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Abstract

A common way to understand structure in multimolecular systems is the coordi-
nation shell which comprises all the neighbors of an atom. Coordination, however, is
non-trivial to determine because there is no obvious way to determine when atoms are
neighbors. A common solution is to take all atoms within a cutoff at the first minimum
of the radial distribution function, g(r). We show that such an approach cannot be
consistently applied to model multicomponent systems: mixtures of atoms differing in
size or charge. Coordination shells using the total g(r) are found to be too restrictive
for atoms of different size while those using pairwise g(r)s are excessive for charged
mixtures. The recently introduced relative angular distance (RAD) algorithm, how-
ever, which defines coordination instantaneously from atomic positions, is consistently
able to define coordination shells containing the expected neighboring atoms for all
these systems. A more robust way to determine coordination should in turn make
coordination a more robust way to understand structure.
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The relative angular distance (RAD) algorithm identifies the coordination shell of an atom’s
neighbors instantaneously from the coordinates of atoms in a series of mixtures. Standard
methods rely on a cutoff placed at the first minimum in the radial distribution function, which
has to be constructed as an average over many configurations, assumes a fixed, spherical
boundary, and cannot be defined consistently for any one kind of radial distribution function
for a mixture.
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INTRODUCTION

Structure is a fundamental quantity for any molecular system. However, beyond the cases

of crystalline systems or single, rigid molecules whose atoms have well-defined positions,

structure is a challenge to define. The most common approach makes use of the radial

distribution g(r) which quantifies the average probability of two atoms at a distance r relative

to the probability at any distance. While g(r) has the advantage of being accessible by

experiment or simulation, it only gives a partial picture of local structure because it averages

extensively in time and space. Another widely used way to understand structure is the

coordination shell of an atom1,2 and its associated coordination number Nc. This gives

discrete, instantaneous knowledge about the local structure of any atom. However, there

is no general way to determine Nc and multiple methods exist to define it. The simplest

approach is the nearest-neighbor method whereby Nc is fixed for all atoms at some pre-set

value, such as the value in a crystal. Nc can be derived from g(r)3, the most common method

being to set Nc equal to the number of atoms within a cutoff placed at the first minimum

of g(r). While simple in principle, cutoffs require a smooth, well-converged g(r) with a

well-defined minimum which requires averaging over many different configurations but at

the cost of information about each individual configuration. Moreover, cutoffs are abrupt,

making them sensitive to small fluctuations, they assume spherical symmetry, and must be

derived for every atom pair at the conditions of interest because they are not transferable.

Cutoffs do not have to be derived from g(r) and can be specified arbitrarily. A third method

to determine coordination is Voronoi analysis4 which defines neighbors instantaneously for

a given configuration without having to specify cutoffs, from g(r) or otherwise. Atoms are

defined as neighbors if their Voronoi polyhedra share a common face. While intuitive, this

method yields excessive values of Nc compared to g(r)-derived values and second-shell atoms

commonly get included in the coordination shell, even for crystals5. The ideal method to

determine coordination would yield Nc instantaneously but not require the evaluation of

g(r) or any ad hoc cutoffs. A recent method which does exactly this is the Relative Angular

Distance (RAD) algorithm6. RAD defines two atoms as neighbors if no third atom blocks

their interaction; the closer the third atom is to both atoms and the more colinear the atoms,
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the more likely the third atom is to block.

Despite the limitations of cutoffs, whether or not they are derived from g(r), they are

still widely used, especially in multicomponent systems in which the limitations discussed

above are even more acute. For cutoffs derived from g(r), there are multiple types of g(r) to

consider from which to derive a cutoff: either the total g(r) or the g(r) between particular

pairs of atoms may be used. Here we compare Nc values determined by two different cutoff

methods for two kinds of binary 50:50 mixture: Lennard-Jones atoms of either different size

or different charge. The purpose of our study is not to examine the structure of mixtures,

which is a long-standing and well-researched topic7–10, but rather to use the mixture as a

model to demonstrate the limitations of cutoff methods and how these may be overcome.

One cutoff method has the cutoff at the first minimum in the full radial distribution function

of all atoms and the other method has individual cutoffs for each pairwise radial distribution

function specific to the two types of atoms involved. Neither method is found to capture the

coordination shell consistently for all systems, even to a qualitative level of accuracy. The

RAD method, on the other hand, successfully picks out the neighboring atoms in all cases.

METHODOLOGY

Coordination-Number Algorithms

Three methods are used to define Nc:

1. Relative Angular Distance (RAD)6. With respect to atom i, atom j is unblocked if

1

r2ij
>

1

r2ik
cos θjik (1)

for all atoms k, where rij and rik are the distances from i to j and i to k and θjik is the

angle subtended at i by j and k. Atom j is deemed to be in i’s shell if j and every atom

closer to i than j are unblocked. RAD efficiently and non-recursively works outwards

along the sorted list of atom j’s nearest neighbors, comparing only closer atoms k as

potential blockers, and ending the search if a block occurs. RAD operates independent
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of atom type. Radial distribution functions of atoms in the RAD shell are accumulated

over all configurations.

2. Total g(r) Cut-off (GCtot). The coordination shell is all atoms within the cutoff placed

at the first minimum in the total g(r).

3. Pairwise g(r) Cut-off (GCpair).The coordination shells for each atom pair are evalu-

ated separately up to the first minimum of the respective pairwise radial distribution

functions g(r) and then combined to give the total.

Nc values are calculated using C++ code which reads in a coordinate trajectory from a

molecular dynamics simulation. Distribution functions are recorded with a bin-width of

5 pm.

Molecular Dynamics Simulations

Each system consisted of 600 atoms. For the neutral mixtures, half of the atoms had Lennard-

Jones parameters of ǫ = 0.9961 kJ mol−1 and σ = 0.3405 nm to mimic argon11 (A) and

the other half (B) have σ scaled by a factor, which ranges from 1.0 to 3.2 in 0.2 increments,

making twelve systems altogether. Lorentz-Berthelot mixing rules were used. For the charged

mixture, the same Lennard-Jones parameters for argon were used for all atoms but with

charges of +1 e for half the atoms (A) and −1 e for the other half (B). All simulations

were performed with the sander module of AMBER 14.12 The Lennard-Jones mixture with

equal-sized atoms was made using the AMBER module leap, minimized with 500 steps of

steepest descent minimisation, equilibrated for 100 ps at constant volume and temperature

of 137.77 K using the Langevin thermostat, followed by a 1 ns at a constant pressure of

1400 bar using the Berendsen algorithm and a time constant of 2 ps (chosen to reproduce a

temperature of 1.15 ǫ/kB and density of 0.9 σ3). Subsequent Lennard-Jones mixtures had the

same protocol and modified topology files, with the restart file coming from the mixture with

the successively smaller scale factor. A similar protocol was used for the charged mixture

except that the temperature was 1500 K to ensure a molten phase, the pressure was 1 bar, and

the starting structure was taken from the equilibrated simulation with equal-sized neutral

5



atoms. In all simulations, a 2 fs timestep, a 0.8 nm cut-off, periodic boundary conditions, and

Particle-Mesh Ewald with default AMBER parameters were used. Structures for analysis

were collected every 20 ps in a further 10 ns simulation for each system under the same

conditions as the final stage of equilibration.

RESULTS

Lennard-Jones Mixtures

The total radial distribution functions g(r), together with the RAD g(r) and all GC cutoffs,

are shown for the different mixtures in Figure 1. For σB/σA = 1, equivalent to the pure liquid,

the plot is the same as in earlier work6. As σB/σA increases, the first peak gradually resolves

itself into three peaks, one for each of the AA, AB/BA and BB interactions, where AB

indicates B around A, and BA, conversely, A around B. The GCtot cutoff aligns closely with

the AA cutoff because the AA interaction, being the shortest, brings about the first minimum

in g(r). The RAD shell picks out all three peaks because all three kinds of interaction

contribute to the coordination shell. The outer RAD peaks are a smaller component of the

total g(r) because these peaks also comprise second-shell interactions, which RAD excludes,

as well as first-shell interactions. For mixtures with the largest σB/σA, the middle RAD

peak, corresponding to the AB/BA interactions, fades away because of a phase separation

between the small and large atoms, discussed later.

Average coordination numbers Nc by the three methods are plotted in Figure 2 as a func-

tion of σB/σA for total, AX, BX, AA, AB/BA and BB coordinations, where “X” denotes

either atom. Overall, total Nc values are highest for GCpair, lowest for GCtot, and interme-

diate for RAD. RAD values decrease smoothly from 9.6 at σB/σA = 1 to 5 at σB/σA = 2.4

because of reduced packing for differently sized atoms and then increase for larger σB/σA.

The AA and BB values of Nc for RAD mirror the total trend, while AB and BA gradually

drop away, indicating phase separation. RAD’s asymmetry in that BA coordination exceeds

AB coordination captures the intuitive idea that more smaller atoms can pack around a

larger atom than larger atoms can fit around a smaller atom. The BB coordination exceeds
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that of AA at larger values of σB/σA because the larger size of B means that fewer BB

interactions are disrupted than AA interactions. Strikingly, GCtot values start at 12.6 but

drop precipitously to 0.7 at σB/σA = 1.4 because of a marginally resolved first minumum

in g(r) (Figure 1) owing to AA interactions. The AA coordination gradually increases as

its first peak gets better resolved while the AB/BA and BB interactions contribute nothing

to coordination because the larger size of B means they are beyond the AA cutoff. GCpair

values, which use individual cutoffs for each pair, do not suffer from this problem. The

total Nc stays at ∼12 for all values of σB/σA. GCpair and RAD share similar trends for AA

and AB/BA neighbors but the BB coordination is notably smaller for RAD because of the

blocking of BB interactions by A atoms.

At a higher level of detail, Figure 3 shows the probability distributions of Nc for all three

methods. The GCtot distributions are roughly Gaussian but for σB/σA ≥ 1.4 there is a large

spike in Nc = 0 which is off the scale in each plot. This primarily represents isolated B atoms

because all other atoms lie beyond the cutoff determined by the AA interaction. Consistent

with the averages in Figure 2, non-zero coordinations for these systems are essentially due to

AA interactions. The GCpair and RAD distributions have no such spike at Nc = 0 but both

display some degree of bimodality. The bimodality is stronger for GCpair and extends over

1.4 ≤ σB/σA ≤ 3.2 while for RAD it occurs for 2.4 ≤ σB/σA ≤ 3.2. For GCpair at low values

of σB/σA, the first peak represents AX interactions and the second peak BX interactions. For

both methods at higher σB/σA, the smaller contributions from AB/BA interactions mean

that the peaks represent predominantly AA and BB interactions, respectively. The widely

different Nc values for the two GC methods suggest an intermediate method whose cutoff lies

at the first minimum in the AX and BX g(r)s. While giving slightly larger Nc values because

of the inclusion of BA neighbors, this still omits the AB and BB interactions because the

first minima of AX and BX are dominated by the shorter AA and BA interactions, yielding

Nc values still below that of RAD (data not shown). In summary, RAD and GCpair yield

plausible values of Nc and agree moderately well for Lennard-Jones mixtures of differently

sized atoms, whereas GCtot is dominated by the shortest pairwise interaction and clearly

fails.
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Charged Lennard-Jones Mixtures

Coordination values Nc for the charged mixture using all three methods are listed in Table 1.

The total and pairwise g(r)s are shown in Figure 4. GCtot and RAD give similar Nc values to

each other for all types of interaction, with RAD Nc values being slightly larger than GCtot

values. Symmetry in charge ensures that AA and BB coordinations are identical, as are AB

and BA. Total Nc values deviate a small amount from the crystalline value of 6 because of

thermal disorder, and mostly comprise counter-ion AB pairs as expected. The RAD-shell

g(r)s tail off smoothly to zero versus the sudden drop for the GCtot shells, but nonetheless

they closely coincide. However, for the GCpair method, while its Nc values are in close

agreement with RAD for the AB coordination, the values for the AA and BB coordinations

are excessively large. This is because the first peaks for these same-charged pairs lie at the

second coordination shell overall due to electrostatic repulsion. The intermediate method

considered earlier based on AX and BX g(r)s does not help here because it is identical to the

GCtot method. In summary for charged mixtures, it is RAD and this time the GCtot which

yield plausible values and agree moderately well, whereas GCpair comprises predominantly

second-shell interactions and clearly fails.

DISCUSSION

RAD consistently picks out the coordination shell of neighboring atoms for a range of mix-

tures, whether the atoms are of different size or charge. In contrast, methods based on cutoffs

at the first minima of g(r) are unable to achieve this feat, performing well for one case but

poorly for the other. A cutoff based on the total g(r) GCtot fails for atoms of different sizes

while a cutoff based on the pairwise g(r) GCpair fails for charged mixtures. The failure for

atoms with different sizes occurs because GCtot excludes larger atoms from shells, resulting

in Nc values that are too small. If atoms are charged, the repulsion between identical ions

places the first minimum at the second shell overall, resulting in Nc values that are too

large. Without knowing in advance the behaviour of the system, it is impossible to know

which to use. It could be argued that common sense could be used to decide which method

is appropriate, but this is subjective and likely to fail in more complex cases. Moreover,
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extrapolating these findings for simple model mixtures, neither of the two methods should

work at all for multicomponent systems having atoms of different size and charge. One pos-

sible alternative is to use contact distances from atom surfaces instead of distances between

atom centers in the construction of g(r). However, this is strictly only valid for hard spheres

and ignores the differing energetic interactions of atom pairs, is technically more complex,

and the disadvantages of cutoffs remain.

To the best of our knowledge, no methods related to RAD have been used to deter-

mine neighbors in molecular systems. However, similar methods have been used elsewhere.

Subsequent to developing RAD, we found a method in the geography literature, referred

to as the Gabriel graph13, which is a version of blocking using inverse distances 1/rij and

1/rik in Eq. 1 instead of the inverse-square distances as in RAD. The Gabriel graph assigns

two points as neighbors if the circle centered on the points’ midpoint with diameter equal

to their distance contains no other point. This circle is parametrised by point k in the

equation rik/rij = cos θjik. Blocking occurs if any atom k lies within this circle such that

rik/rij < cos θjik. RAD’s blocking region is defined as (rik/rij)
2 = cos θjik, which resembles

a squashed circle. More blocking regions are possible such as the overlap of two intersecting

circles or a lune14. A further point of interest is that the Gabriel graph is equivalent to the

coordination derived from a modified Voronoi analysis in which points are not neighbors if

their connecting line does not intersect their shared face14–16. Both we6 and Malins et al.16

had tested these respective but equivalent methods earlier but discounted them because

they gave too large a coordination for the important simple-cubic geometry by including

the diagonal neighbors into the coordination shell when there was infinitesimal distortion.

Regarding other possible variations of RAD, our original formulation6 had the provision to

account for atom size. However, the application of this to mixtures made little difference

and so was not adopted here for simplicity. Charge could also be included in the blocking

but it cancels on both sides of the equation in the cases considered here.
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CONCLUSIONS

We have demonstrated that methods to determine the coordination shell based on cutoffs

at the first minimum in the radial distribution function cannot be consistently applied to

different kinds of mixtures. The GCtot method with a cutoff at the first minimum in the

total g(r) yields plausible values of Nc for charged mixtures but gives values that are much

too small for mixtures of differently sized atoms; the GCpair method, on the other hand, with

individual cutoffs at the first minima in each of the pair-specific g(r)s, yields plausible values

of Nc for mixtures of differently sized atoms but gives excessively large values for charged

mixtures. Thus, short of arbitrarily setting the cutoff, some other criterion would have to be

established as to which method to use, and neither method may be appropriate. In contrast,

RAD has shown itself to be a robust, general method to define an atom’s coordination shell

for both kinds of mixtures, and its application to mixtures of differently sized or charged

atoms consistently picks out the neighboring atoms. While there is no exact, rigorous way

to define coordination, the robustness and generality of RAD should help make coordination

a more reliable way to probe structure in complex molecular systems.
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Figure 1: Radial distribution functions g(r) (solid gray), g(r) cutoffs (dashed gray), and

RAD coordination shells (solid black) for a mixture of Lennard-Jones atoms with diameters

σA and σB. The labels in the top right correspond to σB/σA.

Figure 2: Total, AX, BX, AA, AB/BA and BBNc values determined by GCtot (gray squares),

GCpair (gray triangles), and RAD (black circles) for a mixture of Lennard-Jones atoms of

two different sizes σA and σB; “X” denotes either atom. For RAD there are separate symbols

for AB (small circles) and BA (large circles) coordination.

Figure 3: Probability distributions of Nc for GCtot (gray squares), GCpair (gray triangles),

and RAD (black circles).

Figure 4: Total and pairwise AA, AB and BB g(r) (solid gray), GCtot cutoffs (left dashed

gray) and GCpair cutoffs (right dashed gray), and the RAD shell (solid black) for the charged

mixture.
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Table 1: Charged Mixture Nc by GCtot, GCpair and RAD.

Method AA/BB AB/BA Total

GCtot 0.6 4.1 4.7

GCpair 15.1 5.3 20.4

RAD 0.8 4.6 5.4
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