in many cases it would be 

impossible because the generic library only contains common chemotypes, not the less-

common fragments present in some of the focused libraries of the previous section. We 

believe that using a generic library made from common fragments instead of highly focused 

fragments is better for general design problems. The metrics employed to validate generic 
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library protocols were geared to answer the following three questions: (i) How robust are the 

de novo designed poses of new molecules? (ii) What are the physical properties of new 

molecules? (iii) Do the new molecules have similarities to known ligands that bind a given 

receptor?

Expanding on the first question, since the identification of a pose is critical to both scoring 

and human evaluation of a newly-designed molecule, are the molecules generated in a 

binding conformation that can be confirmed by a well-validated docking algorithm, 

representing the best we can do in absence of crystallographic data? Expanding on the 

second question, do the newly-constructed molecules have desirable properties and similar 

molecular makeup when compared to a large group of purchasable drug-like molecules? 

Expanding on the third question, do designed molecules have chemical similarity (i.e. show 

functional group overlap) and/or binding similarity (i.e. make similar interactions with the 

protein) as known cognate ligands?

Generic Libraries—As noted in Methods, the generic library was constructed from ~13M 

compounds in the ZINC database.8 Fragments that occurred at >0.1% frequency (13,000 

times) were retained. The goal was to derive high-frequency ligand building blocks from 

known, purchasable, and drug-like compounds with physically observed connection rules (in 

the present case 10,838 possible torsion environments). While the number of allowable 

torsions in the current work was not reduced by eliminating entries with low frequencies we 

believe this would be a useful parameter to evaluate for the future. The top 14 fragments 

from each class, sorted by frequency, are shown in Figure 7 from among 217 sidechains, 145 

linkers, and 18 scaffolds in the total library. Notably, this process identified many of the 

same molecule fragments as those present in existing drug libraries, as previously 

described.82,83 The allowable attachment points are indicated in purple along with their 

allowable bond types.

Here, the most common sidechains (Figure 7a) with one attachment point include ethyl, 

methoxy, benzene, and hydroxyl. By imposing the 0.1% frequency cut-off when generating 

the library we expect to enrich designed compounds for these common functionalities. For 

the linkers (Figure 7b) with two attachment points, the most common functional groups 

include methylene, ketone, amine, and ether. It is also important to note, although it may 

appear that there are several copies of the same linker, these differ in bond type or the 

arrangement of their attachment points, both critical distinctions for the software. For 

example, benzene appears in the linker library with either ortho-, meta-, or para- attachment 

points. Enforcing a frequency cut-off when choosing not only the fragment identity, but also 

the possible arrangement of attachment points, ensures only common chemistries and 

topologies are sampled. Finally, considering the scaffolds which have three or more 

attachment points, a substituted methyl group dominates this list followed by amine, 

benzene, and ethyl.

The number or letters next to each bond in Figure 7 identify the type of bond that is 

allowable at that point (i.e. 1=single bond, 2=double bond, am=amide bond). Just as we 

enforce only certain topologies in our fragments, we enforce types of bonds that may be 

formed at each attachment point. Thus, the two planar amine entries for linkers (Figure 7b) 
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or three planar amine entries for scaffold (Figure 7c) are retained as different species. This is 

enhanced further by the torsion environments (discussed in Methods) which are derived 

from existing, synthesizable molecules, and used to further constrain how two fragments can 

or cannot be attached together. Entries marked with an asterisk (*) indicate the 15 overall 

most common fragments (by frequency) used here as “anchors” to seed generic de novo 
growth (see discussion below) after orientation, minimization, and clustering per the DOCK 

anchor-and-growth procedure. One final point is that these libraries, which are input as 

simple multi-mol2 files, are very easily customizable. Users can add or remove any fragment 

they choose. Sample libraries, including the library used in this manuscript will be made 

available with the release.

(i) How Robust are De Novo Designed Poses of New Molecules?: The first step employed 

to characterize generic growth was to compare predicted binding poses of newly constructed 

molecules, versus what would be expected through standard docking. To do this, we took the 

results of de novo construction and re-docked each ensemble of molecules back into the 

receptors in which they were built using the standard flexible ligand (FLX) protocol5 and 

compared the RMSD between input and re-docked geometries. As noted in Methods, 

generic de novo growth experiments employed 57 representative protein receptors from the 

PDB using the MGE+FPS scoring function. The receptors represent common drug targets 

including acetylcholinesterase, cyclooxygenase, EGFR, HIV protease, IFG1R, 

neuraminidase, HIV reverse transcriptase, and streptavidin. Under these conditions, de novo 
DOCK constructed a significant number of new unique molecules in each protein crystalized 

protein structure (5,000 – 10,000 each) with an average number of 8,859 unique compounds.

As shown in Table 3, on average over all receptors and all molecules, re-docked poses were 

within 2 Å RMSD only 27.9% (total overall re-dock success). However, visualization of the 

results revealed that ensembles may contain small initial starting fragments and dead-end 

leads for which binding modes do not have strong favorable interactions with the receptors. 

Thus, we also examined smaller subsets of molecules for which users might reasonably 

consider from a de novo design calculation – the top 50 scoring molecules in each ensemble. 

Using this criterion, which emphasizes more pronounced steric and electrostatic 

complementarity to the receptors, 70.5% of de novo designed molecules were re-docked to 

within 2 Å RMSD of the initial pose. Notably, 70.5% is close to the 73.3% value previously 

obtained for re-docking 1043 known crystallographic ligands back into their receptors as 

reported by Allen et al.5 Poses for top-scoring molecules in EGFR (77.2%) and HIV reverse 

transcriptase (88.8%) re-dock with high success rates, indicating a particularly high level of 

confidence in the predicted poses for these important drug targets. Visualization of generic 

results in a scatter plot re-affirms these results (Figure 8). For the entire ensemble (Figure 8, 

blue dots) a large range of scores and RMSD values exist. But, when only the top 50 

molecules in each ensemble are retained (Figure 8, green dots), low RMSD values become 

significantly enriched (points below the 2 Å line). Overall, the calculations strongly suggest 

that ligand poses obtained using de novo design are comparable to those one would obtain 

through standard docking provided the molecules are top-scoring (i.e. have significant and 

favorable interaction energies with the receptor).
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(ii) What are the Properties of New Molecules?: Next, we calculated the molecular 

weight, number of rotatable bonds, and formal charge of all molecules built in all ensembles. 

The complete data (blue bars), and the data for just the top 50 scoring molecules in each 

ensemble (green bars) are shown in Figure 9. The top scoring molecules are weighted 

toward larger molecular weight (400–500 Da), more rotatable bonds (5–10), and a more 

uniformly distributed formal charge (shifted toward cationic). No molecules constructed 

exceeded the user-defined property space of (1) maximum molecular weight = 500 Da, (2) 

maximum number of rotatable bonds = 10, and (3) allowable range of formal charges = ±2e 
which is a practical demonstration of targeted design. Users of de novo DOCK not only have 

full control over the property ranges that are allowed, but they also have control over the 

composition and interactions of those molecules through DOCK’s large number of available 

scoring functions.

Molecular Properties: Comparisons to Purchasable Drug-Like Molecules: To further 

examine the molecules constructed from generic fragment libraries, we next sought to 

compare properties of those molecules to drug-like molecules. Using the software MOE, we 

calculated common descriptors for all 489,573 de novo designed molecules for comparison 

with 500,000 purchasable molecules from the ZINC database. These molecules constitute a 

representative subset of the 13 million molecules used to create the generic library. Figure 10 

shows the relative histograms of (a) molecular weight, (b) LogP, (c) Rsynth score,74 which is 

an estimation of synthetic feasibility, (d) Lipinski violations, (e) H-bond acceptors, and (f) 

H-bond donors. Histograms of de novo designed molecules are blue, and histograms of 

ZINC molecules are red. The molecular weights of the ZINC ensemble are distributed 

normally around ~350 Da, reflecting a design choice by the curators of that library. 

Molecular weights of the de novo ensemble show two peaks, the heavier peak reflects a 

well-known bias in the DOCK grid-based scoring functions for larger molecule, but has a 

hard cutoff at the user-defined value of 500 Da (Figure 10a). Both ensembles show similar 

ranges of LogP, indicating a good mix of polar and non-polar groups in the designed 

molecules, which is suitable for most types of protein binding (Figure 10b). The MOE 

Rsynth metric attempts to quantify synthetic feasibility with higher values representing 

increasing feasibility.74 Both ensembles span the entire domain of possible Rsynth values 

with most molecules in both ensembles predicted to be accessible (Figure 10c). Despite the 

range of Rsynth values, all molecules in the ZINC drug-like set are existing, purchasable 

molecules, and the Rsynth values of the molecules in the de novo ensemble are predicted to 

be similar. This helps provide confidence that on average, molecules constructed by de novo 
DOCK will have increased chance of synthetic feasibility over a molecule constructed from 

fragments at random. Most molecules in both sets have no Lipinski violations although 

molecules built via de novo DOCK display more so than ZINC (Figure 10d). Finally, we 

observed that de novo designed molecules slightly tended toward fewer H-bond acceptors 

and donors than did the ZINC set. Although the reason for this trend is not clear at this time, 

it could be an area for future improvement by, for example, increasing the number of H-bond 

acceptors and donors in the generic fragment library, or by incorporating H-bonding as a 

specific term in the scoring function. Other constraints worthwhile to explore would include 

incorporation of logP or Lipinski violations directly into the pruning functions, although 

these would most likely only be meaningful at later stages of growth.
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Molecular Makeup: Comparisons to Purchasable Drug-Like Molecules: To further 

characterize the de novo ensembles, we examined how often specific library entries were 

incorporated into new ligands versus those from the purchasable ZINC set (Figure 11). 

Figure 11a compares the average number of scaffolds, linkers, and sidechains between the 

two different groups of molecules. Here, the relative number of scaffolds to linkers in an 

ensemble is expected to be related to the shape or topology of a molecule. Scaffolds 

represent the only possible branching points in a molecule; molecules without scaffolds must 

have linear topology. Figure 11a indicates that the composition of the designed molecules, as 

it relates to connectivity and branching, resembles quite closely the ZINC drug-like 

molecules. On a finer scale, Figure 11b plots the distribution for the top 50 occurring 

fragments seen in the generic library which was originally derived from 13M compounds. 

Here, the de novo design and ZINC raw counts show a surprising correlation for many of the 

fragments. The major outlier is methyl, which occurs in the first position (Figure 11b, 

fragment #1). Methyl occurs an average of 1.1 times per molecule in the ZINC set, but only 

0.1 times per molecules in the de novo set. This is likely due to the small and relatively inert 

nature of a methyl fragment. Adding it to a growing molecule would not improve the score 

significantly for most scoring functions, thus it is not kept as often as other more dramatic 

fragments. We also tend to oversample slightly on ketones (fragment #2) and ethyls 

(fragment #4). This points out a potentially important area for improvement in our protocol 

that may be addressed by considering the relative frequencies of fragments (see Figure 7) 

when designing molecules. A scatter plot of the same data (black points) and the relative 

frequencies for the rest of the less-common fragments (grey points) is shown in Figure 11c. 

Not withstanding the outliers noted, overall, a fairly linear relationship exists between the 

most common fragments (Figure 11c, top 50 colored black), which is a good indication that 

the molecules being assembled via de novo design closely resemble ZINC drug-like 

molecules not only property (Figure 10), but also in composition and topology (Figure 11).

(iii) Do New Molecules have Similarities to Known Binders?: Finally, we examined the 

3D structures and binding poses for representative molecules built by de novo DOCK using 

the generic fragment libraries. The goal here was to identify examples that show functional 

group overlap and make similar interactions with the protein as the original cognate ligand 

does in its crystallographic complex. Systems discussed in this section represent de novo 
results generated using the MGE+FPS scoring function from the Unique Ensembles.

De novo design targeting HIV protease: Figure 12 shows representative results of de novo 
growth in HIV Protease (PDB: 1DMP). Dashed purple springs represent intermolecular 

hydrogen bonds predicted by UCSF Chimera.84 Figure 12(a) shows the co-crystalized cyclic 

urea inhibitor stabilized by hydrogen bonding interactions with conserved flap isoleucines 

and catalytic aspartic acid residues. Figure 12(b,c) shows overlays of the two top scoring 

congeneric series of compounds using the MGE+FPS scoring function. Notably, the first 

series of compounds shows extensive hydrogen bonding within the pocket, recreating the 

predicted hydrogen bonds with a triazole and secondary amine. The second series of 

compounds lacks hydrogen bonding to aspartic acid residues 25 and 124 but strongly 

interacts with the isoleucine residues with a sulfone moiety and additionally creates two new 

hydrogen bonds. Both examples provide compelling evidence that the fragment assembly 
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routines and protocols can lead to physically interesting compounds which make the same 

interactions as known inhibitors, but occupy a distinct part of chemical space. It should be 

noted that in this example and in many cases, top scoring molecules tend to belong to a 

congeneric series. These completed molecules result from a highly scoring intermediate 

molecule that out-competes other intermediates in the same layer of growth. We believe 

convergence around common scaffolds represents a strength of the program and frequently 

observed molecular frameworks would be particularly promising starting points for 

experimental evaluation. In the present case, we initiated growth from 15 different anchors 

to promote diversity. Users may further increase diversity by increasing the number of 

anchors and/or by increasing the number of runs per anchor.

De novo design against additional targets: As additional examples of generic growth, 

Figure 13 shows design results from construction initiated in six other binding sites from 

among the eight protein families listed in Table 2 and include: neuraminidase (1NNB), a 

second example for HIV protease (1AJV), HIV reverse transcriptase (1C1B), IGF-1R 

(2ZM3), COX-1 (1HT8), and acetylcholinesterase (1ZGC). In Figure 13a, the potent 

neuraminidase inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (DANA) is shown 

making stabilizing interactions with three key arginines in the neuraminidase active site: 

R119, R294, and R372. An ensemble of potentially promising molecules (five orange 

molecules overlaid in Figure 13a) that contained hydrogen-bond accepting groups, including 

sulfate, in the same position as the hydrogen-bond acceptor in DANA were assembled. 

Notably, the heterocycle in the designed molecules, which occupy the same space as the 

cognate pyran ring in DANA, forms an additional stabilizing interaction with R119. The 

lower-right portion of the designed compounds contain several alternative favorable groups 

that make interactions with other parts of the receptor that would also be worthwhile to 

explore.

In Figure 13b–c, we examine two cases in HIV drug target receptors – one encouraging 

outcome, and one outcome that was unexpected, but interesting. Figure 13b shows results 

for a second run in HIV protease initiated using a different PDB code from that discussed in 

Figure 12. Strikingly, a small ensemble of molecules was assembled that places a sulfonyl 

group in the same position as the cognate ligand sulfamide which makes the same H-

bonding patterns with conserved flap residues (I50, I149). Other similarities between the 

cognate and designed compounds include the positional overlap of aromatic ring structures 

and a hydrogen bond with catalytic residue D124. In Figure 13c, we show illustrative de 
novo outcomes in the target HIV reverse transcriptase (HIVRT). The cognate ligand, a non-

nucleoside RT inhibitor called GCA-186, forms a key hydrogen bond with the backbone 

carbonyl of K101. Here, top-ranked designed molecules do not form the same interaction. 

Rather, they form hydrogen bonds to the backbone amide hydrogen of K101, and with the 

sidechain of K103. In addition, there is some overlap in the shape of the inhibitor as well as 

the location of the fused ring. Although the de novo calculation did not form the same 

hydrogen bond with the backbone carbonyl of K101 the constructed pose position indicates 

a protonated ring nitrogen would enable the same interaction to be formed.

Finally, in Figure 13d–f, we highlight three single example molecules that bind similarly to 

the cognate ligand, but with different molecular compositions. The designed IGF-1R 
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inhibitor is highly planar, much like the cognate, and forms the same hydrogen bond 

interactions with residues E1080 and M1082. This is done with almost a completely 

different set of rings, but with a high overlap in functional group position. Figure 13e shows 

an example of a de novo molecule which matches the cognate (COX-1 inhibitor alclofenac) 

in position and interactions. The designed inhibitor however is larger, adding a heterocycle 

and a carboxylic acid (left side of molecule) that forms additional stabilizing interactions in 

the pocket. Such designs explore underutilized interaction opportunities and provide useful 

hypotheses. In Figure 13f, acetylcholinesterase is shown in complex with a long, highly 

flexible cognate inhibitor containing 13 rotatable bonds. Interestingly, two rings in the 

designed molecule (7 rotatable bonds) overlap well with those of the cognate ligand, but 

without the long flexible region in the middle, and there are new stabilizing interactions with 

residues S286 and Y121. This is an example of a molecule which may have a reduced 

entropic cost to binding compared to the cognate – a common avenue explored (i.e. 

cyclization) by medicinal chemists.

As would be the case with other de novo design programs, a central takeaway from the 

generic library calculations is that outcomes from de novo DOCK should be interpreted as a 

useful guide for discovering new leads, and not treated as a ‘one size fits all’ answer. Other 

factors to consider when choosing leads to follow include toxicity, ADME properties, 

PAINS, and propensity for colloidal aggregation.85–87

Part 3. De novo Design Targeting the Hydrophobic Pocket of HIV gp41

In our final group of experiments, we applied the de novo design strategies discussed herein 

to the viral protein gp41 being targeted by our lab60,88–90 and others.91–93 The glycoprotein 

gp41 is a viral fusion protein expressed on the surface of the HIV virion which, together 

with gp120, mediates the recognition and fusion of the host and HIV membranes, leading to 

infection.94,95 Inhibition of gp41 activity is clinically recognized to inhibit HIV infection.96 

Small molecule inhibitors of gp41 have been shown to work in vitro, but lack clinical 

endorsement60,91–93 In this application, we used de novo DOCK to build a large ensemble of 

new molecules designed to target the gp41 N-helical hydrophobic pocket (PDB: 1AIK),59 

and to mimic key interactions of the native C-helical binding partner motif termed “WWDI”. 

The same generic fragment libraries, torsion environments, and protocol (15 anchors, 

standard sampling) used for the 57 systems discussed in the previous section were also 

employed here. In general, gp41 is distinct from targets in the previous section because it is 

much more solvent exposed,90 it helps to mediate a protein-protein interaction,59 and the 

reference binder in this case was a peptide rather than a small molecule. Use of the MGE

+FPS scoring function resulted in an ensemble of 26,393 unique molecules which is 

significantly larger than the other ensembles discussed previously, likely because the 

solvent-exposed hydrophobic pocket has fewer steric constraints than the other binding 

pockets. For comparison, we also performed a separate VS89 to the gp41 pocket docking 1.4 

million purchasable compounds from ZINC8,97 (Chembridge vendor), with our standard 

FLX5 protocol, for which the top 100,000 molecules based on DOCK Cartesian Energy 

(analogous to SGE) were retained for comparison with the de novo outcomes. Results in this 

section were analyzed with the following criteria in mind: (1) Do designed molecules exhibit 
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good scores in the gp41 pocket? (2) Are designed compounds purchasable and synthetically 

feasible? (3) Are designed ligands similar to any known inhibitors?

Scores of top-ranked de novo molecules targeting gp41—Figure 14 presents 

overlays from de novo design for the top 200 compounds (a–e, top panel), the single best 

scoring compound (a′–e′, middle panel), and footprint overlaps (radar plots, bottom panel) 

for the best scoring compound. Results are also shown for re-ranking the 26,393 compounds 

based on one of five different functions MGE+FPS, SGE, FPSSUM, FPSVDW, and FPSES 

which we have previously employed to help prioritize compounds in successful applications 

of VS.89,98,99 In general, the ensemble overlays for the top 200 scoring compounds across 4 

of 5 functions show poses clustered tightly in the gp41 hydrophobic pocket normally 

occupied by the WWDI residues of the native C-peptide substrate. Only the FPSES 

ensemble, which was not derived using any van der Waals packing terms, yields a noticeable 

wider distribution of poses.

In terms of specific compounds, molecule 1AIK_1386 (Figure 14a’) was the top scoring 

molecule identified from the de novo ensemble by both MGE+FPS and SGE ranking 

metrics. Uniquely, a large congeneric series of molecules structurally similar to 1AIK_1386 

was also built and had similarly favorable scores. An examination of the footprints shows 

1AIK_1386 has reasonable VDW (6.5) and ES (2.7) overlap scores (Euclidian distance) 

with the candidate, and makes similar interaction patterns as the native peptide reference 

(Figure 14, radar plots, bottom panel). Interestingly, top molecules from the de novo 
ensemble scored better than molecules from the VS ensemble in the MGE+FPS and SGE 

scoring spaces (Table 4). For example, the designed ligand 1AIK_1386 has a MGE+FPS 

score of −53.5 kcal/mol compared to ZINC14534436 at −47.6 kcal/mol identified from the 

VS. On one hand, this result is surprising given that the VS sampled significantly more 

molecules than were created under these de novo design conditions (1.4 million vs 26 

thousand), and was significantly more computationally expensive (80 thousand cpu hours vs 

338 cpu hours). On the other hand, generation of molecules with better scores is consistent 

with our design intent that de novo approaches can be used to create “new” molecules with 

enhanced interactions. Re-ranking with the SGE function (energy alone) shows a similar 

pattern with the top-scoring VS molecule ZINC09262558 yielding −55.1 kcal/mol compared 

to 1AIK_1386 at −62.7 kcal/mol (Table 4). Here, the VS molecule has a favorable SGE 

score in part because of its relatively large size (MW = 511 Da) and because it was predicted 

to create an unlikely interaction with gp41 where it extended outside of the hydrophobic 

pocket (data not shown). In contrast, 1AIK_1386 formed the same important interactions as 

the VS molecule and as the peptide reference (including a key lysine chelation), but 

remained constrained within the binding pocket (Figure 14b’ and radar plot, red line).

In contrast to MGE+FPS and SGE, the three best FPS-ranked molecules identified from the 

VS ensemble out-scored the three best ranked molecules built by de novo design (Table 4). 

For example, although the de novo molecule 1AIK_10458 selected using FPSSUM (Figure 

14c’) shows even better footprint overlap than 1AIK_1386 (6.3 vs 9.2), the top ranked 

compound ZINC08738361 found among the VS results has even better overlap at 2.9 (Table 

4). For the two individual footprint components, the VS results are also closer to zero 
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(perfect overlap) than those obtained via de novo, although the differences are not as 

dramatic (FPSVDW 1.2 vs 2.7 and FPSES 0.8 vs 0.9).

A more general point to be emphasized is that footprints can be used to identify, and 

therefore help design, molecules creating distinct and specific interactions. For instance, use 

of FPSVDW to prioritize MGE+FPS de novo growth yielded 1AIK_15002 (Figure 14d’) 

which makes VDW packing interactions highly similar to the peptide reference (FPSVDW = 

2.7). But, as this function does not consider electrostatics, the selected compound did not re-

create the native salt bridge with Lys 29 (Figure 14d’, radial plot, Table 4). Conversely, 

although molecules selected with the FPSES scoring function were generally not as well 

contained in the binding pocket (Figure 14e vs 14a–d), the salt-bridge at position Lys 29 was 

frequently observed. Thus, in favorable cases, both metrics can be satisfied even when only 

selecting for one component. For example, FPSES was used to select 1AIK_9575 (Figure 

14e’, radial plot) which forms the Lys 29 salt-bridge (FPSES = 0.9) and maintains good 

VDW packing (FPSVDW = 5.6). We hypothesize it should be possible to design molecules 

with even more favorable FPSSUM, FPSVDW, and FPSES scores directly, if one of those 

functions alone was used to drive growth, and this is currently under investigation. Future 

strategies to explore should include running concurrent de novo design experiments, each 

driven by a different scoring function, and collecting the results together for further analysis.

Accessibility of de novo designed molecules—Although the primary goal of de 
novo design is to generate “novel” molecules, chemotypes, and hypotheses, in a practical 

sense, it would also be valuable if some designed compounds (or close analogs) could be 

purchased for experimental testing, much like for VS. To determine purchasability, we 

converted each of the 26,393 unique molecules to SMILES strings using Open Babel,100 

which were used to query the ZINC15 database for similar molecules. The percent of de 
novo designed molecules found at different Tanimoto cutoffs in ZINC is shown in Figure 15. 

Of the 26,393 unique molecules in the ensemble, we found that about 4% (1,122) have an 

identical pair with Tanimoto=1 indicating it is available for purchase. And, approximately 

12% (3,224) of the designed molecules have a structurally-related analog (Tanimoto ≥ 0.7) 

which would suffice to probe for activity against a target of interest in many exploratory 

studies. Any hits can then be linked back to a parent compound for further analysis.

In Figure 16, we compare 2D structures for 15 molecules (labeled a–o) designed in the gp41 

pocket along with a representative purchasable analog available in ZINC. These specific 

examples were initially identified from the sub-group of 3,224 molecules having a Tanimoto 

≥ 0.7 out of the entire ensemble (26,393 total) and after being visualized in the binding site, 

which is also our standard protocol for prioritizing results from VS. Also shown are the 

designed compound name, energy score, ZINC ID of the analog, and Tanimoto coefficient. 

Visually, all 15 pairs show significant structural similarity and the MGE+FPS scores range 

from −22.04 to −32.77 kcal/mol which are all favorable. Two of the designed molecules 

(Figure 16j,m) have Tanimoto = 1 which means the exact molecule designed is also available 

for purchase. For other examples, although it can be difficult to gauge how “similar” two 

molecules are based on only a single number (i.e. Tanimoto coefficient), the pairs generally 

show minor differences in functional groups while maintaining similar topologies (Fig 16). 

In fact, for two examples, 16g (Tanimoto = 0.76) and 16h (Tanimoto = 0.77), the de novo 
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designed compounds differs from the purchasable ZINC analog by only a single atom 

despite the Tanimoto coefficients being under 0.8. From a development perspective, these 

examples provide further evidence that the sampling, scoring, and clustering routines in de 
novo DOCK can promote growth of physically reasonable, and in some cases purchasable 

compounds, and underscore the ability of the software to design useful molecules 

(hypotheses) from scratch. Importantly, constructed molecules for which there are not 

readably purchasable analogs represent potentially novel regions of Chemical Space that can 

be further explored.

Another avenue to follow up on interesting designed compounds is by organic synthesis. A 

benefit of synthesis is the investigator may experimentally test the exact compound of 

interest, however it is a high barrier of work to synthesize a new compound. In addition, it is 

not known a priori whether the de novo designed compound is synthesizable. As was 

performed for the generic ensembles in the previous section (Figure 10), we used the MOE74 

program to calculate the Rsynth metric to estimate ease of synthesis for compounds 

designed in the gp41 hydrophobic pocket. Encouragingly, 44% of the gp41 ensemble 

(N=26,393) score the highest value of 1, suggesting it is synthetically accessible. The 

average Rsynth score for the entire ensemble is 0.78.

Comparison of designed compounds to known inhibitors—Following de novo 
construction of molecules in the HIV gp41 hydrophobic pocket, we searched the resulting 

ensemble for molecules which are similar to known inhibitors. We identified a congeneric 

series of 12 compounds that share a common structure, to NB-2,101 one of the first identified 

small molecule inhibitors against this target. Importantly, all 12 of these designed 

compounds are purchasable. The congeneric series shares a benzoic acid substructure with 

NB-2 (Figure 17a). The series differs from NB-2 in the group para to the acid, sampling 

several different rings, fused rings, substituted rings, and heterocycles. Three related but 

distinct possible binding poses emerged in this group. All poses fell completely into the 

hydrophobic binding pocket and formed a salt bridge with a key residue, Lys 29 (Figure 

17b). Docking studies suggest that NB-2 may adopt a similar pose,101 although the exact 

pose has not yet been determined as no crystallographic data exists. From a validation 

standpoint, the from-scratch construction of molecules in the gp41 hydrophobic pocket 

related to a previously identified and well-characterized gp41 inhibitor is significant and 

noteworthy. From a practical standpoint, these examples would be an attractive series to 

explore experimentally.

Conclusions

In this manuscript, we presented de novo DOCK as a small molecule design platform with 

the goal of building highly customized ensembles of molecules targeting various protein 

receptors. De novo DOCK is distinct from other software packages in that it leverages the 

modular design of DOCK6 for both orienting and scoring of molecules. This design feature 

allows users to select from among a variety of knowledge and physics based scoring 

functions (or combinations thereof) to drive the resulting ensemble into a desirable region of 

chemical space (Figure 4). Further strengths of de novo DOCK include simplicity of initial 

fragment generation, the use of a “torsion environment table” defining reasonable bonding 
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without explicitly defining which fragments can be connected, and control over key physical 

constraints including molecular weight, number of rotatable bonds, and formal charge. 

Additionally, de novo DOCK allows the user to start growth from scratch or from a user-

defined anchor or molecular scaffold making it useful for both lead discovery and 

refinement projects. A key feature of the from-scratch approach is the ability to seed growth 

from multiple unique fragments and positions derived through anchor orientation, 

minimization, and clustering in the target site (anchor-and-grow approach). We validated the 

performance of de novo DOCK through focused library calculations, generic library 

calculations, and application to HIV gp41.

First, we used focused library calculations to demonstrate that, absent information about 

starting geometry, de novo DOCK can rebuild co-crystallized ligands from their constituent 

parts. Using a balanced scoring function (MGE+FPS) and our standard, low-time cost 

sampling method, we rebuilt 73.9% of ligands from a set of 663 protein-ligand complexes 

(Table 2). We demonstrated that de novo DOCK can drive growth toward increasingly more-

favorable molecules as a function of layer (Figure 5). And, upon close examination of 

molecules that were constructed, we found that in many cases where the exact parent ligand 

was not reassembled, we constructed similar molecules (based on Tanimoto) with reasonable 

spatial overlap (Figure 6).

Next, we assembled a large database of 380 common fragments and a table of 10,838 

allowable torsion connections from approximately 13M ZINC drug-like molecules (Figure 

7). This ‘generic’ library was used to design ensembles of new molecules in the binding sites 

of 57 representative receptors from eight protein families (Table 3). We re-docked the 

ensembles to demonstrate that the poses of the top 50 best scoring molecules were 

trustworthy (70.5% of the docked poses were within 2.0 Å of the designed poses) (Figure 8, 

Table 3). Further, we showed that the de novo designed molecules are highly similar in 

composition and topology to existing, drug-like molecules from ZINC (Figures 10, 11). 

And, we closely examined designed molecule 3D structures to find that in many cases, the 

designed molecules form many of the same interactions and have substantial spatial and 

functional overlap with cognate ligand binders (Figures 12, 13).

Finally, we applied this de novo design strategy to the drug target HIV gp41. Using the MGE

+FPS scoring function, we designed new molecules that had reasonable spatial and 

interaction overlap with a known reference peptide (Figure 14). The scores of the designed 

molecules also were comparable to molecules identified from a test virtual screen (Table 4). 

Although it is possible to pursue synthesis of the designed molecules, we also sought to 

determine whether the compounds were available for purchase. We found a small but 

important fraction had a close analog (Tanimoto ≥ 0.7) in ZINC that was commercially 

available (Figure 15). Side-by-side comparison of the designed molecules and the 

purchasable molecules revealed striking structural similarities (Figure 16). Excitingly, a 

congeneric subset of designed molecules also had high chemical similarity to a known gp41 

binder, NB-2 (Figure 17).

In conclusion, we believe the de novo DOCK software described here provides a highly 

customizable platform for designing novel inhibitors against a wide variety of protein 

Allen et al. Page 25

J Comput Chem. Author manuscript; available in PMC 2018 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



targets. We found that using fragments and connections that occur commonly in drug-like 

molecules, along with physics and information based scoring functions, we were able to 

design entirely new compounds with desirable properties. Future work will continue to 

leverage the properties of known drug-like molecules, including the frequency of certain 

fragments and connections, to further constrain the search space. This software is freely 

available to academic users. Tutorials and input files can be found at www.rizzolab.org.
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Figure 1. 
Illustration of docking/VS (top) versus de novo design (bottom) approaches. In VS, ligands 

originate from existing chemical libraries or catalogs. In de novo design, fragments are 

building blocks used to construct new ligands. Receptors are typically treated the same in 

both methods.
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Figure 2. 
Small molecule 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (DANA, left) is 

deconstructed into fragments (right) around rotatable bonds. Redundant fragments are 

removed. Attachment points are marked as dummy atoms (Du).
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Figure 3. 
Flowchart of iterative growth process for de novo DOCK. Input includes grids and 

parameters according to standard DOCK run and scoring functions, and fragment libraries. 

Anchors are oriented to binding site. Retained anchors are grown outward in a layer-by-layer 

approach analogous to anchor-and-grow. Complete molecules are written to file.
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Figure 4. 
Scoring drives targeted growth (vertical blue arrow) and pruning/filtering (horizontal red 

arrow) in de novo design. Examples of targeted growth scoring functions include the DOCK 

grid energy score, footprint similarity score, and pharmacophore score. Examples of 

pruning/filtering criteria include Hungarian RMSD, molecular weight, number of rotatable 

bonds, scaffolds per layer, etc.
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Figure 5. 
Scores for all molecules constructed in all 663 receptors using SGE (left), FPS (center), and 

MGE+FPS (right) directed ensembles (y-axis) and as a function of layer in which each 

molecule completed growth (x-axis).
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Figure 6. 
Comparison between de novo built molecules (gray) and crystallographic references 

(orange) for results generated using the MGE+FPS scoring function for focused libraries. 

Molecules are organized by increasing number of distinct fragments. Shown are the PDB 

code, #distinct fragments, number of rotatable bonds in parenthesis, Tanimoto coefficient 

between the constructed molecule and reference, and Hungarian RMSD between common 

heavy atoms. Underlined RMSD values represent systems with Tanimoto not equal to 1.
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Figure 7. 
The 14 most frequently observed (a) sidechains, (b) linkers, and (c) scaffolds from the 

generic fragment library. The number below each fragment in (parentheses) indicates the 

number of occurrences in ~13M ZINC drug-like molecules. Purple atoms with labels 

indicate attachment points and their accompanying Sybyl mol2 bond types. Other atoms are 

colored as: white=hydrogen, tan=carbon, red=oxygen, blue=nitrogen, yellow=sulfur, 

green=fluorine, bright green=chlorine. Double and aromatic bonds are not shown. The 

entries marked with * denote the 15 most common fragments and were used as anchors to 

seed de novo growth.
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Figure 8. 
Scatter plot of MGE+FPS score vs re-docking RMSD for molecules constructed from 

generic fragment libraries. (Blue dots N=486,723) All molecules – 57 receptors, average 

ensemble size = 8,589. (Green dots N=2850) Top-scoring molecules – 57 receptors, top 50 

molecules from each ensemble.
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Figure 9. 
Molecular weight, number of rotatable bonds, and formal charge histograms for de novo 

designed molecules using generic libraries. Complete ensembles in blue and the top 50 best 

scoring molecules are in green.
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Figure 10. 
Comparison of (a) Molecular Weight, (b) LogP, (c) Rsynth synthetic feasibility, (d) Lipinski 

violations, (e) number of H-bond acceptors, and (f) number of H-bond donors between de 
novo unique compounds (N= 489,573) constructed from generic libraries (blue) and 500K 

purchasable drug-like molecules from the ZINC database (red).
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Figure 11. 
Comparison of molecular makeup between de novo built (~500K) and purchasable (~13M) 

molecules from ZINC. (a) Correlation plot of the three fragment types per molecule broken 

up by number of rotatable bonds. (b) Relative frequency of top-50 occurring fragments in 

ZINC (red) and de novo (blue) molecules. (c) Scatter plot of relative frequencies for the 

top-50 occurring fragments (black) and all other fragments (gray).
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Figure 12. 
(a) Co-crystallized cyclic urea inhibitor shown making key interactions (purple) with HIV 

Protease (PDB: 1DMP). (b,c) Top scoring de novo designed congeneric series of molecules.
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Figure 13. 
Example final outcomes for de novo construction of new molecules in important drug 

targets. Targets shown include (a) neuraminidase, (b) HIV protease, (c) HIV reverse 

transcriptase, (d) IGF-1R, (e) COX-1, and (f) acetylcholinesterase. PDB IDs are shown in 

parentheses next to the target name. Cognate crystal ligands are shown as blue sticks, 

candidate designed molecules are shown as orange sticks, and protein residues are shown as 

gray sticks. Key interactions, including hydrogen bonds, are shown as purple springs. The 

top three panels (a–c) shown multiple similar outcomes (5 overlaid orange molecules each). 

The bottom three panels (d–f) show a single outcome overlaid with the crystal structure.
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Figure 14. 
Examples of molecules constructed in the HIV gp41 hydrophobic pocket through de novo 
design using the MGE+FPS scoring function and rescored using five different functions: 

MGE+FPS, SGE, FPSSUM, FPSVDW, and FPSES. Top panels show the top 200 scoring 

molecules for each ranking metric. Middle panels show the best scoring molecule for each 

ranking metric. Bottom panel radar plots show reference footprints (bold lines) for 

comparison with candidate footprints (dashed line) from the best scoring molecules. 

Hydrophobic pocket of gp41 in gray surface with key lysine residue highlighted in purple. 

Footprint similarity scores (Euclidian distance) for van der Waals (VDW) overlap and 

electrostatic overlap (ES) are shown in black and red font respectively.
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Figure 15. 
Fraction of designed molecules targeting the gp41 hydrophobic pocket (y-axis) for which an 

analog was found in ZINC at or above a certain Tanimoto cutoff (x-axis).
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Figure 16. 
Comparison of 15 de novo compounds (a–o) designed in the hydrophobic pocket of gp41 

with the most similar compound available for purchase in ZINC. The designed compounds 

(top) have prefix 1AIK and an associated energy score (MGE+FPS function, kcal/mol) while 

the purchasable compounds (bottom) have prefix ZINC and an accompanying Tanimoto 

coefficient.
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Figure 17. 
(a) Comparison of experimentally verified HIV gp41 inhibitor NB-2 (gray box)101 to 12 

members of a congeneric series of de novo designed compounds. The de novo molecule 

identifier, ZINC ID of the purchasable NB-2 analog, energy score, and pose classifier are 

listed for each compound. (b) This congeneric series adopted 3 related poses (labeled 1–3). 

HIV gp41 receptor shown as gray surface, key chelating Lys 29 residue shown as purple 

surface and sticks, de novo designed molecules shown as green sticks.
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Table 3

Ensemble outcomes for generic library de novo growth across eight protein families.

Protein Family Number of Systems Avg. Ensemble Size Overall Re-dock Successi Top 50 Re-dock Success

acetylcholinesterase a 5 9,342 24.0% 69.2%

cyclooxygenase b 6 4,874 39.3% 69.7%

EGFR c 5 10,060 28.1% 77.2%

HIV protease d 12 10,556 19.6% 66.7%

HIV reverse transcriptase e 10 7,686 34.3% 88.8%

IGF1R f 4 9,925 19.6% 64.5%

neuraminidase g 10 7,656 27.4% 60.0%

streptavidin h 5 8,706 32.2% 64.8%

All 57 8,589 27.9% 70.5%

a
PDB codes = 1EVE, 1H22, 1J07, 1Q84, 1ZGC.

b
PDB codes = 1EQG, 1EQH, 1HT5, 1HT8, 1Q4G, 4COX.

c
PDB codes = 2ITP, 2ITT, 2ITY, 2RGP, 3BEL.

d
PDB codes = 1AJV, 1DMP, 1HVR, 1MER, 1MES, 1MET, 1QBS, 2F80, 2F81, 2IDW, 2IEN, 2IEO.

e
PDB codes = 1C1B, 1C1C, 1VRU, 2BE2, 2RKI, 2ZD1, 3BGR, 3DLE, 3 DLG, 3DOL.

f
PDB codes = 2ZM3, 3NW5, 3NW6, 3NW7.

g
PDB codes = 1BJI, 1F8B, 1F8C, 1F8D, 1F8E, 1MWE, 1NNB, 1NNC, 1XOE, 1XOG.

h
PDB codes = 1DF8, 1SRG, 1SRI, 1SRJ, 2IZL.

i
Success defined as 2 Å or less from input geometry.
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Table 4

Summary of best scoring molecules targeting HIVgp41

Scoring Function a De Novo Molecule DN Mol Score Virtual Screen Molecule VS Mol Score

MGE+FPS 1AIK_1386 −53.5 ZINC14534436 −47.6

SGE 1AIK_1386 −62.7 ZINC09262558 −55.1

FPSSUM 1AIK_10458 6.3 ZINC08738361 2.9

FPSVDW 1AIK_15002 2.7 ZINC14979322 1.2

FPSES 1AIK_9575 0.9 ZINC02728380 0.8

a
Scoring function used to select molecule.

MGE+FPS and SGE in kcal/mol. FPS, FPSVDW, and FPSES in Euclidian distance.
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