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ABSTRACT:  

In linear-scaling divide-and-conquer (DC) electronic structure calculations, a buffer region is used 

to control the error introduced by the DC approximation. In this study, an energy-based error 

estimation scheme is proposed for the DC self-consistent field method with a two-layer buffer 

region scheme. Based on this scheme, a procedure to automatically determine the appropriate 

buffer region in the DC method is proposed. It was confirmed that the present method works 

satisfactorily in calculations of water clusters and proteins, although its performance was 

insufficient for the calculation of a delocalized graphene system.  
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Introduction 

Since the advent of computational quantum chemistry, the rapid increase in computational power 

has allowed the electronic structure calculation of ever-larger systems. In variational quantum 

chemical methods, the major computational task is the diagonalization of the Hamiltonian matrix 

that scales cubically with respect to the number of basis functions. To enable the electronic 

structure calculation of very large systems, many types of approximate electronic structure 

methods have been proposed in the last two decades that show linear-scaling computational time 

with respect to the system size. Almost all linear-scaling methods are approximations of existing 

matured electronic structure methods, such as Hartree–Fock (HF),[1] Kohn–Sham density 

functional theory (DFT),[2] and post-HF correlation calculations.[3] The results of linear-scaling 

methods bear two types of errors, i.e., those derived from the methodology and those from the 

linear-scaling approximation itself, the latter of which is desired to be controlled by the linear-

scaling method itself.  

In many linear-scaling methods, procedures for distance-based control and/or accuracy 

evaluation have been introduced. For example, in the density matrix minimization method,[4] a 

cutoff distance was introduced for the construction of an auxiliary density matrix of the support 

function.[5,6] In the molecular tailoring approach,[7] Gadre and coworkers defined the R-goodness 

parameter,[8,9] which indicates the quality of a fragmentation scheme based on the distance. The 

generalized energy-based fragmentation (GEBF) approach[10] can also employ a distance-based 

accuracy control scheme. [11] In the divide-and-conquer (DC) method,[12–14] the size of the buffer 

region controls primarily the accuracy of the approximation. Although methods with distance-

based control parameters can systematically improve the accuracy of the approximations, it is still 

difficult to estimate the error in energy, which is the most important property in electronic structure 
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calculations. For some linear-scaling methods, density-based or energy-based error estimation 

schemes have also been developed. For example, for the density matrix purification method,[15,16] 

Rubensson and coworkers proposed a scheme to control the density-matrix error derived from 

iterative purification.[17,18] Niklasson et al. proposed a graph-based Fermi-operator expansion 

scheme, in which the accuracy was controlled by thresholded sparse matrix algebra.[19] However, 

in fragmentation-based linear-scaling approaches, such as those with DC and molecular tailoring 

methods, it can be difficult to control the accuracy without careful prior testing.[19] Another 

example of accuracy control can be found in the fragment molecular orbital method,[20] in which 

the results can be improved by increasing the order of the many-body expansion.[21,22] 

In this study, a scheme to estimate the energy error introduced in DC-HF or DC-DFT 

calculations[23] is proposed. Nakai and coworkers extended the DC method to open-shell 

systems[13,24] and proposed an energy gradient.[25] Recently, they have also applied this method to 

the density-functional tight-binding (DFTB) theory,[26,27] which has enabled us to perform 

quantum mechanical calculation of one million atom systems within one minute with the Japanese 

K supercomputer.[28,29] In the present error estimation method, the two-layer buffer region scheme 

originally introduced by Dixon and Merz[30] was adopted. Guided by this error estimation scheme, 

an algorithm to automatically determine the appropriate buffer size was established. 

 

Method 

DC self-consistent field (SCF) method with a two-layer buffer region 

Before summarizing the DC-SCF method with a two-layer buffer region, we note that, in the DC 

method, each basis function should be connected to an atom. Therefore, it is simply called an 

atomic orbital (AO) and denoted with a Greek letter index, {μ, ν, …}. In the DC method, the entire 
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system is first divided into Nsub disjoint subsystems, each of which is referred to as the central 

region. A set of basis functions connected to the central region of subsystem α is denoted by S(α). 

For each subsystem, the buffer region is added to the central region to construct a localization 

region, where the subsystem molecular orbitals (MOs) are constructed. In the two-layer buffer 

scheme introduced by Dixon and Merz,[30] the buffer region is hierarchically divided into two sub-

regions, denoted as the inner and outer buffer regions (Figure 1). The inner buffer region, in which 

the set of AOs is denoted by Bi(α), is used to construct the subsystem MOs as well as to contribute 

to the density matrix; while the outer buffer region, in which the set of AOs is denoted by Bo(α), 

is only used to construct the subsystem MOs. 

According to the DC-SCF scheme, the one-body density matrix of the entire system is 

approximated by the sum of subsystem contributions: 

subsystem
DCD D P Dα α

µν µν µν µν
α

≈ = ∑ ,  (1) 

where αD  expresses the density matrix of subsystem α, which is given in closed-shell case by 

*
F( )p p p

p
D f C Cα α α α

µν β µ νε ε= −∑ .  (2) 

The subsystem MOs, { }p
αψ , are expanded in the two-layer buffer scheme with the AOs, { }µφ , in 

the outer localization region, o i o( ) ( ) ( ) ( )α α α α≡ ∪ ∪L S B B : 

o ( )
( ) ( )p pCα α

µ µ
µ α

ψ φ
∈

= ∑r r
L

.  (3) 

The MO coefficients, { }p
αC , and MO energies, { }p

αε , are obtained by solving the following 

subsystem Roothaan equation: 

DC[ ] p p p
α α α α αε=F D C S C .  (4) 
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DC[ ]αF D  and αS  are the subsystem effective Hamiltonian and overlap matrices, respectively, 

which are the submatrices of the entire effective Hamiltonian and overlap matrices, 

DC core DC[ ] 2F H Dµν µν λσ
λσ

µσ νλ µσ λν= +  −  ∑D ,  (5) 

Sµν µ νφ φ= ,  (6) 

for o ( )αL  with two-electron integral notation of * * 1
1 2 1 2 12 1 2( ) ( ) ( ) ( )d d rµ σ ν λµσ νλ φ φ φ φ−= ∫∫ r r r r r r . 

Although the Fock matrix is shown in eq. (5) as a typical example, the effective Hamiltonian 

generally depends on the density matrix. αP  in eq. (1) is the partition matrix, which is defined in 

the two-layer buffer scheme by 

i

1 for ( ) ( )
1/ 2 for ( ( ) ( )) or  
0 otherwise

P vice versaα
µν

µ α ν α
µ α ν α
∈ ∧ ∈

= ∈ ∧ ∈



S S
S B ,  (7) 

and 1( ) [1 exp( )]f x xβ β −= + −  is the Fermi distribution function with the inverse temperature 

parameter β. Fε  represents the universal Fermi level, which is determined by solving the following 

non-linear equation to conserve the total number of electrons, ne, in the entire system: 

DC
e 2Tr( )n = D S .  (8) 

The density matrix of eq. (1) and the effective Hamiltonian matrix of eq. (5) are determined self-

consistently. The electronic energy can be obtained as the functional of the density matrix: 

DC DC core DC[ ] Tr ( [ ])E  = + D D H F D ,  (9) 

when the effective Hamiltonian is linear with respect to the density matrix, which is satisfied in 

HF and semiempirical MO calculations, but is not in typical DFT calculations. 

 

Estimation of the DC energy error with a two-layer buffer region 
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If the outer buffer region is transferred into the inner buffer region, the density matrix changes by 

* *
F F( ) ( )p p p p p p

p p
D P f C C P f C Cα α α α α α α α

µν µν β µ ν µν β µ ν
α

ε ε ε ε
 
′ ′∆ = − − − 

 
∑ ∑ ∑ ,  (10) 

where relaxation of the subsystem MOs is neglected. α′P  is the auxiliary partition matrix 

i o

1 for ( ) ( )
1/ 2 for [ ( ) ( ( ) ( ))] or  
0 otherwise

P vice versaα
µν

µ α ν α
µ α ν α α
∈ ∧ ∈

′ = ∈ ∧ ∈ ∪



S S
S B B ,  (11) 

and Fε ′  is the auxiliary Fermi level. The first-order energy variation can be estimated with the 

density matrix correction, ∆D ,as 

DC2Tr [ ]E  ∆ = ∆ DF D ,  (12) 

where the effective Hamiltonian is assumed to be linear with respect to the density matrix.  

There are two ways of obtaining the auxiliary Fermi level, Fε ′ . The first one is to consider F Fε ε′ = , 

which simplifies eq. (10) to 

*
F( ) ( )p p p

p
D P P f C C P Dα α α α α α α

µν µν µν β µ ν µν µν
α α

ε ε′∆ = − − = ∆∑ ∑ ∑ ,  (13) 

where 

( )o1/ 2 for ( ) ( )  or  
0 otherwise

vice versa
Pα
µν

µ α ν α∈ ∧ ∈∆ = 


S B
.  (14) 

Substituting eq. (13) into eq. (12) gives 

o

DC C

( ) ( )

D2 [ ] 2 [ ]E P D F D Fα α α α α
µν µν νµ µν νµ

µν α α µ α ν α∈∈

∆ = ∆ =∑∑ ∑ ∑ ∑D D
BS

.  (15) 

According to the energy density analysis (EDA),[31] which is analogous to the Mulliken population 

analysis, the variation in energy can be separated into the contributions from the atoms in the outer 

buffer regions: 
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o o( ) ( )

D

( )

C2 [ ]
A

A
A A

E D F E
α α

α α α
µν νµ

α µ ν αα∈ ∈ ∈ ∈

∆ = = ∆∑ ∑ ∑ ∑ ∑ ∑D
S B B

,  (16) 

where 

( )

DC2 [ ]A
A

E D Fα α α
µν νµ

µ να∈ ∈

∆ = ∑ ∑ D
S

,  (17) 

and index A designates an atom. 

The other way to obtain the auxiliary Fermi level relies on the electron number constraint, i.e., 

Fε ′  is found by solving the following equation: 

( )DC
e 2Trn  = + ∆ D D S .  (18) 

Note that, in semiempirical MO calculations with a zero differential overlap (ZDO) approximation, 

the solution of eq. (18) is F Fε ε′ =  (as in the first case), since =S I  and the diagonal elements of 

∆D  with F Fε ε′ =  [i.e., eq. (13)] are zero. 

 

Automatic determination of the buffer region based on the estimated energy error  

If one chooses F Fε ε′ =  for DC calculations with a two-layer buffer region, the energy error 

introduced by the DC method can be estimated as the sum of contributions from the outer buffer 

atoms in each subsystem according to eq. (16). Also, it is known that the density matrix 

1 2 1 2( , ) ( ) ( )Dµν µ νρ φ φ=r r r r  decays exponentially with the distance 1 2−r r  in the case of an 

insulator.[32] Based on these facts, the following automatic extension scheme for the buffer region 

was developed: 

i) Evaluation of AEα∆  according to eq. (16) after constructing DC[ ]F D  for each SCF cycle. 

ii) Transferring all atoms in the outer buffer region of subsystem α to its inner buffer region. 
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iii) Inclusion of the atoms in the sphere with radius extr  centered on atom A with threshAE eα∆ ≥  

into the new outer buffer region of subsystem α. 

iv) Calculation of the subsystem MOs with eq. (4), construction of the density matrices with 

eqs. (1) and (13), and back to step i). 

After several cycles, the outer buffer region automatically vanishes when all AEα∆  become less 

than the threshold. Following this scheme, it may become possible to choose the appropriate buffer 

region for each subsystem while preserving the energy error per atom. In the actual implementation, 

the subsystem density matrix element required in eq. (16) is approximated as ~D Dα
µν µν∆  to avoid 

the need for storing the density matrices of all subsystems. This approximation can be validated 

because ( )1 1 2 2 1 2 11 2 ~D P D P D D D Dα α α α α α α
µν µν µν µν µν µν µν µν∆ = ∆ + ∆ = +   for 1 o 2( ) ( )µ α µ α∈ ∧ ∈S B   and 

2 o 1( ) ( )ν α ν α∈ ∧ ∈S B , where 2Dα
µν  is considered to be similar to 1Dα

µν . Here, o 2( )µ α∈B  is not 

always the case. Therefore, ~ 2D Dα
µν µν∆   is the other choice of the approximation, while it is 

equivalent to halve ethresh.  

 

Numerical Assessment 

Computational details 

We implemented the automatically controlled DC method to the GAMESS package[33,34] and 

assessed its accuracy and efficiency for different types of systems. In the DC method, the inverse 

temperature parameter, β, in Eq. (2) was set to 200 a.u. The parameters for the automated DC 

method were set to ethresh = 0.1 μEh and rext = 3.0 Å unless otherwise noted.  
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To discuss quantitatively the size of the localization region determined in the present scheme, 

we defined the major axis radius of localization region α, llocal(α), as half of the maximum atom 

pair distance in localization region α. The major axis radius at the initial SCF step, ini
locall , where the 

outer buffer region is excluded from the localization region, should strongly correlate with the 

initial buffer size, while that at the final SCF step, fin
locall , is expected to be barely dependent on the 

initial buffer size. 

 

Estimated DC-HF energy error 

We first compared two estimation schemes of the DC-HF energy error with eq. (12): (a) where 

F Fε ε′ =  and (b) where Fε ′  was determined for DC( )+ ∆D D . The estimated and actual energy errors 

were obtained for calculations of the crambin protein, as summarized in Table 1. Here, the 6-31G 

basis set[35] was adopted. The geometry of crambin was obtained via the protein data bank (PDB, 

identification number 1CRN) and the hydrogen atoms were then added with the FU program.[36] 

The estimated energy errors obtained from the second and final SCF steps are given for both 

estimation schemes. The initial guess density, which affects the estimation at the second SCF step, 

was obtained by the DC extended Hückel method implemented in GAMESS. In the DC 

calculations, the entire protein was cut between the carbonyl C and the α-C, and each fragment 

was treated as a central region. The buffer size was defined by in
br  and out

br , where the unions of 

the spherical regions with radius in
br  and out

br  centered on each atom in the central region were 

considered as the inner and outer localization regions, respectively. As expected, the actual energy 

error decreased with the increasing buffer size, except for the smallest buffer size where an error 

cancellation seems to have occurred. The two estimation schemes did not display significant 
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differences. At both the second and final SCF steps, the difference in the errors estimated by the 

two schemes was less than 10% for in
b 4.0r ≥  Å. The order of the estimated energy error at the 

final SCF step was consistent with that of the actual error. This estimation scheme worked 

reasonably even at the early SCF step, although the estimated error at the second SCF step was 

two or more times larger than that at the final step for in
b 4.0r ≥  Å. The method was also tested in 

calculations of delocalized polyene system and the similar results were obtained (see Table S1 in 

the Supporting Information).  

From the following section on, we will mainly focus on the semiempirical PM3 method,[37,38] 

which adopts the ZDO approximation. 

 

Accuracy and computational time of automated DC calculations 

The accuracy of the present method and its computational time requirements were examined in the 

calculation of a cubic system containing Nwater randomly oriented water molecules with a weight 

density of 1.0 g cm−3. In the DC calculations, each water molecule was treated as the central region. 

The initial buffer size was determined by in
br  and out

br , the definitions of which are the same as in 

the previous section. Table 2 summarizes the initial buffer-size dependence of the automated DC-

PM3 energy, the wall-clock computational time, and the number of SCF cycles for Nwater = 1000. 

The computational time for the SCF calculations was measured using a computer node equipped 

with an Intel Xeon E5-1650 CPU (6 cores, 3.50 GHz), and the average of three measurements was 

calculated. The energy difference from the standard PM3 results divided by the number of atoms 

(3000) is also shown in parentheses. For in
b 6.0r ≤  Å, the energy difference values are comparable: 

~0.5 μEh atom−1. For in
b 6.5r ≥  Å, the energy difference gradually decreases to zero because the 
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estimation for the initial buffer size is smaller than the threshold for most of the subsystems. In 

fact, the energy error at a single fixed buffer size of rb = 7.5 Å is 0.50 μEh atom−1, in good 

agreement with the result for out
b 7.5r =  Å. Although the number of SCF cycles is slightly larger 

than that for standard PM3 calculations, the computational time is ~10 times shorter for in
b 6.5r ≤  

Å. It is also suggested that a smaller initial buffer size results in the deterioration of the SCF 

convergence, which in turn leads to longer computational times. 

Table 3 summarizes the average (< locall >) and standard deviation (σ[ locall ]) of the major axis radii 

among all localization regions in the automated DC-PM3 calculations of the water system (Nwater 

= 1000). As expected, < ini
locall > increased linearly with the initial buffer size, and σ[ ini

locall ] was found 

to be relatively small. Interestingly, < fin
locall > was found to be larger for small initial buffer sizes up 

to in
b 6.0r =  Å, although the difference was fairly small. Accordingly, σ[ fin

locall ] displayed smaller 

values for larger initial buffer sizes. It was thus suggested that large initial buffer sizes efficiently 

aid the selection of the appropriate buffer region and hence may reduce the computational time, 

although this effect does not largely affect the energy error. For readers with particular interest, 

the behavior of < locall > during the SCF iteration is given in Figure S1 in the Supporting Information. 

Next, the dependence of the computational time on the system-size was determined, as shown 

in Figure 2. The initial buffer size was set to in
b 5.0r =  Å and out

b 6.0r =  Å. Even for Nwater = 400, 

the time for the automated DC-PM3 calculation (54 s) was around four times shorter than that for 

the standard PM3 calculation (204 s). Furthermore, the time required for the standard PM3 

calculations increased steeply with the system size. The scaling analysis with the double 

logarithmic plot indicated that the times for the standard and automated DC-PM3 calculations 

scaled as O(n2.7) and O(n1.6), respectively. For all systems, the DC energy error per atom was 
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within a narrow range: 0.44–0.57 μEh. It was thus confirmed that the present method is able to 

control the accuracy of the DC method while maintaining an almost linear-scaling computational 

cost. 

Table 4 summarizes the dependence of the energy error, computational time, and average of the 

major axis radii at the final step (< fin
locall >) on the energy-based threshold, ethresh, in the automated 

DC-PM3 calculations of the water system (Nwater = 1000). The initial buffer size was set to 

in
b 3.5r =  and out

b 4.5r =  Å. The result confirmed that the energy error is almost proportional to the 

energy threshold, ethresh. As expected, < fin
locall > decreases gradually as the energy threshold increases. 

Accordingly, the computational time decreases as the energy threshold increases, while it shows 

more significant dependence than < fin
locall > does. Therefore, it is important to set ethresh appropriately 

to enjoy both of good accuracy and less computational time. 

Finally, the parallel efficiency of the program was examined, although the present source code 

is not optimized for the parallelization. Table 5 summarizes the dependence of the wall-clock times 

(t) for the automated DC-PM3 SCF calculation of the system with Nwater = 1000 on the number of 

CPU cores (Ncore). The times were measured using a computer node equipped with two Intel Xeon 

E5-2667 CPU (8 cores, 3.20 GHz) and the average of three measurements was calculated. The 

initial buffer size was set to in
b 5.0r =  Å and out

b 6.0r =  Å. The parallel scalability S, given at the 

last column of the Table, is defined as the wall-clock time ratio S = t(Ncore = 1) / [Ncore × t(Ncore)]. 

Up to Ncore = 4, the scalability is higher than 0.7, while it rapidly decreases for Ncore > 4. There are 

two main reasons for the deterioration: (i) the reordering of the processing subsystem, which is 

effective for minimizing load imbalance, is not optimized for the varying subsystem size in the 

present automated DC method, and (ii) the semiempirical Hamiltonian matrix construction is not 
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efficiently parallelized in GAMESS. Although there is room for improvement, the present 

automated DC implementation is moderately parallelized, which especially works better for larger 

systems. 

 

Dependence of the accuracy on the system 

We then applied the method to covalently bound systems. Table 6 shows the initial buffer-size 

dependence of the automated DC-PM3 energy for the crambin system treated in the previous 

section. The energy difference from the standard PM3 results is also shown in parentheses. Again, 

it was confirmed that the energy difference was suppressed to small enough values: <1.4 μEh 

atom−1. The results for the crambin system did not show a systematic decrease of the energy 

difference up to in
b 5.5r =  Å, as the initial buffer size was sufficiently smaller than the major axis 

radius of the final localization region, as summarized in Table 7. From these data, it was again 

confirmed that < fin
locall > and σ[ fin

locall ] tend to be smaller for larger initial buffer sizes. In comparison 

with Table 3, the < fin
locall > value for the crambin system is ~1 Å longer than that of the water system 

as the decay rate of the density matrix elements through covalent bonds is slower than that through 

hydrogen bonds. 

Next, the present method was examined in calculations of the conjugated graphene system 

depicted in Figure 3 (C180H48). All atoms were placed on a plane and the C–C and C–H bond 

lengths were fixed to 1.42 and 1.09 Å, respectively. Table 8 shows the initial buffer-size 

dependence of the DC-PM3 energy for C180H48. In the DC calculation, the entire system was 

divided by a lattice spacing of 3.5 Å and each fragment was treated as a central region. The 

definitions of the initial buffer sizes, in
br  and out

br , were the same as those in the previous sections. 

The energies obtained with a fixed buffer size are given in Table 8, together with the estimated 
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energy errors at the final SCF step and < fin
locall >. Unlike the results for the water and crambin systems, 

the present automated DC method afforded in some cases a large energy deviation of >10 μEh 

atom−1. The estimated energy error with the fixed buffer size was found to be about one order of 

magnitude smaller than the actual error. Due to the significantly slow decay of the density matrix 

for conjugated systems, the energy error estimated in the outer buffer region may be insufficient 

to reproduce the actual energy error. In addition, the energy error does not converge to the standard 

PM3 result due to the finite temperature approximation in the DC method. Actually, the finite-

temperature PM3 energy with β = 200 a.u. is −810.643352 Eh, which is much closer to the 

converged DC-PM3 energy. 

Finally, the dependence of the energy error on the energy-based threshold, ethresh, was assessed. 

Figure 4 shows the dependence of the final energy error on ethresh for the automated DC-PM3 

calculation of 1000 water molecules and the crambin and graphene systems. The initial buffer size 

was set to in
b 3.5r =  and out

b 4.5r =  Å (or out
b 5.0r =  Å for the graphene system). For the water and 

crambin systems, which were adequately treated by the automated DC method, the energy error 

increased proportionally to ethresh, as expected. For the graphene system, however, the energy error 

did not show a systematic trend but oscillated throughout the ethresh value range, even at low ethresh 

values. Although there is still some room for improvement in the present automated DC scheme, 

it has been demonstrated that the energy error can be suppressed with the present method even for 

conjugated systems. 

 

Performance in the HF and DFT calculations  
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We applied the present scheme to the HF method and DFT with the pure BLYP[39,40] and hybrid 

B3LYP[41.42] functionals. Here, the DC energy error is estimated with eq. (9) even for DFT 

calculations, where the Hamiltonian matrix is not linear with the density matrix. The option to use 

the HF Hamiltonian (Fock) matrix at the early SCF stage of the DFT calculation, which is adopted 

in the default setting of the GAMESS program, was switched off. Table 9 shows the initial buffer-

size dependence of the DC-HF, DC-B3LYP, and DC-BLYP energies for a n-alkane (C150H302) 

with the 6-31G* basis set.[43] In the DC calculations, a C2H4 (or C2H5 for the edges) group is 

adopted as a central region. For the DC-HF and DC-B3LYP calculations, the energy error could 

be controlled within 0.7 μEh atom−1, while that for the pure DFT (DC-BLYP) calculation is one 

order larger in magnitude. The final localization region for central subsystems contains (C2H4)10−12 

in the DC-HF and DC-B3LYP calculations, while that does (C2H4)7−8 in the DC-BLYP 

calculations. This result suggests that the magnitude of E∆  with eq. (9) is underestimated without 

the HF exchange term. Actually, the energy error of the DC-BLYP calculation with the DC-HF 

final localization region was 0.09 μEh atom−1 for in
b 3.0r =  and out

b 4.5r =  Å. Therefore, in practical 

DC-DFT calculation, it is recommended to determine the appropriate buffer size with the early 

DC-HF SCF cycles, which can be performed in GAMESS by switching back on the default option 

to use the Fock matrix at the early SCF stage 

 

Concluding Remarks 

In this study, we have proposed an energy-based error estimation scheme for the linear-scaling DC 

quantum chemical method with the help of two-layer buffer regions. Exploiting the fact that the 

estimated energy error can be divided into contributions from the atoms in the outer buffer region 
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of each subsystem, our error estimation scheme was utilized for the automatic determination of the 

appropriate buffer region for the DC method. The present automated DC method worked 

satisfactorily in calculations of water, protein, and alkane systems, although its performance was 

insufficient in the calculation of a delocalized graphene system. Improvement of the present 

scheme for delocalized systems will be the scope of future studies. Furthermore, in the present 

scheme, the buffer region was gradually extended during the SCF cycles. There is an alternative 

approach to reduce the buffer region from a large initial buffer size, which may be preferably used 

when the method is applied to a series of quantum chemical calculations, such as geometry 

optimizations, where the appropriate buffer region of the previous step is available. 

An energy-based error control scheme such as the present method will be indispensable for 

quantum chemical molecular dynamics simulations, especially for microcanonical ensembles, 

where the total energy conservation is rigorously examined. Recently, Nakai and coworkers have 

published a series of studies performing quantum chemical molecular dynamics simulations with 

the DC-DFTB method.[28,29] The present automated DC method can straightforwardly be extended 

to the so-called DFTB2 Hamiltonian, which is linear with respect to the density matrix. 

Furthermore, the present error estimation scheme is expected to work even for non-linear 

Hamiltonians such as DFTB3. The development of an automated DC-DFTB molecular dynamics 

program is desirable not only to reduce the effort of preliminary assessments before the production 

runs but also to guarantee the accuracy of the results. The application of the present scheme to the 

DC Hartree–Fock–Bogoliubov method,[44] which can effectively treat the static electron 

correlation of large systems,[45] is also straightforward, as well as that to the open-shell DC 

unrestricted HF method.[13,24] However, the present method cannot be combined with DC post-HF 

correlation methods such as the second-order Møller–Plesset perturbation (MP2)[46–48] and coupled 
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cluster[49–51] theories. As pointed out by Kobayashi and Nakai,[52] the appropriate buffer size for 

DC post-HF correlation calculations is generally smaller than that for DC-HF calculations. 

Furthermore, especially in DC-MP2 calculations, the appropriate buffer size should be determined 

before carrying out the MP2 calculations as the procedure is not iterative. The solution to this issue 

will pave the way toward the development of an automated DC-MP2 scheme in the near future. 
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Figure 1. Structure of central, inner buffer, and outer buffer regions in the two-layer DC method. 
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Figure 2. System-size dependence of the wall-clock computational time of standard PM3 and 

automated DC-PM3 calculations for the model system containing Nwater water molecules. The 

initial buffer size for the DC calculations was fixed to in
b 5.0r =  and out

b 6.0r =  Å. 
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Figure 3. Structure of the graphene system, C180H48. 
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Figure 4. Dependence of the energy error on the energy-based threshold, ethresh, in the automated 

DC-PM3 calculations of 1000 water molecules and the crambin and graphene systems. 
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Table 1. Buffer size dependence of the actual and estimated DC-HF energy errors for the crambin 

protein. Standard HF energy is −17996.926754 Eh 

in
br  /Å out

br  /Å Actual error /Eh −ΔE by scheme (a) /Eh  −ΔE by scheme (b) /Eh 

   2nd step Final step  2nd step Final step 

3.5 4.5 −0.144241 −0.768550 −0.886510  −0.682481 −0.890704 

4.0 5.0 −0.348118 −1.005190 −0.532129  −1.071929 −0.526987 

4.5 5.5 −0.067862 −0.504153 −0.126115  −0.507108 −0.125820 

5.0 6.0 −0.017408 −0.123892 −0.038836  −0.124559 −0.038845 

5.5 6.5 −0.005229 −0.084293 −0.016880  −0.084118 −0.016881 
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Table 2. Initial buffer-size dependence of the total energy, the wall-clock computational time, and 

the number of SCF cycles for the automated DC-PM3 calculation of the model system containing 

1000 water molecules 

in
br  /Å out

br  /Å Energy /Eh (Diff. /μEh•atom−1) Time /s # cycles 

3.5 4.5 −11945.190938 (+0.48) 250 14 

4.0 5.0 −11945.190942 (+0.48) 246 14 

4.5 5.5 −11945.190837 (+0.51) 233 13 

5.0 6.0 −11945.190719 (+0.55) 209 12 

5.5 6.5 −11945.190414 (+0.65) 209 13 

6.0 7.0 −11945.190229 (+0.72) 202 12 

6.5 7.5 −11945.191077 (+0.43) 246 12 

7.0 8.0 −11945.191791 (+0.19) 325 12 

Standard PM3 −11945.192376  2443 11 
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Table 3. Average and standard deviation of the major axis radii of all localization regions at the 

initial and final SCF steps in the automated DC-PM3 calculation of the model system containing 

1000 water molecules 

in
br  /Å out

br  /Å < ini
locall > /Å σ[ ini

locall ] /Å < fin
locall > /Å σ[ fin

locall ] /Å 

3.5 4.5 3.577 0.306 8.105 0.626 

4.0 5.0 4.105 0.314 8.030 0.604 

4.5 5.5 4.659 0.319 8.031 0.581 

5.0 6.0 5.194 0.305 8.176 0.635 

5.5 6.5 5.703 0.313 7.981 0.766 

6.0 7.0 6.213 0.318 7.640 0.647 

6.5 7.5 6.708 0.342 7.832 0.507 

7.0 8.0 7.218 0.375 8.228 0.430 
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Table 4. Energy threshold (ethresh) dependence of the energy error, computational time, and average 

of the major axis radii of all localization regions at the final SCF steps in the automated DC-PM3 

calculation of the model system containing 1000 water molecules. The initial buffer size was set 

to in
b 3.5r =  and out

b 4.5r =  Å. 

ethresh /μEh Energy error /μEh atom−1 Time /s < fin
locall > /Å 

0.01 0.103 451 8.994 

0.05 0.295 319 8.396 

0.10 0.479 243 8.105 

0.50 1.360 179 7.421 

1.00 2.153 173 7.156 

1.50 2.953 144 7.024 
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Table 5. Parallelization efficiency of the automated DC-PM3 calculations of the model system 

containing 1000 water molecules 

Ncore Time (t) /s Scalability (S) 

1 710 1.000 

2 381 0.933 

4 252 0.706 

8 229 0.387 

16 272 0.163 
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Table 6. Initial buffer-size dependence of the automated DC-PM3 energy for the crambin system 

in
br  /Å out

br  /Å Energy /Eh (Diff. /μEh•atom−1) 

3.5 4.5 −2117.084675 (+0.10) 

4.0 5.0 −2117.084601 (+0.21) 

4.5 5.5 −2117.084647 (+0.14) 

5.0 6.0 −2117.083858 (+1.37) 

5.5 6.5 −2117.084462 (+0.43) 

Standard PM3 −2117.084739  
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Table 7. Average and standard deviation of the major axis radii of all localization regions at the 

initial and final SCF steps in the automated DC-PM3 calculation of the crambin system 

in
br  /Å out

br  /Å < ini
locall > /Å σ[ ini

locall ] /Å < fin
locall > /Å σ[ fin

locall ] /Å 

3.5 4.5 5.348 0.890 9.082 1.204 

4.0 5.0 5.835 0.981 9.158 1.208 

4.5 5.5 6.338 0.948 9.043 1.178 

5.0 6.0 6.781 0.969 9.072 1.198 

5.5 6.5 7.204 1.065 8.899 1.191 
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Table 8. Initial buffer-size dependence of the buffer-size fixed and automated DC-PM3 energies 

for the graphene system, C180H48. The estimated energy error at the final SCF step in the buffer-

size fixed calculation is also given. Standard PM3 energy is −810.650309 Eh 

in
br  /Å out

br  /Å Buffer size fixed  Automated < fin
locall > /Å 

  Actual error /Eh −ΔE /Eh  Energy /Eh (Diff. /μEh•atom−1)  

3.5 5.0 +0.466022 +0.141160  −810.650931  (−2.73) 10.672 

4.0 5.5 +0.163445 +0.023277  −810.651058  (−3.29) 10.820 

4.5 6.0 +0.107509 +0.024784  −810.644480 (+25.56) 12.251 

5.0 6.5 +0.137531 +0.013554  −810.650325  (−0.07) 11.458 

5.5 7.0 +0.065487 +0.008674  −810.648093  (+9.72) 11.427 

6.0 7.5 +0.041446 +0.008377  −810.651029 (−3.16) 10.926 

6.5 8.0 +0.044827 +0.004561  −810.644494 (+25.50) 12.033 

7.0 8.5 +0.039109 +0.003055  −810.643122 (+31.52) 11.796 

7.5 9.0 +0.016598 +0.001494  −810.655281  (−21.81)  10.846 

8.0 9.5 +0.011964 +0.001004  −810.644095 (+27.25) 12.199 

8.5 10.0 +0.014299 +0.001242  −810.642821 (+32.84) 11.992 

9.0 10.5 +0.017775 +0.000638  −810.643328 (+30.61) 12.310 

9.5 11.0 +0.010530 +0.000513  −810.644435 (+25.76) 12.543 

10.0 11.5 +0.008625 +0.000339  −810.644620 (+24.95) 12.211 
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Table 9. Initial buffer-size dependence of the automated DC-HF and DC-DFT energies for the n-

alkane system, C150H302. 

in
br  /Å out

br  /Å HF  B3LYP  BLYP 

  
Energy 

/Eh 

(Diff.) 

/µEh・atom-1 

 Energy 

/Eh 

(Diff.) 

/µEh・atom-1 

 Energy 

/Eh 

(Diff.)  

/µEh・atom-1 

3.0 4.5 −5855.829391 (−0.20)  −5897.795934 (+0.64)  −5893.578891 (+4.98) 

4.0 5.5 −5855.829339 (−0.08)  −5897.796218 (+0.02)  −5893.578904 (+4.95) 

5.0 6.5 −5855.829321 (−0.04)  −5897.796217 (+0.02)  −5893.578904 (+4.95) 

6.0 7.5 −5855.829329 (−0.06)  −5897.795958 (+0.59)  −5893.578954 (+4.84) 

7.0 8.5 −5855.829347 (−0.10)  −5897.796192 (+0.07)  −5893.579524 (+3.58) 

Standard −5855.829302   −5897.796225   −5893.581143  

 

 


